Frustrated spin systems

F. Mila Ecole Polytechnique Fédérale de Lausanne Switzerland

Scope

Competing interactions and degeneracy Classical ground-state correlations Order by disorder Spin liquids \rightarrow RVB spin liquids \rightarrow Algebraic spin liquids \rightarrow Chiral spin liquids \rightarrow Spin nematics Conclusions

The basic models

Ising

$$H = \sum_{(i,j)} J_{ij} S_i S_j, \quad S_i, S_j = \pm 1 \text{ or } \uparrow, \downarrow$$

Heisenberg model

$$H = \sum_{(i,j)} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

$$[S_i^{\alpha}, S_i^{\beta}] = i\epsilon^{\alpha\beta\gamma}S_i^{\gamma}, \text{ and } \vec{S}_i^2 = S(S+1)$$

Classical limit

 \vec{S}_i are unit vectors

Geometrical frustration

Not frustrated

Antiferromagnetic coupling + odd loops

Frustrated

Competition between exchange paths = frustration

Ising on triangular lattice

 At least one unsatisfied bond per triangle
 Infinite number of ways to achieve only one unsatisfied bond on each triangle

At least $2^{N/3}$ GS Residual entropy $S/N > (1/3) \ln 2 = 0.210...$

Entropy of triangular Ising model

Wannier (1950): S/N = 0.3230...
Alternative: dimer problem on dual lattice

GS = 2 times
dimer coverings on
honeycomb lattice

Kasteleyn matrix

Bonds oriented with odd number of clockwise arrows on even plaquettes

$$a(i,j) = \begin{cases} 1 \text{ if } i, j \text{ ajdacent and } i \to j \\ -1 \text{ if } i, j \text{ ajdacent and } i \leftarrow j \\ 0 \text{ otherwise.} \end{cases}$$

$$Z = \sqrt{\det a}$$

 $\frac{1}{N_{h_c}}\ln Z = \frac{1}{4}\int_0^1 \mathrm{d}x \int_0^1 \mathrm{d}y \ln|3 + 2\cos(2\pi y) - 2\cos(2\pi (x+y)) - 2\cos(2\pi x)| \simeq 0.1615$

Spin Ice

Dy₂Ti₂O₆, Ho₂Ti₂O₆
Pyrochlore lattice
Ferromagnetic exchange interactions
Strong anisotropy: spins 'in' or 'out'

Ground state: 2 spins in, 2 spins out

Residual entropy: the 'ice problem'

Pyrochlore lattice

Residual entropy

'Exact' : $S/k_B \approx 0.20501$ (Nagle, 1966)

Ramirez et al, 1999

Pauling (1945): $S/k_B \approx (1/2) \ln (3/2) = 0.202732$

Heisenberg model

■ Bravais lattice: helical order → pitch vector = minimum of J(q), FT of J_{ii}

Triangular lattice: 3-sublattice order

Sum of spins = 0 on each triangle

Infinite degeneracy

J₁-J₂ model on square lattice

Classical energy independent of θ

■ Coplanar ground states: sum of spins = 0 on each triangle → degeneracy of 3-state Potts model

Non-coplanar ground states

Rotate a chain of blue and red spins around green direction

Classical GS correlations (Ising)

Correlations = average over all GS
 Triangular lattice (Stephenson, 1964)

$$\langle \sigma(\vec{r})\sigma(\vec{0}) \rangle \propto 1/r^{1/2}$$

 Simple argument: Kasteleyn matrix on honeycomb gapless (Dirac points at 0)
 Physical interpretation: the maximally flippable configuration dominates the sum

Maximally flippable state

All red spins flippable (2/3)

Mapping on height model

on up triangles, height z(r): increases by + 2 clockwise if dimer decreases by 1 otherwise

Coarse graining

 $h(\vec{x}) = [z(\vec{r_1}) + z(\vec{r_2}) + z(\vec{r_3})]/3$

Maximally flippable state = flat surface (h=0)

$$F\left(\{h(\vec{x})\}\right) = \int \mathrm{d}\vec{x} \frac{K}{2} \left|\vec{\nabla}h(\vec{x})\right|^2 \quad \left\langle\sigma(\vec{r})\sigma(\vec{0})\right\rangle \propto \left(\frac{\pi r}{a}\right)^{-\frac{2\pi}{36K}}$$

Consistent with $1/r^{1/2}$ if

$$K = \pi/9$$

Rough phase

Pyrochlore Ising AF

2 up – 2 down on each tetrahedron
Continuum limit: magnetic field div *B* = 0

$$S(\vec{B}(\vec{x})) = \exp\left[-\frac{K}{2}\int d^{3}\vec{r}\vec{B}(\vec{r})^{2}\right]$$

$$\left\langle S_{\alpha}(\vec{r})S_{\beta}(\vec{0})\right\rangle = \frac{1}{4\pi K} \frac{3(\hat{e}_{\alpha}\cdot\vec{r})(\hat{e}_{\beta}\cdot\vec{r}) - (\hat{e}_{\alpha}\cdot\hat{e}_{\beta})r^2}{r^5}$$

Dipolar correlations

Pinch points in Ho₂Ti₂O₇

Experiment

T. Fennel et al, 2009

Effects of quantum fluctuations

Lifting of degeneracy: \rightarrow Order by disorder Large (often divergent) fluctuations: \rightarrow No long-range order What then? \rightarrow Spin gap and short-range correlations \rightarrow Algebraic order and fractional excitations \rightarrow Variations around these themes: RVB liquid, chiral spin liquid, nematic order

Quantum fluctuations

Holstein-Primakoff

$$\left\{ \begin{array}{l} S_i^{z_i} = S - a_i^{\dagger} a_i \\ S_i^+ = \sqrt{2S - a_i^{\dagger} a_i} \; a_i \\ S_i^- = a_i^{\dagger} \sqrt{2S - a_i^{\dagger} a_i} \end{array} \right.$$

1/S expansion + Fourier transform

$$H = E_{\text{classical}} + \sum_{\vec{k}} \left[B_{\vec{k}} a^{\dagger}_{\vec{k}} a_{\vec{k}} + \frac{1}{2} A_{\vec{k}} \left(a^{\dagger}_{\vec{k}} a^{\dagger}_{-\vec{k}} + a_{\vec{k}} a_{-\vec{k}} \right) \right]$$

Zero-point energy

Bogoliubov rotation

$$\alpha_{\vec{k}} = u_{\vec{k}}a_{\vec{k}} + v_{\vec{k}}a_{-\vec{k}}^{\dagger}$$

$$\mathcal{H} = E_0 + \sum_{\vec{k}} \omega_{\vec{k}} \left(\alpha_{\vec{k}}^{\dagger} \alpha_{\vec{k}} + \frac{1}{2} \right)$$

Zero-point energy

$$E(\theta) = E_0 + \frac{1}{2} \sum_{\vec{k}} \omega_{\vec{k}}(\theta)$$

Order by disorder

 ■ Even if the GS is degenerate, the spectrum depends on GS
 → selection by zero-point energy

Chris Henley

Local fluctuations

Quantum correction to local magnetization

$$\delta_m \equiv S - \langle S_i^z \rangle = \frac{1}{N} \sum_{\vec{k}} \langle a_{\vec{k}}^\dagger a_{\vec{k}} \rangle$$

$$\langle a_{\vec{k}}^{\dagger}a_{\vec{k}}\rangle = v_{\vec{k}}^2 \propto 1/\omega_{\vec{k}}$$

Frustration

→ soft spectrum
→ strong (often diverging) correction
→ no magnetic long-range order

Gapped systems

Exponential decay of correlations

 Correlation length ξ
 The system is effectively of finite size
 'Finite-size' gap
 Start from a product of quantum eigenstates on small clusters, e.g. dimer singlets

$$|\psi\rangle = \prod_{(i,j)} \frac{|\uparrow_i \downarrow_j - \downarrow_i \uparrow_j\rangle}{\sqrt{2}}$$

Example: spin-1/2 ladders

 $GS \approx product of singlets on rungs$

$$|\psi\rangle = \prod_{(i,j)} \frac{|\uparrow_i \downarrow_j - \downarrow_i \uparrow_j\rangle}{\sqrt{2}}$$

Unique ground state for J'=0 \rightarrow non-degenerate perturbation theory in J'/J

Excitations in spin-1/2 ladders

Triplet on rung *i*

Singlet on rung j

$$|\psi_i\rangle = T(i)\prod_{j\neq i} S(j)$$

J'=0: all states degenerate with energy J
 → degenerate perturbation theory in J'/J
 → triplet hopping
 → gap Δ = J − O(J')
 Field theory: Δ > 0 even if J'/J large

Frustrated spin-1/2 J₁-J₂ chain

 $J_1 - J_2$ chain $\mathcal{H}_{J_1 - J_2} = \sum_i (J_1 \vec{S}_i \cdot \vec{S}_{i+1} + J_2 \vec{S}_i \cdot \vec{S}_{i+2})$

Majumdar-Ghosh point: $J_2/J_1 = 1/2$ 2 exactly dimerized ground states

$$|\psi_{\text{even}}\rangle = \prod_{i \text{ even}} |S(i, i+1)\rangle$$

$$|\psi_{\text{odd}}\rangle = \prod_{i \text{ odd}} |S(i, i+1)\rangle$$

$$|S(i, i+1)\rangle = \text{singlet}$$

2D analog: Shastry-Sutherland

Product of singlets on red bonds:
→ always an eigenstate
→ GS if inter-dimer coupling not too large

Spin gapMagnetization plateaux

Algebraic spin liquids

 Spin-1/2 chain: gapless, algebraic correlations (Bethe ansatz, bosonisation)
 Extension in 2D?

$$\begin{cases} S_i^+ = c_{i\uparrow}^\dagger c_{i\downarrow} \\ S_i^- = c_{i\downarrow}^\dagger c_{i\uparrow} \\ S_i^z = \frac{1}{2} \left(n_{i\uparrow} - n_{i\downarrow} \right) \end{cases}$$

Abrikosov fermions

$$H = \frac{1}{2} \sum_{i,j} J_{ij} \left[\frac{1}{2} \left(c_{i\uparrow}^{\dagger} c_{i\downarrow} c_{j\downarrow}^{\dagger} c_{j\uparrow} + \text{h.c.} \right) + \frac{1}{4} \left(c_{i\uparrow}^{\dagger} c_{i\uparrow} - c_{i\downarrow}^{\dagger} c_{i\downarrow} \right) \left(c_{j\uparrow}^{\dagger} c_{j\uparrow} - c_{j\downarrow}^{\dagger} c_{j\downarrow} \right) \right]$$

Mean-field theory on square lattice

$$\chi_{ij} = c_{i\uparrow}^{\dagger} c_{j\uparrow} + c_{i\downarrow}^{\dagger} c_{j\downarrow}$$

$$\chi_{ij}^0 = \chi_0 e^{i\theta_{ij}} \qquad \theta_{ij} = \pi/4$$

$$E = \pm J\chi_0 \sqrt{\cos^2 k_x + \cos^2 k_y}$$

Affleck-Marston 1988

Dirac points → Algebraic correlations

Gutzwiller projection

Mean-field → unphysical wave-function (large deviations from 1 fermion/site)
 Apply Gutzwiller projection

$$P_G = \prod_i (1 - n_{i\uparrow} n_{i|\downarrow})$$

→ physical wave function
 ■ Evaluation of physical properties: Monte Carlo simulations

Variational approach

Basic idea: why to start from MF solution?
 Variational wave-functions: apply Gutzwiller projection on the ground state of a family of Hamiltonians

 \rightarrow Variational Monte Carlo (VMC)

 → Good variational energy for spin-1/2 kagome
 → Algebraic spin liquid
 Ran, Hermele, Lee, Wen, 2007

Excitations in algebraic liquid

No long-range order

 > no gapless spin-waves

 Algebraic correlations

 > gapless spectrum

 Nature of low-lying excitations?

 > fractional excitations

Example: spinons in 1D S=1

Excitation spectrum

A spin-1 excitation = 2 spinons → continuum

Early theory Des Cloiseaux – Pearson PRB '62

Stone et al, PRL '03

Chiral spin liquids

The order parameter breaks P and T, but not PT
 Example: \$\vec{S}_1.(\vec{S}_2 \times \vec{S}_3)\$\$

Simple approach: Gutzwiller projected wave functions with fractional fluxes
 Best candidate: a small parameter range in the J₁-J₂-J₃ model on kagome Gong, Zhu, Sheng 2014

RVB spin liquids

Anderson, 1973: restore translational symmetry by a superposition of dimer coverings

 \rightarrow Resonating Valence Bond spin liquid

Not realized on triangular lattice (3-sublattice LRO)

Quantum dimer model

$$\mathcal{H} = \sum_{\text{Plaquette}} \left[-J\left(\left| \begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \right| + \text{H.c.} \right) + V\left(\left| \begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \right\rangle \left\langle \begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \right| \right) \right]$$

Rokhsar-Kivelson 1988

RK point: V/J=1 → GS = sum of all configurations
Correlations: algebraic (Kasteleyn matrix gapless)
→ Isolated point, no RVB phase

QDM on triangular lattice

Moessner and Sondhi, PRL 2001

RK point V/J=1 → Kasteleyn matrix gapped
→ exponentially decaying correlations
→ RVB phase

Topological sectors

Number of dimers cutting a given line

Parity conserved → 2 topological sectors (N even or N odd) Torus: four topological sectors (two cuts) Numerical proof: Ralko, Ferrero, Becca, Ivanov, FM (2005)

RVB phase in Heisenberg model?

Spin-1/2 kagome antiferromagnet \rightarrow DMRG simulations Han, Huse, White, 2011 \rightarrow Effective QDM Rousochatzakis, Wan, Tchernyshov, FM, 2014 More recent results \rightarrow Algebraic spin liquid (see other talks)

Nematic order

Order parameter: 2-spin operator

p-nematic: $\vec{S}_i \times \vec{S}_j$

n-nematic: rank-2 tensor with 5 components

$$\vec{Q}_{ij} = \begin{pmatrix} S_i^x S_j^x - S_i^y S_j^y \\ \frac{1}{\sqrt{3}} \left(3S_i^z S_j^z - \vec{S}_i \cdot \vec{S}_j \right) \\ S_i^x S_j^y + S_i^y S_j^x \\ S_i^y S_j^z + S_i^z S_j^y \\ S_i^z S_j^x + S_i^y S_j^z \end{pmatrix}$$

Simple example: S=1

 $Consider \qquad |S^z = 0\rangle$

 $\langle S^{\alpha} \rangle = 0 \quad \langle (S^z)^2 \rangle = 0 \quad \langle (S^{x,y})^2 \rangle \neq 0$

True for any α Broken SU(2) symmetry

Not magnetic

Quadrupole states and directors

$$|Q(\zeta,\phi)\rangle = i\frac{\sin\zeta}{\sqrt{2}} \left(e^{-i\phi}|1\rangle - e^{i\phi}|\overline{1}\rangle\right) - i\cos\zeta|0\rangle$$

Rotation of $|S_z=0>$

 $\mathbf{d} = (\sin\zeta\cos\phi, \sin\zeta\sin\phi, \cos\zeta)$

« director »

S=1 with biquadratic interaction

$$\mathcal{H} = J \sum_{i,j} \left[\cos \vartheta \mathbf{S}_i \mathbf{S}_j + \sin \vartheta \left(\mathbf{S}_i \mathbf{S}_j \right)^2 \right] - h \sum_i S_i^z$$

$$\hat{\mathbf{Q}}_{i} = \begin{pmatrix} \hat{Q}_{i}^{x^{2}-y^{2}} \\ \hat{Q}_{i}^{3z^{2}-r^{2}} \\ \hat{Q}_{i}^{3z^{2}-r^{2}} \\ \hat{Q}_{i}^{xy} \\ \hat{Q}_{i}^{yz} \\ \hat{Q}_{i}^{yz} \\ \hat{Q}_{i}^{xz} \end{pmatrix} = \begin{pmatrix} (S_{i}^{x})^{2} - (S_{i}^{y})^{2} \\ \frac{1}{\sqrt{3}} \left[2(S_{i}^{z})^{2} - (S_{i}^{x})^{2} - (S_{i}^{y})^{2} \right] \\ S_{i}^{x}S_{i}^{y} + S_{i}^{y}S_{i}^{x} \\ S_{i}^{y}S_{i}^{z} + S_{i}^{z}S_{i}^{y} \\ S_{i}^{x}S_{i}^{z} + S_{i}^{z}S_{i}^{y} \end{pmatrix}$$

$$\hat{\mathbf{Q}}_i \hat{\mathbf{Q}}_j = 2\left(\hat{\mathbf{S}}_i \hat{\mathbf{S}}_j\right)^2 + \hat{\mathbf{S}}_i \hat{\mathbf{S}}_j - 8/3$$

S=1 on triangular lattice

A. Läuchli, FM, K. Penc, PRL (2006)

Antiferroquadrupolar Directors mutually perpendicular on 3 sublattices (see also Tsunetsugu-Arikawa, '06)

> Ferroquadrupolar Parallel directors

Nematic state in spin-1/2 systems

Basic idea: ferromagnetic n.n. coupling

 → effective spin-1 on a bond

 J₁-J₂ model on chain and square lattice with J₁<0
 J₁-J₂ chain with J₁<0 just below saturation

 → Antiferroquadrupolar

Zhitormirsky and Tsunetsugu EPL 2010

PRL 118, 247201 (2017)

week ending 16 JUNE 2017

G

Nuclear Magnetic Resonance Signature of the Spin-Nematic Phase in LiCuVO₄ at High Magnetic Fields

A. Orlova,^{1,*} E. L. Green,^{2,†} J. M. Law,^{2,‡} D. I. Gorbunov,² G. Chanda,² S. Krämer,¹ M. Horvatić,¹ R. K. Kremer,³ J. Wosnitza,^{2,4} and G. L. J. A. Rikken¹

Conclusions

A lot of exotic quantum phases have been predicted
 Only a few of them have been found in realistic models or in actual compounds
 → room for important discoveries

Further reading:

Introduction to Frustrated Magnetism Eds C. Lacroix, P. Mendels, and F. Mila (Springer, New York, 2011).