Hydrodynamics of quantum information from random circuits

Tibor Rakovszky

Fakultät für Physik, Technische Universität München

Collaboration with C.V. Keyserlingk, F. Pollmann and S. L. Sondhi

Based on: ArXiv 1705.08910 (to appear in PRX) and 1710.09827

Benasque, 22.02.18

Outline

1. Motivation: Scrambling and chaos

2. Operator hydrodynamics in random unitary circuits Behavior of out-of-time-ordered correlators Entanglement growth

3. Coupling to a conserved charge

Thermalization: information of initial state is lost

Thermalization: information of initial state is lost locally

$$|\psi\rangle \to \rho^{(1)}(t) = |\psi(t)\rangle\langle\psi(t)|$$

 $|\phi\rangle \to \rho^{(2)}(t) = |\phi(t)\rangle\langle\phi(t)|$

For all initial states Ψ, Φ and subsystem A Lashkari et. al. JHEP (2013)

"Scrambling" of information

Requires signaling between subsystems

We can quantify scrambling via operator spreading

Operators grow and get scrambled (look random within lightcone)

How to diagnose?

Motivation I: Out-of-time-ordered correlator measures the spreading of quantum information

$$Z_j(t) = \sum_{\vec{\nu}} c_{\vec{\nu}}(t) \sigma^{\vec{\nu}}$$

Operators grow and get scrambled

How to diagnose? — • Out-of-time-ordered correlator (OTOC):

$$\mathcal{C}(s,t) = \frac{1}{2} \left\langle \left| \left[Z_j(t), Z_s \right] \right|^2 \right\rangle_{\beta=0} = \sum_{\substack{\vec{\nu} \\ [\sigma^{\vec{\nu}}, Z_s] \neq 0}} |c_{\vec{\nu}}(t)|^2$$

$\mathcal{C} \propto e^{2\lambda_L t}$ in weakly coupled field theories, SYK model

Larkin, Ovchinnikov JETP 28 (1969); Maldacena et. al. JHEP (2015); Maldacena, Stanford PRD 94 (2016), etc.

What about local lattice systems?

- Exponential growth?
- Universal features?
- Relationship to entanglement growth?

Numerical studies, e.g. A. Bohrdt et. al. NJP 19 (2017) D. Luitz, Y. Bar Lev: PRB (2017)

Outline

1. Motivation: Scrambling and chaos

 Operator hydrodynamics in random unitary circuits Behavior of out-of-time-ordered correlators
 Entanglement growth

3. Coupling to a conserved charge

Outline

1. Motivation: Scrambling and chaos

 Operator hydrodynamics in random unitary circuits Behavior of out-of-time-ordered correlators
 Entanglement growth

3. Coupling to a conserved charge

Operator spreading in 1D has a hidden conservation law

Local operator density (of <u>right</u> endpoints):

$$\rho_R(s,t) = \sum_{\vec{\nu}} |c_{\vec{\nu}}(t)|^2 \ \delta(\sigma_s^{\nu_s} \neq 1 \text{ and } \sigma_{r>s}^{\nu_r} = 1)$$

Conserved during time evolution:

$$\sum_{s} \rho_R(s,t) = 1$$

Initial condition: $\rho_R(s,0) = \delta(s-j)$

Random unitary circuits are a toy model for chaotic systems

Random q² x q² unitary with uniform (Haar) distribution

No local conserved quantities, only constraint is locality + unitarity

Random unitary circuits are a toy model for chaotic systems

Random q² x q² unitary with uniform (Haar) distribution

No local conserved quantities, only constraint is locality + unitarity

Average operator density obeys biased diffusion equation

Density of <u>right</u> endpoints:

$$\rho_R(s,t) = \sum_{\vec{\nu}} |c_{\vec{\nu}}(t)|^2 \ \delta(\sigma_s^{\nu_s} \neq 1 \text{ and } \sigma_{r>s}^{\nu_r} = 1)$$

Applying 2-site unitary:

$$\overline{\rho_R}(1,t+1) = p\left[\overline{\rho_R}(1,t) + \overline{\rho_R}(2,t)\right]$$
$$\overline{\rho_R}(2,t+1) = (1-p)\left[\overline{\rho_R}(1,t) + \overline{\rho_R}(2,t)\right]$$

$$p = \frac{q^2 - 1}{q^4 - 1}$$

After two layers:

Biased diffusion determines the OTOC

$$\begin{array}{ll} \partial_t \rho_R = v_B \partial_x \rho_R + D_\rho \partial_x^2 \rho_R \\ \\ \text{Drift (butterfly) velocity:} \quad v_B = \frac{q^2 - 1}{q^2 + 1} < v_{LC} \\ \\ \text{Diffusion constant:} \quad D_\rho = \frac{q}{1 + q^2} \end{array}$$

otoc:
$$\overline{\mathcal{C}}(s,t) \approx 1 - \sum_{r \leq s} \overline{\rho_R}(r,t)$$

(+ terms exponentially small in s, t)

All operators are equally probable Once we reach site s

Operator spreading is described by biased diffusion

Out-of-time-order correlator has 3 distinct regimes

Fluctuations decrease algebraically in time

Diffusive broadening appears also in clean driven spin chain

More recently: static tilted field Ising model; Leviatan et. al. ArXiv 1702.08894

Entanglement grows when an operator leaves the subsystem

Start from 'ferromagnetic' product state:

$$\hat{\omega}(t=0) = |00\dots0\rangle\langle00\dots0| = \frac{1}{q^L}\sum_{\vec{\mu}\in\mathbb{Z}\text{-strings}}\sigma^{\vec{\mu}}$$
Initial right endpoint
$$\overline{e^{-S_A^{(2)}(t)}} \equiv \overline{\operatorname{tr}}\hat{\omega}_A^2(t) = \frac{1}{q^{L_A}} + \frac{q^2 - 1}{q^2}\sum_{s_0=1}^L\sum_{s=1}^{L_A}\frac{\overline{\rho_R}(s,t;s_0)}{q^{L_A-s_0}}$$
(Purity / exponentiated 2nd Rényi entropy)
$$A \qquad B$$
Entanglement: • only sensitive to operator growth (not scrambling)
• average behavior of many operators

Diffusion leads to slower entanglement growth

if
$$t < L_A \rightarrow \overline{e^{-S_A^{(2)}(t)}} \approx \left(\frac{2q}{1+q^2}\right)^t \equiv q^{-v_E t}$$

Entanglement velocity:

$$v_E = 1 - \frac{\log 2}{\log q} + \frac{\log (1 + q^{-2})}{\log q} < v_B$$

80

$$S_{\text{avg}}^{(2)} \equiv \overline{S^{(2)}} \qquad S_{\text{exp}}^{(2)} \equiv -\log \overline{e^{-S^{(2)}}}$$

Outline

1. Motivation: Scrambling and chaos

 • 2. Operator hydrodynamics in random unitary circuits Behavior of out-of-time-ordered correlators
 Entanglement growth

▶ 3. Coupling to a conserved charge

Hydrodynamic approach: conserved quantities are essential

Random circuit: • Only conserved quantity is ρ_R

- Within lightcone all operators are equally probable
- OTOC measures probability of having reached site s

Most systems have more structure: conserved energy, charge etc.

Consider modified circuit with conserved charge Q

Charge diffusion leads to slow relaxation for the OTOC

Gate on sites r, r+1:
$$\overline{\hat{Q}_{r}}(t+1) = \frac{1}{2}(\hat{Q}_{r} + \hat{Q}_{r+1}) \longrightarrow \partial_{t}Q = D_{Q}\partial_{x}^{2}Q$$

$$|c_{Z_{0} \to Z_{l}}| \sim 1/\sqrt{t}$$

$$\sum_{l} |c_{Z_{0} \to Z_{l}}|^{2} > \sum_{l} |c_{Z_{0} \to Z_{l}}|^{2} \sim \frac{1}{\sqrt{t}}$$
OTOC:
$$\mathcal{F} \sim 1 - \mathcal{C} \sim \frac{1}{\sqrt{t}}$$

$$\mathcal{F}_{\mu}^{VW}(t) \equiv \operatorname{Re}\langle V^{\dagger}(t)W^{\dagger}V(t)W\rangle_{\mu}$$

$$\langle O\rangle_{\mu} \equiv \operatorname{tr}(Oe^{-\mu\sum_{l}\hat{Q}_{l}})/\operatorname{tr}(e^{-\mu\sum_{l}\hat{Q}_{l}})$$

The OTOC develops a power law tail behind the front

2M

Coarse-graining:

Physical picture: in each step there is a conversion from "conserved" to "non-conserved" Pauli strings

$$\rho_R(s,t) = \overbrace{\rho_R^{c}(s,t)}^{|c_{Z_0 \to Z_s}(t)|^2} + \rho_R^{nc}(s,t)$$

$$\partial_t \rho_R = v_B \partial_x \rho_R^{\rm nc} + D_\rho \partial_x^2 \rho_R^{\rm nc} + D_Q \partial_x^2 \rho_R^{\rm c}$$

See: Khemani et. al. ArXiv 1710.09835

At low filling, the ballistic front can only develop at long times $\longrightarrow \mathcal{F}^{VW}_{\mu}(t) \equiv \operatorname{Re}\langle V^{\dagger}(t)W^{\dagger}V(t)W\rangle_{\mu} \approx \sum e^{-N\mu}\mathcal{F}^{VW}_{(N)}(t)$ $\mu \gg 1$ 1.0 $\begin{array}{c} \begin{array}{c} 1.0 \\ 1.0 \\ 0.9 \\ 1.0 \\ 0.9 \\ 1.0 \\ 0.9 \\ 0.7 \\$ diffusion of $2N + Q_V + Q_W$ = 500interacting particles 0.8 0.60.42 4 6 8 10 r/\sqrt{t} 0.1_{0} $\mu = 3$ 2030 1040 507060 Position r1.0Average OTOC $\mathcal{F}_{0}^{\sigma_{0}^{+}\sigma_{n}$ 0.25 $\sigma_0^+ \sigma_0^+ ext{ OTOC } \mathcal{F}_{(0)}^{\sigma_0^+ \sigma_0^+}(t)$ 0.20 $\mathcal{F}^{\sigma^+\sigma^+}_{(1)}/\sqrt{t}$ 0.15L = 400.10 L = 60L = 800.05 L = 100 r/\sqrt{t}

 10^{4}

L = 120

 10^{2}

time t

 10^{3}

 10^{1}

 0.00_{10^0}

0.1

2

8

6

Position r

10

12

14

Conclusions, open questions

• Random circuits provide a toy model for chaotic dynamics

- One dimension \rightarrow 'hidden' conserved density \rightarrow obeys biased diffusion
- Diffusion \rightarrow slower entanglement growth
- Conserved charge \rightarrow hydrodynamic tails

Open questions:

- Other universality classes?
- Many-body localized phase?
- Comparison with field theories?

Details: ArXiv 1705.08910 and 1710.09827 Related work: Nahum et. al: PRX (2017); ArXiv 1705.08975 and 1705.10364 Khemani et. al: ArXiv 1710.09835

Acknowledgement: DPG FOR1807 Grant

