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Based on: ArXiv 1705.08910 (to appear in PRX) and 1710.09827
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Thermalization: information of initial state is lost
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Thermalization: information of initial state is lost locally
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For all initial states W, ® and subsystem A
Lashkari et. al. JHEP (2013)

“Scrambling” of information mmm=) Requires signaling between subsystems



We can quantify scrambling via operator spreading

Spin % chain: ;
Zj Zo(t) = U()'Z;U (1)
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Pauli strings: o* = o{"04?...0%" pn; =0,1,2,3

€. g. Z1X2]].324 c.

Zj(t) = ea()o” | D les®P =1
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Operators grow and get scrambled (look random within lightcone)

How to diagnose?



Motivation |: Out-of-time-ordered correlator measures
the spreading of quantum information

Z;i(t) = Z: c(t)o”

Operators grow and get scrambled

How to diagnose? — » Out-of-time-ordered correlator (OTOC):
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o) Motivation |l: Many-body quantum chaos

Classical chaos: (5’q((0))) _ ({q(t),p(())})2 ~c 2Lt

A measures how fast information spreads
(Kolmogorov-Sinai entropy)
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C x e?*rt in weakly coupled field theories, SYK model

Larkin, Ovchinnikov JETP 28 (1969); Maldacena et. al. JHEP (2015); Maldacena, Stanford PRD 94 (2016), etc.

What about local lattice systems?
® Exponential growth?
® Universal features? Numerical studies, e.g.

A. Bohrdt et. al. NJP 19 (2017)
® Relationship to entanglement growth? D. Luitz, Y. Bar Lev: PRB (2017)



Outline

v 1. Motivation: Scrambling and chaos

» 2. Operator hydrodynamics in random unitary circuits

Behavior of out-of-time-ordered correlators

Entanglement growth

3. Coupling to a conserved charge



Outline

v 1. Motivation: Scrambling and chaos

» 2. Operator hydrodynamics in random unitary circuits

Behavior of out-of-time-ordered correlators

Entanglement growth

3. Coupling to a conserved charge



Operator spreading in 1D has a hidden conservation law

Local operator density (of right endpoints):

Z lci(t) or* # 1 and 0,2, = 1)
S
Oo—O—0O0—0O00OC80O—0

Conserved during time evolution: Z PR(S,t) =

Initial condition: pr(s,0) = d(s — j)



Random unitary circuits are a toy model for chaotic systems

Random g? x g? unitary with uniform (Haar) distribution

~

t=4 1 N
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Light locit As
ight cone velocity: v, = — =
T At
: — 2
After averaging: cz =0 CoCr = Oz |Cg|

No local conserved quantities, only constraint is locality + unitarity



Random unitary circuits are a toy model for chaotic systems

Random g? x g? unitary with uniform (Haar) distribution
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Light locit As
ight cone velocity: v, = — =
LC At
: — 2
After averaging: cz =0 CoCr = Oz |Cg|

No local conserved quantities, only constraint is locality + unitarity



Average operator density obeys biased diffusion equation

2 Vs Vp
Density of right endpoints: pr(s,t) = Z cz(t)|” 0(o" # 1 and 0,5, = 1)

v

Applying 2-site unitary:

n p_R(lvt_l_l) :p[p_R(l,t)—l—p_R(Q,t)] p = q2_1
PRt +1) = (1 p)pa(L6) + pr(2, 1) i

pr(1)  pr(2)

After two layers:




Biased diffusion determlnes the OTOC

3t,OR = vpO.pr + D,07pR V2Dt

——

Drift (butterfly) velocity:

Diffusion constant:

OTOC: E(s,t) ~ 1 — Zp_R(T, t)

r<s

(+ terms exponentially small in s, t)

All operators are equally probable
Once we reach site s




Operator spreading is described by biased diffusion

Position s



Out-of-time-order correlator has 3 distinct regimes

300 |

9020 60 80 100

Shifted time 0 = vt — s

Val q2 ’ S log LS
C aY) 62 Og 5 _ e, 0 ° °
1 + g2 ® Initial exponential increase, exponent depends on s
® Saturates exponentially



Fluctuations decrease algebraically in time

SLO  Bua A R(s) =Y pr(r)=1-C(s)

Time evolving the matrix product
operator using TEBD

—30 —?O —IlO O 1IO 2l0

Shifted distance s — vpt



Diffusive broadening appears also in clean driven spin chain

Kicked Ising model: [)’ — e—i%Q > Xs e—i% > ZsZsy1+hZ,

T=0.8 h=0.809

Distance s time t /T

More recently: static tilted field Ising model; Leviatan et. al. ArXiv 1702.08894



Entanglement grows when an operator leaves the subsystem

Start from ‘ferromagnetic’ product state:

1 )
G(t=0)=]00...0)(00...0]=— » o

q (LEZ-strings
@ Initial right endpoint
= 1 L La ___
—sP ) — _
= trw4(t) = T LA—SO
80—1 s=1

(Purity / exponentiated 2™ Rényi entropy)
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Entanglement: @ only sensitive to operator growth (not scrambling)
® average behavior of many operators



Diffusion leads to slower entanglement growth
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Hydrodynamic approach: conserved quantities are essential

Random circuit: + Only conserved quantity is PR

« Within lightcone all operators are equally probable

« OTOC measures probability of having reached site s

Most systems have more structure: conserved energy, charge etc.

=) Consider modified circuit with conserved charge Q

0

f—4 W N f Q=1
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Charge diffusion leads to slow relaxation for the OTOC

Gate on sites r, r+1: Qr(t +1) = %(Qr + Qr+1 ) > at@ DQaQQ
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The OTOC develops a power law tail behind the front

Coarse-graining:

Physical picture: in each step thereis a
conversion from “conserved”
to “non-conserved” Pauli strings

lczg— 2z, ()]
C nc
ﬂR(S,t) — pR(S7t) TPR (Sat)

AN

Oipr = vEOupl + Dp0zp + Ddsph

See: Khemani et. al. ArXiv 1710.09835
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At low filling, the ballistic front can onIy develop at long times
p>1 > FYV () =Re(VI) WV () ~ Z e NHFY ()

E

diffusion of 2N 4+ Qv + Qw

interacting particles

, 0246'810
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Conclusions, open questions _

Conserved charge = hydrodynamic tails

Open questions:

- Other universality classes?

- Many-body localized phase?

- Comparison with field theories?

Details: ArXiv 1705.08910 and 1710.09827

Random circuits provide a toy model for chaotic dynamics I

Diffusion = slower entanglement growth

One dimension = ‘hidden’ conserved density = obeys biased diffusion
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Related work: Nahum et. al: PRX (2017); ArXiv 1705.08975 and 1705.10364

Khemani et. al: ArXiv 1710.09835
Acknowledgement: DPG FOR1807 Grant
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