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Scope 
n  Competing interactions and degeneracy 
n  Classical ground-state correlations 
n  Order by disorder 
n  Spin liquids 

à RVB spin liquids 
à Algebraic spin liquids 
à Chiral spin liquids 
à Spin nematics 

n  Conclusions 

  



The basic models 

n  Ising  

n  Heisenberg model 

 

Classical limit 



Not frustrated ? Frustrated 

Antiferromagnetic coupling + odd loops 

Competition between exchange paths = frustration 

Geometrical frustration 



Ising on triangular lattice 

n  At least one unsatisfied bond per triangle 
n  Infinite number of ways to achieve only 

one unsatisfied bond on each triangle 

At least 2N/3 GS  

Residual entropy 
S/N > (1/3) ln2 = 0.210… 



Entropy of triangular Ising model 

n  Wannier (1950): S/N = 0.3230… 
n  Alternative: dimer problem on dual lattice 

# GS = 2 times  
# dimer coverings on  

honeycomb lattice 



Kasteleyn matrix 

Bonds oriented with odd number of  
clockwise arrows on even plaquettes  



Spin Ice 
n  Dy2Ti2O6, Ho2Ti2O6 

n  Pyrochlore lattice 
n  Ferromagnetic exchange interactions 
n  Strong anisotropy: spins ‘in’ or ‘out’ 

Ground state:  
2 spins in, 2 spins out 

Residual entropy:  
the ‘ice problem’ 



Pyrochlore lattice 



Residual entropy 

Spin ice Ice 

Pauling (1945): S/kB ≈ (1/2) ln (3/2) = 0.202732 

‘Exact’: S/kB ≈ 0.20501 
(Nagle, 1966) Ramirez et al, 1999 



Heisenberg model 

n  Bravais lattice: helical order  
  à pitch vector = minimum of J(q), FT of Jij 

Triangular lattice: 
3-sublattice order 

Sum of spins = 0 on each triangle 



Infinite degeneracy 

n  J1-J2 model on square lattice 

Classical energy 
independent of θ 



Kagome 

n  Coplanar ground states: sum of spins = 0 on each  
triangle à degeneracy of 3-state Potts model   

  

n  Non-coplanar ground states 

Rotate a chain of blue  
and red spins around  

green direction 



Classical GS correlations (Ising) 

n  Correlations = average over all GS 
n  Triangular lattice (Stephenson, 1964)  

n  Simple argument: Kasteleyn matrix on 
honeycomb gapless (Dirac points at 0) 

n  Physical interpretation: the maximally 
flippable configuration dominates the sum 



Maximally flippable state 

All red spins 
flippable (2/3) 



Mapping on height model 

on up triangles, height z(r): 
 increases by + 2 clockwise if dimer 

decreases by 1 otherwise 



Coarse graining 

Maximally flippable state = flat surface (h=0) 

Consistent with 1/ r1/2 if             

Rough phase  



Pyrochlore Ising AF 

n  2 up – 2 down on each tetrahedron 
n  Continuum limit: magnetic field  

Dipolar correlations 



Pinch points in Ho2Ti2O7 

Experiment 

Theory 

T. Fennel et al, 2009 



Effects of quantum fluctuations 

n  Lifting of degeneracy:  
     à Order by disorder 
n  Large (often divergent) fluctuations: 
     à No long-range order 
n  What then? 
     à Spin gap and short-range correlations 
     à Algebraic order and fractional excitations 
     à Variations around these themes: RVB liquid, 
chiral spin liquid, nematic order 



Quantum fluctuations 

Holstein-Primakoff 

1/S expansion + Fourier transform 



Zero-point energy 

Bogoliubov rotation 

Zero-point energy 



      Order by disorder 

n  Even if the GS is degenerate, 
   the spectrum depends on GS 
   à selection by zero-point energy 

J1-J2 

Chris Henley 



Local fluctuations 

n  Quantum correction to local magnetization 

  

n  Frustration  
      à soft spectrum    
      à strong (often diverging) correction 
      à no magnetic long-range order 
 



Gapped systems 

n  Exponential decay of correlations 
      à Correlation length ξ 
      à The system is effectively of finite size 
      à ‘Finite-size’ gap 
      à Start from a product of quantum eigen-  
states on small clusters, e.g. dimer singlets 
 
 
 



Example: spin-1/2 ladders 

J J’ 

        GS ≈ product of singlets on rungs 

             Unique ground state for J’=0  
à non-degenerate perturbation theory in J’/J 



Excitations in spin-1/2 ladders 

n  J’=0: all states degenerate with energy J 
      à degenerate perturbation theory in J’/J 
      à triplet hopping 
      à gap Δ = J – O(J’ ) 
n  Field theory: Δ > 0 even if J’/J large 



Frustrated spin-1/2 J1-J2 chain 

J1-J2 chain 

Majumdar-Ghosh point: J2/J1=1/2 

2 exactly dimerized ground states 



2D analog: Shastry-Sutherland 

Product of singlets on red bonds: 
     à always an eigenstate 
     à GS if inter-dimer coupling  
        not too large  

n  Spin gap 
n  Magnetization plateaux 



Algebraic spin liquids 

n  Spin-1/2 chain: gapless, algebraic correlations  
                 (Bethe ansatz, bosonisation) 
n  Extension in 2D? 

Abrikosov fermions 



Mean-field theory on square lattice 

Affleck-Marston 1988 

Dirac points 
à Algebraic correlations 



Gutzwiller projection 

n  Mean-field à unphysical wave-function (large 
deviations from 1 fermion/site) 

n  Apply Gutzwiller projection  

   à physical wave function 
n  Evaluation of physical properties: Monte 

Carlo simulations 



Variational approach 

n  Basic idea: why to start from MF solution? 
n  Variational wave-functions: apply Gutzwiller 

projection on the ground state of a family of 
Hamiltonians  

            à Variational Monte Carlo (VMC) 
    

à Good variational energy 
for spin-1/2 kagome 
à Algebraic spin liquid 

Ran, Hermele, Lee, Wen, 2007 



Excitations in algebraic liquid 

n  No long-range order 
          à no gapless spin-waves 
n  Algebraic correlations 
          à gapless spectrum 
n  Nature of low-lying excitations? 
          à fractional excitations 



Example: spinons in 1D 

S=1 

Spinons 



Excitation spectrum 

Stone et al, PRL ‘03 

Early theory 
Des Cloiseaux – Pearson 

PRB ‘62 

A spin-1 excitation 
= 2 spinons 
à continuum 



Chiral spin liquids 

n  The order parameter breaks P and T, but 
not PT 

n  Example:  
  

n  Simple approach: Gutzwiller projected 
wave functions with fractional fluxes 

n  Best candidate: a small parameter range 
in the J1-J2-J3 model on kagome     

                     Gong, Zhu, Sheng 2014 



RVB spin liquids 

n  Anderson, 1973: restore translational symmetry 
by a superposition of dimer coverings 

  

   à Resonating Valence Bond spin liquid 

l GS > = + + … 

Not realized on triangular lattice (3-sublattice LRO) 



Quantum dimer model 

Rokhsar-Kivelson  
1988 

RK point: V/J=1 à GS = sum of all configurations 
Correlations: algebraic (Kasteleyn matrix gapless) 
            à Isolated point, no RVB phase 



QDM on triangular lattice 
Moessner and Sondhi, PRL 2001 

RK point V/J=1 à Kasteleyn matrix gapped 
                       à exponentially decaying correlations 
                       à RVB phase 



Topological sectors 

Number of dimers cutting a given line 

Parity conserved à 2 topological sectors (N even or N odd) 
Torus: four topological sectors (two cuts) 

Numerical proof: Ralko, Ferrero, Becca, Ivanov, FM (2005) 
 

N=1 N=3 



RVB phase in Heisenberg model? 

n  Spin-1/2 kagome antiferromagnet 
   à DMRG simulations  
          Han, Huse, White, 2011 
   à Effective QDM  
          Rousochatzakis, Wan, Tchernyshov, FM, 2014 

n  More recent results 
   à Algebraic spin liquid (see other talks) 
         
 



Nematic order 

n  Order parameter: 2-spin operator 
  

n  p-nematic:  
      

n  n-nematic: rank-2 tensor with 5 components 



Consider 

True for any α

Not magnetic 

Broken SU(2) symmetry 

Simple example: S=1 



Quadrupole states and directors 

« director » 

Rotation of l Sz=0> 



S=1 with biquadratic interaction 



S=1 on triangular lattice 

Directors mutually 
 perpendicular on 3  

sublattices 
(see also Tsunetsugu-Arikawa, ’06) 

 

Parallel directors 
A. Läuchli, FM, K. Penc, PRL (2006) 

Antiferroquadrupolar 

Ferroquadrupolar 



Nematic state in spin-1/2  systems 

n  Basic idea: ferromagnetic n.n. coupling  
       à effective spin-1 on a bond 
n  J1-J2 model on chain and square lattice with J1<0  
n  J1-J2 chain with J1<0 just below saturation  
       à Antiferroquadrupolar        
                        Zhitormirsky and Tsunetsugu EPL 2010 



Svistov et al, 2011  



Conclusions 

n  A lot of exotic quantum phases have been predicted 
n  Only a few of them have been found in realistic 

models or in actual compounds 
           à room for important discoveries 
 
Further reading: 
  

               Introduction to Frustrated Magnetism 
               Eds C. Lacroix, P. Mendels, and F. Mila  
               (Springer, New York, 2011). 


