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Scope

Competing interactions and degeneracy
Classical ground-state correlations
Order by disorder

Spin liquids

- RVB spin liquids

- Algebraic spin liquids

—> Chiral spin liquids

- Spin hematics

Conclusions



The basic models

H = Z JiiSiS, S5, ==xlor T,]
(4,7)




Geometrical frustration

t

Not frustrated > Frustrated

t

Antiferromagnetic coupling + odd loops

!

Competition between exchange paths = frustration



Ising on triangular lattice

= At least one unsatisfied bond per triangle

m Infinite number of ways to achieve only
one unsatisfied bond on each triangle

At least 2V/3 GS

v

Residual entropy
S/N > (1/3) In2 = 0.210...




Entropy of triangular Ising model

= Wannier (1950): S/N = 0.3230...
= Alternative: dimer problem on dual lattice

AAVA # GS = 2 times
%X{}X%X% # dimer covering_s on
VAV‘V' honeycomb lattice




Kasteleyn matrix

Bonds oriented with odd number of
clockwise arrows on even plaquettes

1ifi, j ajdacent and 7 — j

a(z,j) = ¢ —1if 7,7 ajdacent and 7 < j 7 — +/det a

0 otherwise.

1 1 1
N InZ = / dr/ dyIn |3 4+ 2 cos(2my) — 2 cos(2m(z + y)) — 2 cos(27x)| ~ 0.1615
he 0 0



Spin Ice

s Dy,T1,0,, HO,Ti,Op
= Pyrochlore lattice
s Ferromagnetic exchange interactions
m Strong anisotropy: spins ‘in” or ‘out’
Ground state:
2 sSpins in, 2 spins out

Residual entropy:
the ‘ice problem’




Pyrochlore lattice




Residual entropy

Spin ice Ice

0 1 2 3 4 5 6 7 8 9 10
T (K)

‘Exact’ : S/kg = 0.20501
(Nagle, 1966) Ramirez et al, 1999

Pauling (1945): S/ks ~ (1/2) In (3/2) = 0.202732



Heisenberg model

= Bravais lattice: helical order
~ pitch vector = minimum of J(qg), FT of J,

\; ;; Triangular lattice:

3-sublattice order

Sum of spins = 0 on each triangle



Infinite degeneracy

= J;-]J, model on square lattice

Classical energy
independent of 6




Kagome

s Coplanar ground states: sum of spins = 0 on each
triangle > degeneracy of 3-state Potts model

= Non-coplanar ground states

Rotate a chain of blue
and red spins around
green direction




Classical GS correlations (Ising)

= Correlations = average over all GS
= [riangular lattice (Stephenson, 1964)

—

(0(7)a(0)) o< 1/r!/?

= Simple argument: Kasteleyn matrix on
honeycomb gapless (Dirac points at 0)

m Physical interpretation: the maximally
flippable configuration dominates the sum



Maximally flippable state

'AVAVAVAVA‘

VAVAVAVAV All red spins

)

VAVAVNAYAVAN fippable (2/3)
WAYAVAVAY



Mapping on height model

AVA
A eV e VA

EaViNY VLV
T

on up triangles, height z(r):
increases by + 2 clockwise if dimer
decreases by 1 otherwise



Coarse graining

Consistent with 1/ r/2 if

Rough phase




Pyrochlore Ising AF

= 2 Up — 2 down on each tetrahedron
= Continuum limit: magnetic field

1 3(én-T)(€s-T)— (€4 - €5)r?
5

Dipolar correlations



Pinch points in Ho, Ti,0O,

<€—— Experiment

<€— Theory

T. Fennel et al, 2009



Effects of quantum fluctuations

= Lifting of degeneracy:
- Order by disorder
= Large (often divergent) fluctuations:
- No long-range order
s What then?
- Spin gap and short-range correlations
—> Algebraic order and fractional excitations

- Variations around these themes: RVB liquid,
chiral spin liquid, nematic order



Quantum fluctuations




Zero-point energy




Order by disorder

AR .
m Even If the GS is degenerate, Chris Henley

the spectrum depends on GS
—> selection by zero-point energy




Local fluctuations

= Quantum correction to local magnetization

m Frustration
- soft spectrum
—> strong (often diverging) correction
- no magnetic long-range order




Gapped systems

s Exponential decay of correlations
- Correlation length &
- The system is effectively of finite size
- 'Finite-size’ gap
—> Start from a product of quantum eigen-
states on small clusters, e.g. dimer singlets




Example: spin-1/2 ladders

JI

GS = product of singlets on rungs

Unigue ground state for J'=0
- nonh-degenerate perturbation theory in J'/]



Excitations in spin-1/2 ladders

Triplet on rung s Singlet on rung j

= J’=0: all states degenerate with energy J
- degenerate perturbation theory in J'/]
—> triplet hopping
2> gapA=]1-0")

= Field theory: A > 0 even if J/] large



Frustrated spin-1/2 J,-J, chain

_]1-_]2 chain Hy—g = Z(Jlgi ’ §¢+1 - J2§i ’ §i+2)

7

Majumdar-Ghosh point: J,/J,=1/2
2 exactly dimerized ground states
|¢even> — H |S(ivi+ 1)>

7 even




2D analog: Shastry-Sutherland

Product of singlets on red bonds:
- always an eigenstate
- GS if inter-dimer coupling
not too large

= Spin gap
= Magnetization plateaux




Algebraic spin liquids
m Spin-1/2 chain: gapless, algebraic correlations

(Bethe ansatz, bosonisation)
s Extension in 2D?

Abrikosov fermions

1
T T T f
H = g Jij [ ( CirC; ¢CJ¢C]T + h. C) 1 (Cncn - Cucu) (CjTCjT - Cjicji)]




Mean-field theory on square lattice

_ 2 2
E==xJ Xo\/m Affleck-Marston 1988

Dirac points
—> Algebraic correlations



Gutzwiller projection

s Mean-field > unphysical wave-function (large
deviations from 1 fermion/site)

s Apply Gutzwiller projection

- physical wave function

= Evaluation of physical properties: Monte
Carlo simulations



Variational approach

= Basic idea: why to start from MF solution?

= Variational wave-functions: apply Gutzwiller
projection on the ground state of a family of
Hamiltonians

- Variational Monte Carlo (VMC)

- Good variational energy
for spin-1/2 kagome

/ 0\ /0\
N8 - Algebraic spin liquid
Py ~ /'ocbraicspin lic
NV Ran, Hermele, Lee, Wen, 2007




Excitations in algebraic liquid

= No long-range order
- No gapless spin-waves
= Algebraic correlations
—> gapless spectrum
= Nature of low-lying excitations?
- fractional excitations



Example: spinons in 1D

5=1
botti@ehititit
tititiADGD ¢t
EORERIOR

Spinons



Excitation spectrum

A spin-1 excitation
= 2 sSpinons
—> continuum

Early theory
Des Cloiseaux — Pearson
PRB ‘62

Stone et al, PRL ‘03



Chiral spin liquids

s [he order parameter breaks P and T, but
not PT

= Example: §1.(§2 x Ss)

= Simple approach: Gutzwiller projected
wave functions with fractional fluxes

s Best candidate: a small parameter range

in the J;-J,-J; model on kagome
Gong, Zhu, Sheng 2014



RVB spin liquids

= Anderson, 1973: restore translational symmetry
by a superposition of dimer coverings

- Resonating Valence Bond spin liquid

Not realized on triangular lattice (3-sublattice LRO)



Quantum dimer model

H= 3 [T(ID Gl He) + V(LD QT+ 1) (]

Plaquette

Rokhsar-Kivelson
1988

RK point: V/J=1 - GS = sum of all configurations
Correlations: algebraic (Kasteleyn matrix gapless)
—> Isolated point, no RVB phase



QDM on triangular lattice

Moessner and Sondhi, PRL 2001

RK point V/J=1 > Kasteleyn matrix gapped
- exponentially decaying correlations
- RVB phase



Topological sectors

Number of dimers cutting a given line

Parity conserved - 2 topological sectors (N even or N odd)
Torus: four topological sectors (two cuts)
Numerical proof: Ralko, Ferrero, Becca, Ivanov, FM (2005)



RVB phase in Heisenberg model?

= Spin-1/2 kagome antiferromagnet
- DMRG simulations
Han, Huse, White, 2011

- Effective QDM
Rousochatzakis, Wan, Tchernyshov, FM, 2014

= More recent results
—> Algebraic spin liquid (see other talks)



Nematic order

= Order parameter: 2-spin operator

= p-nematic: RS

= N-nematic: rank-2 tensor with 5 components

SST — SYSY

L (38757 - 5+ 5)

S8 + 5757
Sy 8% + SEST
S;Sy + 5153




Simple example: S=1

Consider ISEEEY):

(57")) #0

' J —

True for any a Broken SU(2) symmetry

!

Not magnetic



Quadrupole states and directors

PSS (0=i9)1) — ¢i%|T)) — i cos ¢[0)

Rotation of | S,=0>

d = (sin ¢ cos ¢, sin ( sin ¢, cos ()

« director »



S=1 with biquadratic interaction

- ]Z [COSQ?SS + sin (S;S;) ] —hZSf




S=1 on triangular lattice

Antiferroquadrupolar

Directors mutually
perpendicular on 3

sublattices
(see also Tsunetsugu-Arikawa, '06)

Ferroquadrupolar

Parallel directors
A. Lauchli, FM, K. Penc, PRL (2006)



Nematic state in spin-1/2 systems

= Basic idea: ferromagnetic n.n. coupling
- effective spin-1 on a bond
= J;-1J, model on chain and square lattice with J,<0
= J,-J, chain with J,<0 just below saturation
- Antiferroquadrupolar
Zhitormirsky and Tsunetsugu EPL 2010




|2 Selected for a Viewpoint in Physics woek ending
PRL 118, 247201 (2017) PHYSICAL REVIEW LETTERS 16 JUNE 2017

S

Nuclear Magnetic Resonance Signature of the Spin-Nematic Phase
in LiCuVQO4 at High Magnetic Fields

A. Ordova,”” E.L. Green,”" J.M. Law,”" D.I. Gorbunov,” G. Chanda’ S. Kriimer,’
M. Horvati¢,! R. K. Kremer,” J. Wosnitza,”* and G.L.J. A. Rikken'

LiCuvo,

*'V NMR
H//b
T=1.3 K

SATURATED

1|

47.0 :
. 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Svistov et al, 2011 H = iy (T)




Conclusions

= A lot of exotic quantum phases have been predicted

= Only a few of them have been found in realistic
models or in actual compounds

- room for important discoveries

Further reading:

Introduction to Frustrated Magnetism
Eds C. Lacroix, P. Mendels, and F. Mila
(Springer, New York, 2011).



