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Thermalizaton: informaton of inital state is lost



  

Thermalizaton: informaton of inital state is lost locally

For all inital states Ψ, Φ and subsystem A

“Scrambling” of informaton

Lashkari et. al. JHEP (2013)

Requires signaling between subsystems



  

We can quantfy scrambling via operator spreading

Pauli strings:

Spin ½ chain:

Operators grow and get scrambled (look random within lightcone)

How to diagnose?



  

Out-of-tme-ordered correlator (OTOC):

Motvaton I: Out-of-tme-ordered correlator measures
 the spreading of quantum informaton

Operators grow and get scrambled

How to diagnose?



  

Classical chaos:

in weakly coupled feld theories, SYK model

What about local latce systems?

Exponental growth? 

Universal features?

Relatonship to entanglement growth?

Larkin, Ovchinnikov JETP 28 (1969); Maldacena et. al. JHEP (2015); Maldacena, Stanford PRD 94 (2016), etc.

Numerical studies, e.g.
A. Bohrdt et. al. NJP 19 (2017)
D. Luitz, Y. Bar Lev: PRB (2017)

Motvaton II: Many-body quantum chaos

λ measures how fast informaton spreads
(Kolmogorov-Sinai entropy)
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Operator spreading in 1D has a hidden conservaton law

Local operator density (of right endpoints):

Conserved during tme evoluton:

Inital conditon:



  

Random unitary circuits are a toy model for chaotc systems

Random q2 x q2 unitary with uniform (Haar) distributon

Light cone velocity:

Afer averaging:

No local conserved quanttes, only constraint is locality + unitarity



  

Random unitary circuits are a toy model for chaotc systems

Random q2 x q2 unitary with uniform (Haar) distributon

Light cone velocity:

Afer averaging:

No local conserved quanttes, only constraint is locality + unitarity



  

Average operator density obeys biased difusion equaton

Density of right endpoints:

Applying 2-site unitary:

Afer two layers:



  

Biased difusion determines the OTOC

Drif (butꤰerfy) velocity:

Difusion constant:

OTOC:

All operators are equally probable
Once we reach site s 



  

Operator spreading is described by biased difusion



  

Out-of-tme-order correlator has 3 distnct regimes

Inital exponental increase, exponent depends on s

Saturates exponentally



  

Fluctuatons decrease algebraically in tme

Time evolving the matrix product
operator using TEBD



  

Difusive broadening appears also in clean driven spin chain

Kicked Ising model:

More recently: statc tlted feld Ising model; Leviatan et. al. ArXiv 1702.08894



  

Entanglement grows when an operator leaves the subsystem

Start from ‘ferromagnetc’ product state:

Inital right endpoint

only sensitve to operator growth (not scrambling)
average behavior of many operators

Entanglement: 

(Purity / exponentated 2nd Rényi entropy)



  

Difusion leads to slower entanglement growth

Entanglement velocity:



  

Outline

1. Motivation: Scrambling and chaos

2. Operator hydrodynamics in random unitary circuits

3. Coupling to a conserved charge

Behavior of out-of-time-ordered correlators

Entanglement growth



  

Hydrodynamic approach: conserved quanttes are essental

Random circuit:

● Within lightcone all operators are equally probable

● Only conserved quantty is 

● OTOC measures probability of having reached site s

Most systems have more structure: conserved energy, charge etc.

Consider modifed circuit with conserved charge Q

Local op. basis:



  

Charge difusion leads to slow relaxaton for the OTOC

Gate on sites r, r+1: 

OTOC:



  

The OTOC develops a power law tail behind the front

Coarse-graining:

Physical picture: in each step there is a 
conversion from “conserved” 
to “non-conserved” Pauli strings

See: Khemani et. al. ArXiv 1710.09835



  

At low flling, the ballistc front can only develop at long tmes



  

Conclusions, open questons

● One dimension → ‘hidden’ conserved density → obeys biased difusion

● Random circuits provide a toy model for chaotc dynamics

● Difusion → slower entanglement growth

Details: ArXiv 1705.08910 and 1710.09827
Related work: Nahum et. al: PRX (2017); ArXiv 1705.08975 and 1705.10364

 Khemani et. al: ArXiv 1710.09835

Open questons:
 - Other universality classes?
 - Many-body localized phase?
 - Comparison with feld theories?

● Conserved charge → hydrodynamic tails
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