Introduction to Tensor Networks Part 2

Laurens Vanderstraeten University of Ghent

The MPS manifold and its tangent space

Variational optimization

Time-dependent variational principle

Quasiparticle excitations

Outlook: PEPS

The MPS manifold and its tangent space

MPS/PEPS constitute a (non-linear) variational manifold $\,\mathcal{M}_{\rm MPS}$

We can interpret a tangent vector as a local perturbation on a strongly-correlated background state

this perturbation is non-extensive

carries the notion of a quasiparticle

tangent space parametrizes the low-energy subspace on a given reference state

General idea: In order to capture low-energy dynamics, we have to leave the **MPS/PEPS** manifold

The MPS manifold and its tangent space

Variational optimization

Time-dependent variational principle

Quasiparticle excitations

Outlook: PEPS

Variational optimization of MPS

Variational optimization of MPS tensor amounts to

 $\min_{A} \frac{\langle \Psi(A) | H | \Psi(A) \rangle}{\langle \Psi(A) | \Psi(A) \rangle}.$

find a path through the manifold towards the variational optimum

is provided by the energy gradient

Variational optimization of MPS

Variational optimization of MPS tensor amounts to $\min_{A} \frac{\langle \Psi(A) | H | \Psi(A) \rangle}{\langle \Psi(A) | \Psi(A) \rangle}.$

> find a path through the manifold towards the variational optimum

The correct direction on the tangent space is provided by the energy gradient

$$A_{i+1} = A_i - \alpha g$$

conjugate gradient, quasi-newton, hessian-based methods

numerical optimization on the manifold

Variational optimization of MPS

Variational optimization of MPS tensor amounts to

 $\min_{A} \frac{\langle \Psi(A) | H | \Psi(A) \rangle}{\langle \Psi(A) | \Psi(A) \rangle}.$

find a path through the manifold towards the variational optimum

The MPS manifold and its tangent space

Variational optimization

Time-dependent variational principle

Quasiparticle excitations

Outlook: PEPS

Time-dependent variational principle

The ground state of a given model Hamiltonian is only the starting point

What about time evolution?

Straightforward option is using TEBD

Time-dependent variational principle

```
make MPS tensor time-dependent |\Psi(A(t))\rangle
```


How do we arrive at a flow equation that is optimal in a variational way?

project time evolution onto the tangent space

$$i\frac{\partial}{\partial t}\left|\Psi(A(t))\right\rangle = P_{\left|\Psi(A(t))\right\rangle}H\left|\Psi(A(t))\right\rangle$$

The linear Schrödinger equation in full Hilbert space is transformed into a highly non-linear differential equation for the MPS tensor

 $\dot{A}(t) = f(A(t))$

integrate flow equation numerically (Euler, Runge-Kutta, ...)

The MPS manifold and its tangent space

Variational optimization

Time-dependent variational principle

Quasiparticle excitations

Outlook

Quasiparticle excitations

We want to target isolated branches in the excitation spectrum of generic spin chains

we can think of these excitations as quasiparticles on a strongly-correlated background state

Tangent space ansatz for elementary excitations with momentum

Optimize for tensor B

Quasiparticle excitations

example: spin-1 Heisenberg chain

We want to target isolated branches in the excitation spectrum of generic spin chains

example: spin-1/2 ladder

Quasiparticle excitations

Confinement of spinons in quasi-1D Heisenberg magnet $(SrCo_2V_2O_8)$

The MPS manifold and its tangent space

Variational optimization

Time-dependent variational principle

Quasiparticle excitations

Outlook: PEPS

MPS construction is easily generalized to two dimensions

What about algorithms for PEPS?

Problem 1: Computing the norm of a PEPS is a hard problem

Problem 2: There are no canonical forms for PEPS

there is no easy algorithm for truncating the bond in a PEPS

fixed-point algorithms are a lot more complicated

Full-update optimization: variation of iTEBD algorithm

Variational optimization ~ tangent-space method

BUT: PEPS are a lot richer than MPS

PEPS can represent critical states

PEPS have topological properties

PEPS can host anyonic excitations

PEPS simulations are competitive with other state-of-the-art numerical methods on challenging problems in two-dimensions

P. Corboz (2016)