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The SU(2) symmetric Heisenberg spin chain 
behaves differently for integer and half-integer spins

Haldane:

The SU(3) symmetric Heisenberg spin chain behaves differently
 for p=3m and p=3m±1 spins in the fully symmetric representation

based on a mapping of the low energy degrees of freedom into a 
1+1 dimensional O(3) nonlinear sigma model

based on a mapping of the low energy degrees of freedom into a 
1+1 dimensional SU(3)/(U(1) x U(1)) nonlinear sigma model
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state |A⟩. In doing so we eliminate one of the N/2 Bethe
quantum numbers from the set in the first row of Fig. 3
and rearrange the remaining Ii in all configurations over
the expanded range − 1

4N ≤ Ii ≤ 1
4N . Changing Sz

T by
one means that the Ii switch from half-integers to inte-
gers or vice versa. The number of distinct configurations
with Ii+1 − Ii ≥ 1 is 1

8N(N +2). A generic configuration
consists of three clusters with two gaps between them as
shown in the second row of Fig. 3.

The two gaps in the otherwise uniform distribution
of Bethe quantum numbers can be interpreted as ele-
mentary particles (spinons) excited from the new phys-
ical vacuum. The position of the gaps between the Ii-
clusters determine the momenta k̄1, k̄2 of the two spinons,
which, in turn, add up to the wave number of the two-
spinon state relative to the wave number of the vacuum:
q ≡ k − kA = k̄1 + k̄2.

What remains to be done for the finite-N analysis is
straightforward. We solve the Bethe ansatz equations
via (9) for all the Ii-configurations just specified. A plot
of the two-spinon energies E − EA versus wave number
k− kA for N = 16 as inferred from the solutions {zi} via
(8a) and (8b) is shown in Fig. 4 (red circles). Also shown
are the Bethe quantum numbers for each excitation. The
pattern is readily recognized and extended (via reflection
Ii ↔ −Ii) to the other half of the Brillouin zone. We have
drawn (in blue) the corresponding two-spinon excitations
for N = 256. The 1

4N(1
4N + 1) = 4160 dots in the range

0 < q ≤ π produce a density plot for the two-spinon
continuum which emerges in the limit N → ∞.
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FIG. 4. Two-spinon (triplet) excitations with Sz
T = ST = 1

for N = 16 (red circles) and N = 256 (blue dots).
The configurations of (integer) Bethe quantum numbers
(−4 ≤ I1 < . . . < I7 ≤ 4) for N = 16 are symbolized by
the black circles.

Compare this set of two-spinon scattering states with
the set of two-magnon states plotted in Fig. 2 of Part I.
There we found that pairs of magnons form a continuum
of two-magnon scattering states and a branch of two-
magnon bound states. Two-spinon bound states exist as
well and will be discussed in a later column.

A derivation of the exact lower and upper boundaries

of the two-spinon continuum,10

ϵL(q) =
π

2
J | sin q|, ϵU (q) = πJ | sin q

2
|, (22)

starts from the Bethe ansatz equations (10). We set
r = N/2 − 1 and use the Bethe quantum numbers from
the second row of Fig. 3. When we replace the sum by
an integral, we must account for the gaps between the
Ii-clusters by two 1/N -corrections. The result (after dif-
ferentiation) is an integral equation which differs from
(11) by two extra terms related to the Ii-gaps:

2πσ(z) = −ε(z)− (K ∗ σ)(z) +
1

N

∑

l=1,2

K(z − z̄l). (23)

If we write σ(z) = σ0(z) + σ1(z) + σ2(z), where σ0(z) is
the solution (12) of Eq. (11), the two-spinon corrections
are solutions of

2πσl(z) =
1

N
K(z − z̄l) − (K ∗ σl)(z), l = 1, 2. (24)

Because Eqs. (24) have the same integral kernel K as
Eq. (11), the solutions of all three equations can be ex-
pressed by the same resolvent R,

2πσl(z) = gl(z) − (R ∗ gl)(z), l = 0, 1, 2 (25)

where g0(z) and g1(z), g2(z) are the inhomogeneities of
Eqs. (11) and (24), respectively. The resolvent, which
does not depend on the inhomogeneity, satisfies

2πR(z) = K(z)− (K ∗ R)(z). (26)

Because gl(z) = (1/N)K(z − z̄l) for l = 1, 2 makes (24)
equivalent to (26), we can write σl(z) = (1/N)R(z − z̄l).
This is all we need to know about the solutions.

Using Eq. (8a) for the two-spinon energies, we must
again correct for the two Ii-gaps when we convert the
sum into an integral:

E − EF = NJ

∫ +∞

−∞

dz ε(z)σ(z) − J
∑

l=1,2

ε(z̄l). (27)

Subtracting EA − EF yields

E − EA = −J
∑

l=1,2

[ε(z̄l) − N(σl ∗ ε)(0)]

= J
∑

l=1,2

[g0(z̄l) − (R ∗ g0)(z̄l)]

= J
∑

l=1,2

σ0(z̄l) =
πJ

2

∑

l=1,2

sech
(πz̄l

2

)

. (28)

Now we must relate the Ii-gaps, that is, the values z̄1, z̄2

to the spinon momenta k̄1, k̄2. Starting from the config-
uration in the first row of Fig. 3, we remove one Bethe
quantum number at or near the center. The accompa-
nying integer ↔ half-integer switch of the remaining Ii
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Compare this set of two-spinon scattering states with
the set of two-magnon states plotted in Fig. 2 of Part I.
There we found that pairs of magnons form a continuum
of two-magnon scattering states and a branch of two-
magnon bound states. Two-spinon bound states exist as
well and will be discussed in a later column.
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FIG. 1. Finite-system gaps (Eo Et )/—J (circles) and
(Ec E2)/2J (squares) vs 1/n. The curves are a guide to the eye.
Data for n up to 14 taken from Refs. 3 and 13, The error bars are
twice the statistical errors as sho~n in Table I.

FIG. 2. Finite-system ground-state energies vs 1/tn . Data for n

up to 14 taken from Refs. 3 and 11. The error bars are twice the
statistical errors as sho~n in Table I.

for each N' ' we exactly calculated v N'"' and v 8 N' ',
in Eq. (8). Here T and p were chosen so large that the sys-
tematic errors due to their being finite were no longer sta-
tistically significant.
Results for various energy levels as obtained with these

methods are shown in Table I ~ The estimates obtained for
n =12 and n =14 compare well with the exact numerical
results. " The Monte Carlo results obtained using the
(size-dependent) optimal wave functions were found to
have a variance reduced roughly by an order of magnitude
compared to those obtained directly from the numbers of
random walkers. Comparison of the results in Table I sug-
gests that the energy estimates in the top part of Table I
possibly have a remnant (downward) bias of the same order
as the statistical error. Long-time correlations between suc-
cessive estimates of A. could lead to a slight underestimation
of the standard deviation o-. The resulting decrease of the
calculated bias correction ~ould produce this effect. By
variation of the target number of random walkers we veri-
fied that no statistically significant bias is present in the
numbers in Table I(b).
The finite-system gaps G'"'= (Eo"' —Et'"')/J are plotted

in Fig. 1 versus I/n. The data for n=6 through 14 were
obtained by conventional methods. "0 The new data strong-
ly suggest a gap G' '=0.41 for the infinite chain. No
trend toward downward curvature (such as exists for spin

T') indicating G'"' 0 for n ~ is observable. Our con-
clusion, in agreement with previous finite-size calculations,
is that a gap probably exists for n ~. Another measure
of the gap is the quantity (Ec(")—E2"' )/2J, also plotted in
Fig. 1. It converges more slowly than G~"', otherwise its
behavior is similar, and extrapolates to about the same
value.
Figure 2 contains the ground-state energy of the finite

systems, plotted on a I/n' scale. Extrapolation of the new
data gives Eo"'/nJ=1. 4015+0.0005, in agreement with
earlier work.
Note added in proof. Problems associated with having a

finite number of random walkers are discussed in depth by
Hetherington. '4
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FIG. 6. Schematic of the spectrum of low-lying states for
an infinite chain. E is the energy of the excited state, Eo that
of the ground state, and A is the Haldane gap. Note that for
a given momentum, the one-magnon state, when present, is
separated from the continua above it by a gap where there
are no excited states.

magnon is indeed a particlelike excitation, and we ac-
curately measure its dispersion relation near vr. Inelastic
neutron scattering from the qausi-one-dimensional spin-1
antiferromagnet NENP has seen quantitatively the same
dispersion, with a splitting of the triplet due to the weak
anisotropies in that system.
One may also excite two or more magnons. This re-

sults in the multimagnon continua illustrated in Fig. 6.
The continua are labeled by the maximum number of
magnons that a state of that total excitation energy and
total momentum can decay into. Thus, for example, the
magnon band disappears into the two-magnon continuum
near momentum 0.3'. At this point the single magnon
with momentum near 0.3m becomes unstable to decay
into two magnons, each with momentum near —0.85m,
with the same total energy and the same total momentum
modulo 27r. We discuss the two-magnon excited states in
some detail below. The multimagnon continua have not
yet been detected experimentally.
The wave function of the one-magnon state with mo-

mentum q and S = o. in an infinite chain is expected to
be of the form

0.040

0.030

I =GQ 8*=1
n=2, 3,4

is smaller than the length of our finite chain, we expect
the magnon to propagate as a free particle in the bulk of
the chain, scattering only at the ends of the chain where
translational invariance is broken.
For our finite-length chains with spin 1/2's on the ends

the lowest-lying few excited states are single-magnon
triplet states, with the magnons having particle-in-a-box
spatial wave functions. This can be seen by examining
the spin density (S;. ) in the S' = 1 states; some ex-
amples are illustrated in Fig. 7. We label these single-
magnon states by their principal quantum number n. ForJ „d& 0.51 the principal quantum number counts the
number of maxima in the smooth part of (S;). The pat-
terns in Fig. 7 are those expected for the probability den-
sities (the square of the modulus of the wave function) for
the eigenstates of a particle in a box. Note for Fig. 7 we
have adjusted the end coupling to J „g= 1.5 where the
amplitude of the wave function is minimal at the ends to
minimize scattering into other states. That the magnons
are behaving as particles of finite size carrying energy
and spin is seen by noting that the excess energy above
the ground state is distributed along the chain with the
same pattern as the spin and these patterns are just those
expected for particle-in-a-box eigenstates. Although mo-
mentum is not a good quantum number in this chain
with ends, the nice periodicity of the spin density away
from the ends shows that the magnon wave function is,
to a good approximation, a sum of two momentum eigen-
states with equal and opposite momenta, thus producing
a standing wave. The magnitude of the deviation of the
momentum from zero or 7r can thus be deduced from the
period of the spin pattern. To distinguish between mo-
menta near zero and momenta near vr, one must look at
the sign of the wave function, which is not detected by the
spin density. For even length chains the parity operation
exchanges sublattices, and so a state's eigenvalue under
parity can be used to determine whether the momentum
is near zero or near vr.
The interaction of the magnon with the ends of the

where l0) is the ground state. The magnon creation op-
erator ct (l) consists of spin operators and products of
spin operators in the vicinity of site E. If the magnon
were truly a point particle, the creation operator would
be simply a spin operator at site E. The true magnon
creation operator ct (/) also contains products of spin
operators away from site E. The weight of these multisite
terms presumably decays as one moves away from site 8
with some characteristic length which is thus a measure
of the size of the magnon as a particle. If this particle size

0.010

0.000
0 io 20 30

8

40 50 60

FIG. 7. Local spin densities for the one-magnon excited
states with principal quantum numbers n = 2, 3, and 4, and
total S = 1, for a chain of length L = 60 and J
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Table 1. The difference of the two lowest eigenvalues of the chain with open boundary 
conditions and L sites for several p > -4. 
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Figure 1. Plot of 1 In(s,_*/sL) as a function of 1/L, where sL is the difference between the 
two lowest eigenvalues. The intersection of these curves with the vertical axis gives the 
inverse correlation length, so several correlation lengths are marked on the vertical axis. 
The horizontal axis is 1/L, but the labels are values of L.  

correlation length in the two cases should be the same, i.e. the two curves should have 
the same intercept with the vertical axis. This difference between even and odd length 
chains is the reason we consider the ratio sL - 2 / ~ L  rather than sL - l / ~ L .  

The value of /3 closest to -5 for which a curve is shown in figure l ( a )  is /3 = -0.3. If 
we extrapolate this curve to L = the intercept with the vertical axis is clearly non-zero 
and the correlation length is fairly short, about 1.6. For /3 = 0 the intercept is much 

ED,Kennedy (1990)

2.3 Quasi-1D Antiferromagnets for Haldane Gap Experiments 59

Table 2. Quasi-1D antiferromagnets with spin 1: chemical formula, crystal structure and space
group at low temperature.

Compound Chemical formula Structure; space group Ref.

CsNiCl3 Hexagonal; P63/mmc [69,70]
NENP Ni(C2H8N2)2NO2ClO4 Orthorhombic; Pnma [5,71]
NENF Ni(C2H8N2)2NO2PF6 Orthorhombic; P21/a [71]
NINO Ni(C3H10N2)2NO2ClO4 Orthorhombic; Pbn21 [72,73]
NINAZ Ni(C3H10N2)2N3ClO4 Orthorhombic; Pn2n [74,75]
NDMAZ Ni(C5H14N2)2N3ClO4 Monoclinic; C2 [76,77]
NDMAP Ni(C5H14N2)2N3PF6 Monoclinic; C2 [78,79]
TMNIN (CH3)4NNi(NO2)3 Hexagonal; P3m1 [80,81]
YBANO Y2BaNiO5 Orthorhombic; Immm [82, 83]

AgVP2S6 Monoclinic; P2/a [84]

Fig. 6. Schematic structures of Haldane gap systems. (A) General scheme of quasi 1D Ni(II)
chains well insulated from each other by bulky counterions; (B) NENP; (C) NINO; (D)
NINAZ; (E) TMNIN.
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Path integral for SU(2) Heisenberg model Haldane (1983)
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We can now use the expression relating the difference in the areas produced
by curves n(t) and n(t) + δn(t):

A{n(t) + δn(t)} = A{n(t)} +
∫ β

0
dt δn(t). (∂t(n(t))× n(t))

and we obtain
∑

i

A{n2i(t)} + A{n2i−1(t)} =

−a

∫ β

0
dt
∑

i

(
∆

a
(m2i(t)) + 2l2i(t)

)
. (m2i(t)× ∂t(m2i(t))) + O(a2)(6.12)

where we have used that m2i−1(t) = m2i(t)−∆(m2i(t)) + O(a2).
In the same spirit, and omitting constant terms, the second term in (6.10)

can be written as:

JS2

2

∫ β

0
dt
∑

i

[
(n2i(t) + n2i+1(t))

2 + (n2i+1(t) + n2i+2(t))
2
]

and the lowest order in a gives:

JS2a2

2

∫ β

0
dt
∑

i

{[
−∆

a
m2i(t) + 2l2i

]2
+
[
∆

a
m2i+1(t) + 2l2i+1

]2}
,

which, still to lowest order in a can also be written as:

JS2a2
∫ β

0
dt
∑

i

[
(
∆

a
m2i(t))2 + 4l22i

]
.

We can now collect all the pieces together and take the continuum limit
by replacing ∆

a → ∂x, 2a
∑

i →
∫

dx (the factor of 2 arises from the doubling
of the chain index). We also take the limit of zero temperature T → 0. We
obtain for the total action:

S[m, l] =
JS2a

2

∫
dx dt

[
(∂x(m(x, t))2 + 4l(x, t)2

]

+
iS

2

∫
dxdt (∂x(m(x, t)) + 2l(x, t)) · (m(x, t)× ∂t(m(x, t))) . (6.13)

We immediately notice that this action is quadratic in the variable l. We
can then integrate out this variable and obtain the final result:

S[m] =
∫

dxdt
1
2g

(
v(∂xm)2+

1
v
(∂tm)2 +

iθ

8π
ϵijm · (∂im× ∂jm)

)
(6.14)
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sition along the ✓ = ⇡ line is controlled by the marginal, symmetry preserving operator ~JR · ~JL
where ~JR/L are the right and left-moving current operators, with coupling constant / g� gc. One
sign of the coupling is marginally irrelevant and the other marginally relevant, leading to the
transition at g = gc and the gap is exponentially small in g � gc. Moving ✓ away from ⇡ corre-
sponds to adding a term (✓�⇡)trg to the e↵ective Hamiltonian, where g is the primary field of the
WZW model, an SU(2) matrix field of dimension d = 1/2. Thus the gap is expected to scale as
|✓ � ⇡|1/(2�d) = |✓ � ⇡|2/3, up to log corrections coming from the marginal operator. Our predicted
phase diagram for the SU(3) �-model in the special case when the two topological angles are
equal and opposite is sketched in Fig. 1b. We identify the critical theory at ✓ = ±2⇡/3 with the
SU(3)1 WZW model. We again expect a gapped phase for g > gc and for non-zero ✓ ⌥ 2⇡/3 and
can again predict the gap scaling. A more general phase diagram in which the two topological
angles can vary independently will be discussed in Sec. 7.
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Figure 1: (a) The renormalization group flow diagram of the O(3) nonlinear �-model, as proposed in Ref. [45]. At ✓ = ⇡
the system undergoes a phase transition from a gapless phase at g < gc into a gapped phase with a spontaneously broken
Z2 symmetry at g > gc. For ✓ , ⇡ the system is gapped with a unique ground state for all values of g. (b) Proposed
renormalization group flow diagram for the SU(3)/[U(1) ⇥ U(1)] nonlinear �-model in the special case where the two
topological angles are equal and opposite. At ✓ = 2⇡/3 and 4⇡/3 the system undergoes a phase transition from a gapless
phase at g < gc into a gapped phase with a spontaneously broken Z3 symmetry at g > gc. For 2⇡/3 < ✓ < 4⇡/3 the
system is gapped with a spontaneously broken Z2 symmetry, while for ✓ < 2⇡/3 and ✓ > 4⇡/3 the system is gapped with
a unique ground state for all values of g.

There are three pieces of rigorous evidence for the SU(2) phase diagram. One is the Bethe
Ansatz solution for s = 1/2 [50], giving the expected gapless ground state with no broken
symmetries. Another is provided by the Lieb-Schultz-Mattis-A✏eck (LSMA) theorem [51, 52]
which proves that the model is either gapless or has a ground state degeneracy for half-integer
(but not integer) spin. The third is provided by the A✏eck-Kennedy-Lieb-Tasaki (AKLT) models
for integer spin [53]. The exact ground states were found for these models and seen to be gapped
with no broken symmetries. We observe that these results carry over simply to SU(3). The p = 1
case is the Sutherland model, solvable by Bethe ansatz [54], and known to have a gapless low en-
ergy theory corresponding to SU(3)1 [55–57]. The LSMA theorem was proven for general SU(n)
and implies, for SU(3), either a gapless ground state or a ground state degeneracy for p , 3m
[52]. The AKLT construction was also generalized to di↵erent SU(n) spin chains [58–61], in
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hopping process independent of nuclear spin
(N=2F+1 states)

Gorshkov et al., Nature Physics, 6, 289 - 295 (2010) 
Cazalilla et al., New J. Phys., 11, 103033 (2009)
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SU(N) symmetry in cold atoms

SU(N) symmetric Heisenberg model in the Mott insulating phase
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Spin nematics correlations in bilinear-biquadratic S=1 spin chains
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We present an extensive numerical study of spin quadrupolar correlations in single and coupled bilinear-
biquadratic spin one chains, using several methods such as exact diagonalization, density matrix renormaliza-
tion group, and strong coupling series expansions. For the single chain, we clarify the dominant correlation
function in the enigmatic gapless period-three phase for !! !" /4 ," /2", which is of spin quadrupolar nature
with a period three spatial structure. Then we revisit the open problem of the possible existence of a ferroqua-
drupolar phase between the dimerized and the ferromagnetic phases. Although an extended critical region is in
principle compatible with the numerical results, a scenario with a huge crossover scale is more plausible.
Finally we study the fate of the dimerized phase upon coupling two chains in a ladder geometry. The dimerized
phase rapidly vanishes and an extended gapped phase takes over. This gapped phase presumably has dominant
short-ranged ferroquadrupolar correlations for !! !−3" ,4 ,−" /2" and—surprisingly—seems to be adiabati-
cally connected to the plaquette single solid phase of the Heisenberg S=1 ladder and therefore also with the
Haldane phase of isolated chains.
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I. INTRODUCTION

The recent experimental demonstration1 of the transition
from a superfluid state to a Mott insulating state of atoms in
an optical lattice has opened the way to novel realizations of
effective quantum lattice models with widely tunable control
parameters. Quantum magnetic systems can be realized by
spinor atoms in an optical lattice, e.g., 23Na with a total S
=1 moment. Confining S=1 atoms to an optical lattice there
are two scattering channels for identical atoms with total spin
S=0,2 which can be mapped to an effective bilinear and
biquadratic spin interaction2–4

H = #
$i,j%

&Jbl!Si · S j" + Jbq!Si · S j"2' , !1"

where we adopt the standard parametrization Jbl=cos ! and
Jbq=sin !. In one dimension, the bilinear-biquadratic spin-
one model has a rich phase diagram !see Fig. 1" with some
well established phases: the Haldane gap phase,5 a dimerized
phase,6 a ferromagnetic phase and some less well understood
phases: a critical phase with period three correlations,7 which
we will characterize as having dominant spin nematic corre-
lations, and possibly a gapped spin nematic phase between
the dimerized and ferromagnetic phase,8 which, however, re-
mains controversial.

On the square and the simple cubic lattice, the bilinear-
biquadratic spin-one model is well understood for the case
Jbq#0. It exhibits a ferroquadrupolar spin nematic phase for
!! !−3" /4 ,−" /2".9–11 Adjacent to it are an antiferromag-
netic Néel phase and a ferromagnetic phase.9,10 The region of
purely antiferromagnetic couplings Jbl ,Jbq$0 remains to be
understood, and could possibly contain a spin liquid region.12

Recently the Hamiltonian !1" on the triangular lattice at-
tracted some interest,13–15 as a possible explanation of the
unconventional magnetism of NiGa2S4.16

For a single chain Chubukov8 suggested the existence of a
gapped, nondimerized phase showing dominant spin nematic
correlations close to the ferromagnetic region of the phase
diagram. Subsequent numerical work17 could, however, not
substantiate this claim and it was therefore believed for a
while that the dimerized phase would extend up to the ferro-
magnetic phase boundary. Recent quantum Monte Carlo
calculations18 and field theoretical work19 suggest that this
picture might need to be reconsidered, especially in the light
of possible experimental verifications in Bose-Einstein con-
densate systems.2,4 In the meantime there has been a consid-
erable number of publications in favor or against a spin nem-
atic phase close to !=−3" /4,20–24 but leaving the final
answer still open.

FIG. 1. Phase diagram of the bilinear-biquadratic spin-one
chain. The firmly established phases are the Haldane, the ferromag-
netic and the dimerized phase. We characterize the extended gapless
phase " /4#!%" /2 by having dominant k= ±2" /3 spin quadru-
polar correlations. The possible occurrence of a spin nematic like
phase close to −3" /4 is investigated and critically discussed.
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Spontaneous trimerization in a bilinear-biquadratic S=1 zig-zag chain
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Recent theoretical studies raised the possibility of a realization of spin nematic states in the S=1 triangular
lattice compound NiGa2S4. We study the bilinear-biquadratic spin 1 chain in a zig-zag geometry by means of
the density matrix renormalization group method and exact diagonalization. We present the phase diagram
focusing on antiferromagnetic interactions. Adjacent to the known Haldane–double Haldane and the extended
critical phase with dominant spin nematic correlations we find a trimerized phase with a nonvanishing energy
gap. We discuss results for different order parameters, energy gaps, correlation functions, and the central
charge, and make connection to field theoretical predictions for the phase diagram.
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INTRODUCTION

Quantum spin systems have provided a very wide play-
ground for the quest of novel quantum orders, and the short
catalog includes Haldane gap, dimer order, chiral order, and
others. Recently the discovery of spin liquid like behavior in
the spin-1 triangular magnet NiGa2S4 !Ref. 1" has stimulated
increasing interest in another type of quantum order: spin
nematic order. This is the long range order of quadrupole
moments of local spins, in contrast to dipole moment order
parameter in conventional magnetic long range orders. In a
spin nematic ordered phase, although spins show no static
moment, spin rotation symmetry is spontaneously broken
due to anisotropic spin fluctuations. For S=1 spin operators,
anisotropic spin fluctuations still have uniaxial symmetry,
and this symmetry axis is called director, in analogy to a
liquid crystal. Ferro and antiferro spin nematic orders were
independently proposed by different groups as an explana-
tion for the unusual low-temperature properties of
NiGa2S4.2–4 In particular, the antiferro spin nematic order is
possible to match the triangular lattice structure without any
frustration, and the ground state is unique aside from degen-
eracy due to global spin rotation. Although it remains open if
antiferro spin nematic order is realized in this material, it is
interesting and also important to investigate further this state
and obtain a better understanding. To this end, we shall study
a one-dimensional analog with the same three sublattice
structure, a zig-zag chain.

MODEL

The Hamiltonian of the bilinear-biquadratic !BLBQ" spin
1 zig-zag chain is given by

H = J1#
i

cos !!Si · Si+1" + sin !!Si · Si+1"2

+ J2#
i

cos !!Si · Si+2" + sin !!Si · Si+2"2. !1"

Si’s are spin 1 operators and ! parametrizes the strength of
bilinear and biquadratic coupling. For !=0 !!=" /2" the bi-

quadratic terms !bilinear terms" vanish. For !=" /4 the
Hamiltonian exhibits SU!3" spin symmetry. J1 and J2 are the
nearest and next nearest neighbor coupling strengths, respec-
tively. The model is best visualized in a zig-zag geometry
where the J1 bonds couple two chains and the J2 bonds are
located along the chains !Fig. 1". We concentrate on antifer-
romagnetic interactions on all bonds with 0#!#" /2 and
J1 ,J2$0. By setting !=0 the model reduces to the J1−J2
spin 1 chain which exhibits a first order transition between
two distinct topological orders.5 The Haldane phase for
J2 /J1%&t$0.775, which also contains the well studied spin
1 chain for J2=0, is characterized by a finite string order
parameter !SOP". The ground state is a valence bond solid
!VBS" where each site consists of two spin 1/2 forming a
triplet and two spin 1/2 on neighboring sites couple to a
singlet. The transition into the double Haldane !DH" phase
corresponds to a decoupling of the VBS string into two
intertwined substrings, where each string exhibits string
order,5 leading to a finite double string order parameter
!DSOP".

The line J2 /J1=0 corresponds to the BLBQ chain studied,
e.g., in Ref. 6. The gapped Haldane phase %including the
Affleck-Kennedy-Lieb-Tasaki !AKLT" point for tan !=1 /3&
ends at the SU!3" symmetric point !=" /4 !exactly solvable
Uimin-Lai-Sutherland model" where a second order phase
transition of Berezinskii-Kosterlitz-Thouless !BKT" type
occurs.7 Thus there is an exponentially slow opening of the
gap on the Haldane side. For " /4#!%" /2 one finds an
extended critical phase with soft modes at k=0, ±2" /3 and
central charge c=2. The dominant correlations in this phase
away from the SU!3" point are quadrupolar !spin nematic".6,7

J1

J2

1

2 4 6 8 10 12

3 5 7 9 11

FIG. 1. Zig-zag geometry of the model with J1 !J2" the nearest
!next nearest" neighbor coupling strength.
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Nature of GS?

3. Rigorous results and SU(3)k critical points

3.1. Lieb-Schultz-Mattis-A✏eck theorem
Let | i be a ground state of the model defined in Eq. (2.1) on a system of length L (periodic

boundary conditions assumed). Then we can obtain a low energy state by acting on | i with the
unitary operator [52]:

U = exp

2
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i
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L
X

j=1

jQ j

3

7

7

7

7

7
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, (3.1)

where Qj = S 1
1( j) + S 2

2( j) � 2S 3
3( j) = p � 3b†3( j)b3( j) is a generator of SU(3). See Appendix B

for details. There we show that

h |T�1UT | i = ei2⇡p/3h |U | i, (3.2)

where T is the operator which translates states by 1 site. Thus, translational invariance of | i
implies

h |U | i = ei2⇡p/3h |U | i. (3.3)

This implies that h |U | i = 0 for p , 3m, i.e. U | i is a low energy state which is orthogonal
to | i. This leaves two possibilities. If the ground state is unique, then there is a low energy
excitation. Alternatively, there may be degenerate ground states in the thermodynamic limit,
with the finite system containing an exponentially low energy excited state which is essentially a
linear combinations of these ground states. It can also be seen (Appendix B) that

h |U2| i = ei4⇡p/3h |U | i, (3.4)

implying that U2| i is another low energy state which is orthogonal to | i and U | i, for p , 3m.
Furthermore, | i, U | i and U2| i are all invariant under T 3, translation by 3 sites. Thus, if
there are no low energy excited states, we might expect a triplet of trimerized ground states, as
illustrated in Fig. 2a. These 3 states map into each other under translations by 1 or 2 sites. For a
long finite system, we then expect linear combinations of these 3 ground states to give, to good
approximation, the ground state and the two exponentially low-lying excited states as discussed
above.

projection onto

| 1i

| 3i

| 2i

(a) p=1 (b) p=3

Figure 2: Illustration of the exact ground states discussed by Greiter et al. [43]. (a) Threefold degenerate trimerized
ground states in the p = 1 case, and (b) the uniqe ground state of an AKLT construction for the p = 3 case. See sections
III.A and VIII.B of Ref. [43] for the construction of the corresponding Hamiltonians.

We remark that, for p = 1, a Hamiltonian was found by Greiter and Rachel [43] that has the
simple trimer ground states. Their Hamiltonian can be written as a sum of projection operators

7

Lieb Schulz-Mattis-Affleck theorem:
p=3m±1 chains are either gapless or trimerized

Lieb, Schultz, Mattis (1961)
Affleck, Lieb (1986)

p=1
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R;8],
6k= P J

do. ;R;(n;) .
(96)

The variables B& are to be eliminated between the
two equations.

Let us consider the low-lying excited states about
the absolute ground state. Then R,(o.) are given by
Eq. (96). We decompose d» and b, k as a sum over
single excitation dispersion curves and calculate
each to be

g + g
' = (I +K) It,

where

[$']q - 5)~ q 5n 4/(], y 4 m~) .
Therefore our solution is given by

(100)

(101)

and thus a common velocity of sound. In Fig. 3
we show the cases of P=3 and P=4.

Suppose we have a system I' which is at the
absolute ground state and replace some of the par-
ticles with 6n«1 impurities. Then the equations
for the P —1 original densities become

2w sin(wj /P)
P cosh(2mB/P) —cos(wj/P) '

k, = 2tan '[cot(vj /2P) tanh(2nB/P) ]—(w —mj /P)

Eliminating B, we obtain

(97)

R=R +R', (102)
where R is the previous solution, and the Fourier
transform of R' is

sinh-,'Pk

&.(k}= . ./ [cos(vj/P —
~ k~ ) —cos(mj /P)]

(98)
for I kl 2' /P. The function is periodic with period
2'/P.

We see that, in general, there are P —1 distinct
branches. However, at 4=0, all branches have a
common slope, with

Then we verify that

m, =(P -q)/P. +6nq/P,

n, =(1—5n)/P (j=l, . . ., P).
We then calculate the energy as

e, (k) =—'
~ k~, (99)

5n "'"4do.Rf(o.)
1+4n (105)

e K
a& = —5n du e-~'~"

sinh —'Pk' (106)

Again, we define a variable as in Eq. (89} and
write

2gn. 1 y-1/2 y-1/2 + 1
P 0 1-y (107)

This may be written in terms of the digamma func-
tion as

0l-+——tl- I .26n - il
P (2 P gj

We have the special values

(108)

dg
dn

—2 ln2,

P=1
P=2 (109)

—4m+ p'ln2, P =4.

In Ffig. 4 we show the general curve. We note the
limiting form

-2m/5 2m/5
(110)

FIG. 3. P —1 dispersion curves for the low-lying ex-
citations above the absolute ground state of the & sys-
tem are shown for the cases P =4 and P = 3.

We remark that this is the correct form no matter
what the nature of the impurities —fermions, bo-
sons, or mixed.

n.n Heisenberg point, Bethe solvable 

J1 - J2 model, trimerized

NUMERICAL SIMULATIONS

The numerical results have been obtained by the density
matrix renormalization group !DMRG"8,9 method and exact
diagonalization !ED". For the DMRG calculations we used
up to m=2000 states with typically six sweeps and system
sizes with open boundary conditions up to L=300 sites.
Quantities of interest are extrapolated in m and if needed also
for L→!. Error bars are estimated from the convergence
behavior in m. With ED we considered systems with periodic
boundary conditions up to L=21.

THE OVERALL PHASE DIAGRAM

Figure 2 summarizes the phase diagram of the Hamil-
tonian !1" obtained by DMRG and ED simulations. We re-
produced the results for the phases on the axes: the Haldane,
the DH, and the extended critical phase with c=2. All these
phases extend into the plane. Interestingly they all touch the
dominant phase in the center, a gapped trimerized phase,
which will be discussed below.

The Haldane–double Haldane transition5 point extends as
a first order line in the parameter space which terminates
upon touching the boundary of the trimerized phase. We con-
firmed the first order nature of the transitions by calculating
the SOP and DSOP along several cuts for fixed " and varying
J2 /J1.

TRIMERIZED PHASE

The most exciting feature of the phase diagram is the
gapped, trimerized phase, where three neighboring spins
couple predominantly to a singlet. The trimer ground state is
threefold degenerate and breaks translational invariance.
This phase—including the frustration process leading to

it—is reminiscent of the dimerized phase of the J1−J2 spin
1/2 chain for J2 /J1#0.2411.10

Initially a massive trimerized phase for the spin 1 Heisen-
berg chain !J2 /J1=0" for $ /4%"%$ /2 was put
forward,11,12 but later works6,7,13–16 showed that the region
remains massless and has dominant nematic correlations. In
our model the additional next nearest neighbor coupling J2
allows us to stabilize the trimerized state.

In previous work17,18 parent Hamiltonians have been con-
structed using complicated four site interactions, which ex-
hibit exact trimer ground states !in Ref. 19 yet a different
kind of trimerized state was constructed". We now have
found a trimerized phase that is stable in a finite region of the
parameter space of a much simpler and possibly realistic spin
Hamiltonian. We expect our model !1" to be related to these
parent Hamiltonians in Refs. 17 and 18 in the same spirit as
the Heisenberg spin 1 chain is related to the AKLT model.

One of the most direct indications for a trimerized phase
is the period 3 in the local bond energies !insets of Fig. 3".
This pattern is formed because the two bonds belonging to a
trimer have a lower energy than the bonds connecting two
trimers. We determine this oscillation amplitude of the local
bond energies in the middle of the chain for different system
sizes L and extrapolate it to L→!. In the Haldane !respec-
tively, DH" phase the amplitude vanishes exponentially with
L. In the critical region the amplitude extrapolates to zero
with a power law. But in the trimerized phase the extrapola-
tion of the oscillation amplitude clearly yields a finite value,
which we call the trimer order parameter !TOP" !see Fig. 3".

The magnitude of the TOP in the trimerized phase is pro-
portional to the area of the black dots in Fig. 2. On the SU!3"
line DMRG predicts that the trimerized phase sets in at
J2 /J1#0.45 and ends at #3.5. We used a level spectroscopy
analysis of the ED data to complement the results !green
triangles in Fig. 2". This technique has been successfully
applied in the case of the spin 1/2 chain to locate the transi-
tion point into the dimerized phase.10 ED yields a consistent
result with DMRG for the lower boundary of the trimerized
phase, but it suggests a substantially smaller value for the
upper boundary. This mismatch stems partly from strong fi-
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FIG. 2. !Color online" The phase diagram of the spin 1 BLBQ
zig-zag chain. The area of the black dots in the trimerized phase
scales with the magnitude of the trimer order parameter. We verified
that the central charge is 2 in the critical phase for several points
!red diamonds". The green triangles mark the phase boundary of the
trimerized phase obtained from a level spectroscopy analysis from
the ED data.
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FIG. 3. !Color online" Extrapolation of the bond energy oscilla-
tion amplitude in the middle of the chain leading to a finite trimer
order parameter in the trimerized phase !"=0.28$, J2 /J1=1". Inset:
The local bond energies form a pattern of period 3 !L=48 in this
example".
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Recent theoretical studies raised the possibility of a realization of spin nematic states in the S=1 triangular
lattice compound NiGa2S4. We study the bilinear-biquadratic spin 1 chain in a zig-zag geometry by means of
the density matrix renormalization group method and exact diagonalization. We present the phase diagram
focusing on antiferromagnetic interactions. Adjacent to the known Haldane–double Haldane and the extended
critical phase with dominant spin nematic correlations we find a trimerized phase with a nonvanishing energy
gap. We discuss results for different order parameters, energy gaps, correlation functions, and the central
charge, and make connection to field theoretical predictions for the phase diagram.
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INTRODUCTION

Quantum spin systems have provided a very wide play-
ground for the quest of novel quantum orders, and the short
catalog includes Haldane gap, dimer order, chiral order, and
others. Recently the discovery of spin liquid like behavior in
the spin-1 triangular magnet NiGa2S4 !Ref. 1" has stimulated
increasing interest in another type of quantum order: spin
nematic order. This is the long range order of quadrupole
moments of local spins, in contrast to dipole moment order
parameter in conventional magnetic long range orders. In a
spin nematic ordered phase, although spins show no static
moment, spin rotation symmetry is spontaneously broken
due to anisotropic spin fluctuations. For S=1 spin operators,
anisotropic spin fluctuations still have uniaxial symmetry,
and this symmetry axis is called director, in analogy to a
liquid crystal. Ferro and antiferro spin nematic orders were
independently proposed by different groups as an explana-
tion for the unusual low-temperature properties of
NiGa2S4.2–4 In particular, the antiferro spin nematic order is
possible to match the triangular lattice structure without any
frustration, and the ground state is unique aside from degen-
eracy due to global spin rotation. Although it remains open if
antiferro spin nematic order is realized in this material, it is
interesting and also important to investigate further this state
and obtain a better understanding. To this end, we shall study
a one-dimensional analog with the same three sublattice
structure, a zig-zag chain.

MODEL

The Hamiltonian of the bilinear-biquadratic !BLBQ" spin
1 zig-zag chain is given by

H = J1#
i

cos !!Si · Si+1" + sin !!Si · Si+1"2

+ J2#
i

cos !!Si · Si+2" + sin !!Si · Si+2"2. !1"

Si’s are spin 1 operators and ! parametrizes the strength of
bilinear and biquadratic coupling. For !=0 !!=" /2" the bi-

quadratic terms !bilinear terms" vanish. For !=" /4 the
Hamiltonian exhibits SU!3" spin symmetry. J1 and J2 are the
nearest and next nearest neighbor coupling strengths, respec-
tively. The model is best visualized in a zig-zag geometry
where the J1 bonds couple two chains and the J2 bonds are
located along the chains !Fig. 1". We concentrate on antifer-
romagnetic interactions on all bonds with 0#!#" /2 and
J1 ,J2$0. By setting !=0 the model reduces to the J1−J2
spin 1 chain which exhibits a first order transition between
two distinct topological orders.5 The Haldane phase for
J2 /J1%&t$0.775, which also contains the well studied spin
1 chain for J2=0, is characterized by a finite string order
parameter !SOP". The ground state is a valence bond solid
!VBS" where each site consists of two spin 1/2 forming a
triplet and two spin 1/2 on neighboring sites couple to a
singlet. The transition into the double Haldane !DH" phase
corresponds to a decoupling of the VBS string into two
intertwined substrings, where each string exhibits string
order,5 leading to a finite double string order parameter
!DSOP".

The line J2 /J1=0 corresponds to the BLBQ chain studied,
e.g., in Ref. 6. The gapped Haldane phase %including the
Affleck-Kennedy-Lieb-Tasaki !AKLT" point for tan !=1 /3&
ends at the SU!3" symmetric point !=" /4 !exactly solvable
Uimin-Lai-Sutherland model" where a second order phase
transition of Berezinskii-Kosterlitz-Thouless !BKT" type
occurs.7 Thus there is an exponentially slow opening of the
gap on the Haldane side. For " /4#!%" /2 one finds an
extended critical phase with soft modes at k=0, ±2" /3 and
central charge c=2. The dominant correlations in this phase
away from the SU!3" point are quadrupolar !spin nematic".6,7

J1

J2

1

2 4 6 8 10 12

3 5 7 9 11

FIG. 1. Zig-zag geometry of the model with J1 !J2" the nearest
!next nearest" neighbor coupling strength.
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Nature of GS?

Greiter, Rachel (2007)

p = 3: AKLT construction

3. Rigorous results and SU(3)k critical points

3.1. Lieb-Schultz-Mattis-A✏eck theorem
Let | i be a ground state of the model defined in Eq. (2.1) on a system of length L (periodic

boundary conditions assumed). Then we can obtain a low energy state by acting on | i with the
unitary operator [52]:

U = exp

2

6

6

6

6

6

6

4

i
2⇡
3L

L
X

j=1

jQ j

3

7

7

7

7

7

7

5

, (3.1)

where Qj = S 1
1( j) + S 2

2( j) � 2S 3
3( j) = p � 3b†3( j)b3( j) is a generator of SU(3). See Appendix B

for details. There we show that

h |T�1UT | i = ei2⇡p/3h |U | i, (3.2)

where T is the operator which translates states by 1 site. Thus, translational invariance of | i
implies

h |U | i = ei2⇡p/3h |U | i. (3.3)

This implies that h |U | i = 0 for p , 3m, i.e. U | i is a low energy state which is orthogonal
to | i. This leaves two possibilities. If the ground state is unique, then there is a low energy
excitation. Alternatively, there may be degenerate ground states in the thermodynamic limit,
with the finite system containing an exponentially low energy excited state which is essentially a
linear combinations of these ground states. It can also be seen (Appendix B) that

h |U2| i = ei4⇡p/3h |U | i, (3.4)

implying that U2| i is another low energy state which is orthogonal to | i and U | i, for p , 3m.
Furthermore, | i, U | i and U2| i are all invariant under T 3, translation by 3 sites. Thus, if
there are no low energy excited states, we might expect a triplet of trimerized ground states, as
illustrated in Fig. 2a. These 3 states map into each other under translations by 1 or 2 sites. For a
long finite system, we then expect linear combinations of these 3 ground states to give, to good
approximation, the ground state and the two exponentially low-lying excited states as discussed
above.

projection onto

| 1i

| 3i

| 2i

(a) p=1 (b) p=3

Figure 2: Illustration of the exact ground states discussed by Greiter et al. [43]. (a) Threefold degenerate trimerized
ground states in the p = 1 case, and (b) the uniqe ground state of an AKLT construction for the p = 3 case. See sections
III.A and VIII.B of Ref. [43] for the construction of the corresponding Hamiltonians.

We remark that, for p = 1, a Hamiltonian was found by Greiter and Rachel [43] that has the
simple trimer ground states. Their Hamiltonian can be written as a sum of projection operators

7

H10VBS = !
i=1

N

""JiJi+1#2 + 5JiJi+1 + 6# , "55#

where the operators Ji
a, a=1, . . . ,8, are now 10!10 matri-

ces, and we have used Ji
2=6. H10 VBS is positive semidefinite

and annihilates the 10 VBS state $Eq. "51#%. We assume that
Eq. "51# is the only ground state of Eq. "55#.

The Hamiltonian $Eq. "55#% provides the equivalent of the
AKLT model,15,16 whose unique ground state is constructed
from dimer states by projection onto spin 1, for SU"3# spin
chains. Note that as in the case of SU"2#, it is sufficient to
consider linear and quadratic powers of the total spin of only
two neighboring sites. This is a general feature of the corre-
sponding SU"n# models, as we will elaborate in the follow-
ing section.

Since the 10 VBS state $Eq. "51#% is unique, we cannot
have domain walls connecting different ground states. We
hence expect the coloron and anticoloron excitations to be
confined in pairs, as illustrated below. The state between the
excitations is no longer annihilated by Eq. "55#, as there are
pairs of neighboring sites containing higher-dimensional rep-
resentations, as indicated by the dotted box below. As the
number of such pairs increases linearly with the distance
between the excitations, the confinement potential depends
linearly on this distance,

❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝" " "❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝❝ ❝ ❝
✛ ✲
energy cost ∝ distance

3̄ 3
coloron anti-coloron

"56#

In principle, it would also be possible to create three col-
orons "or three anticolorons# rather than a coloron-
anticoloron pair, but as all three excitations would feel strong
confinement forces, we expect the coloron-anticoloron pair
to constitute the dominant low-energy excitation. The con-
finement force between the pair induces a linear oscillator
potential for the relative motion of the constituents. The
zero-point energy of this oscillator gives rise to a Haldane-
type energy gap "see Refs. 71 and 72 for a similar discussion
in the two-leg Heisenberg ladder#, which is independent of
the model specifics. We expect this gap to be a generic fea-
ture of representation 10 spin chains with short-range anti-
ferromagnetic interactions.

C. Representation 8 VBS

To construct a representation 8 VBS state, consider first a
chain with alternating representations 3 and 3̄ on neighboring
sites, which we combine into singlets. This can be done in
two ways, yielding the two states

❝ ❝ ❝❡ ❡ ❡ ❝ ❝ ❝❡ ❡ ❡and .
3 3̄

We then combine a 3-3̄ state with an identical one shifted by
one lattice spacing. This yields representations 3 ! 3̄=1 " 8
at each site. The 8 VBS state is obtained by projecting onto
representation 8. Corresponding to the two 3-3̄ states illus-
trated above, we obtain two linearly independent 8 VBS
states, "L and "R, which may be visualized as

❝ ❝ ❝❡ ❡ ❡ ❝ ❝ ❝❡ ❡ ❡❡ ❡ ❡❝ ❝ ❝ ❡ ❡ ❡❝ ❝ ❝and .

projection onto 8 = (1, 1)

one site

"57#

These states transform into each other under space reflection
or color conjugation "interchange of 3 and 3̄#.

It is convenient to formulate the corresponding state vec-
tors as a matrix product. Taking "b,r,g# and "y,c,m# as bases
for the representations 3 and 3̄, respectively, the singlet
bonds in "L above can be written as

"&b'i&y'i+1 + &r'i&c'i+1 + &g'i&m'i+1# = "&b'i, &r'i, &g'i#( &y'i+1

&c'i+1

&m'i+1
) .

We are hence led to consider matrices composed of the outer
product of these vectors on each lattice site,

Mi
1"8 = ( &y'i

&c'i

&m'i
)"&b'i, &r'i, &g'i# .

In the case of the AKLT model reviewed above, the
Schwinger bosons take care of the projection automatically,
and we can simply assemble these matrices into a product
state. For the 8 VBS, however, we need to enforce the pro-
jection explicitly. This is most elegantly accomplished using
the Gell-Mann matrices, yielding the projected matrix

Mi =
1
2!

a=1

8

#a tr"#aMi
1"8# . "58#

Here, we have simply used the fact that the eight Gell-Mann
matrices, supplemented by the unitary matrix, constitute a
complete basis for the space of all complex 3!3 matrices.
By omitting the unit matrix in the expansion $Eq. "58#%, we
effectively project out the singlet state. Written out explicitly,
we obtain
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❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝✻ ✻

✛ ✲
energy cost ∝ distance

Our understanding71,72 of the connection between the con-
finement force and the Haldane gap is that the confinement
effectively imposes an oscillator potential for the relative
motion of the spinons. We then interpret the zero-point en-
ergy of this oscillator as the Haldane gap in the excitation
spectrum.

The AKLT state can also be written as a matrix
product.42,44,45 We first rewrite the valence bonds

!ai
†bi+1

† − bi
†ai+1

† " = !ai
†,bi

†"# bi+1
†

− ai+1
† $ ,

and then use the outer product to combine the two vectors at
each site into a matrix

Mi % # bi
†

− ai
† $!ai

†,bi
†"&0'i = # &1,0'i (2&1,− 1'i

− (2&1,1'i − &1,0'i
$ .

!41"

Assuming PBCs, Eq. !39" may then be written as the trace of
the matrix product

&!AKLT' = tr#)
i

Mi$ . !42"

.
In the following section, we will propose several exact

models of VBSs for SU!3".

VIII. SU(3) VALENCE BOND SOLIDS

To begin with, we use SU!3" Schwinger bosons intro-
duced in Sec. VI to rewrite the trimer states *Eq. !7"+ as

&!trimer
!"" ' = )

i

*!i−""/3 integer+

# ,
!#,$,%"=&!b,r,g"

sgn!&"#i
†$i+1

† %i+2
† $&0'

% '"*b†,r†,g†+&0' , !43"

where, as in Eq. !7", "=1,2 ,3 labels the three degenerate
ground states, i runs over the lattice sites subject to the con-
straint that i−"

3 is integer, and the sum extends over all six
permutations & of the three colors b, r, and g. This formula-
tion can be used directly to construct VBSs for SU!3" spin
chains with spins transforming under representations 6 and
10 on each site.

A. Representation 6 VBS

We obtain a representations 6 VBS from two trimer states
by projecting the tensor product of two fundamental repre-
sentations 3 onto the symmetric subspace, i.e., onto the 6 in
the decomposition 3 ! 3= 3̄ " 6. Graphically, this is illus-
trated as follows:

❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝
projection onto rep. 6 = (2, 0)

one site

!44"

This construction yields three linearly independent 6 VBS
states, as there are three ways to choose two different trimer
states out of a total of three. These three VBS states are
readily written out using Eq. !43",

&!6VBS
!"" ' = '"*b†,r†,g†+ · '"+1*b†,r†,g†+&0' !45"

for "=1, 2, or 3. If we pick four neighboring sites on a chain
with any of these states, the total SU!3" spin of those may
contain the representations❝ ❝ ❝ ❝❝ ❝ ❝ ❝ =̂ 3 ⊗ 3 = 3̄ ⊕ 6

or the representations❝ ❝ ❝ ❝❝ ❝ ❝ ❝ =̂ 3̄ ⊗ 3̄ ⊗ 3 = 2 · 3̄ ⊕ 6 ⊕ 15,

i.e., the total spin transforms under 3̄, 6, or 15= !1,2", all of
which are contained in the product

6 ! 6 ! 6 ! 6

= 3 · 3̄ " 6 · 6 " 7 · 15 " 3 · 15! " 3 · 21 " 8 · 24

" 6 · 42 " 45 " 6 · 60 " 3 · 63 !46"

and hence possible for a representation 6 spin chain in gen-
eral. The corresponding Casimirs are given by CSU!3"

2 !0,1"
= 4

3 , CSU!3"
2 !2,0"= 10

3 , and CSU!3"
2 !1,2"= 16

3 . This leads us to
propose the parent Hamiltonian

H6VBS = ,
i=1

N

Hi, !47"

with

Hi = #!Ji
!4""2

−
4
3
$#!Ji

!4""2
−

10
3
$#!Ji

!4""2
−

16
3
$ .

!48"

Note that the operators Ji
a, a=1, . . . ,8, are now given by

6(6 matrices, as the Gell-Mann matrices only provide the
generators *Eq. !9"+ of the fundamental representation 3.
Since the representations 3̄, 6, and 15 possess the smallest
Casimirs in the expansion *Eq. !46"+, Hi and, hence, also
H6VBS are positive semidefinite !i.e., have only non-negative
eigenvalues". The three linearly independent states *Eq. !45"+
are zero-energy eigenstates of *Eq. !47"+.

To verify that these are the only ground states, we have
numerically diagonalized Eq. !47" for N=6 and N=9 sites.
For N=9, we find zero-energy ground states at momenta k
=0, 3, and 6 !in units of 2&

N with the lattice constant set to
unity". Since the dimension of the Hilbert space required the
use of a Lanczos algorithm, we cannot be certain that there
are no further ground states. We therefore diagonalized Eq.
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FIG. 2. Action of the operators Tq(j) on a SYT.

III. SU(N) ANTIFERROMAGNETIC
HEISENBERG CHAIN IN THE FULLY

SYMMETRIC REPRESENTATION

In this section, we apply this method to perform ED
of the Heisenberg SU(N) model on an antiferromagnetic
chain in the fully symmetric irreps with m = 2 and 3 par-
ticles per site. The application to the antisymmetric case
can be found in the recent paper [34], where analytical
predictions about the nature of the ground state (gapped
or critical) due to A✏eck45,46 have been numerically veri-
fied by a combination of ED calculations performed along
the lines of the present paper and of variational Monte-
Carlo simulations.

The basic results are the energies for the SU(N) sym-
metric chain for m = 2, 3 particles per site in the singlet
subspace, and, whenever possible, in some irreps of small

quadratic Casimir. We have employed the Lanczos algo-
rithm whose key part is the product of the Hamiltonian
(restricted to a given invariant sector) times a vector.
We have achieved this task by using a 4-step procedure.
Each basis state is represented by a SYT with proper
internal constraints (see previous paragraph). As a first
step, we develop such a basis state to express it as a
superposition of orthogonal units times a product state,
with coe�cients given by expression Eq.(39) (for m = 2)
and Eq.(43) (for m = 3). Then, as a second step, we
apply one interaction term (corresponding to one link
in the lattice) to such a superposition by employing the
rules reported in the paragraph IIA. We first write the
interaction term as a sum of permutations, like in Eq.
(7). Then, each permutation is written as a product of
successive transpositions whose e↵ect on each orthogonal
unit is known and described in the paragraph IIA. After
step 2, we have a larger superposition of orthogonal units
than one needs to express as a linear sum of the initial
symmetric basis states. Since the interaction term con-
serves the symmetry of the wave-function, one just needs
to project the last superposition using the coe�cients
given by expression Eq.(39) (for m = 2) and Eq.(43) (for
m = 3). One obtains a linear sum of symmetric states.
The final step consists in finding the ranks of those states

FIG. 3. Gap of the SU(N) antiferromagnetic Heisenberg
chain with two particles per site in the symmetric irrep with
periodic boundary conditions. The gap has been determined
as the energy di↵erence between the first excited state (al-
ways located in the irrep of smaller non vanishing quadratic
Casimir) and the ground state, which is a SU(N) singlet in
the systems we have considered, where the number of sites is a
multiple of N . For SU(2) (the spin-1 chain), one can infer the
presence of the Haldane gap from the results obtained for rel-
atively small chains (up to Ns = 16), whereas, for N � 3, the
results for similar sizes are consistent with a gapless spectrum
in the thermodynamic limit.

in the ordered list of constrained SYTs (through for in-
stance a binary search or a more sophisticated indexing
function that goes beyond the scope of this paper).

In fact, since each permutation is decomposed into a
product of successive transpositions, this algorithm is
particularly suited for the study of chains with open
boundary conditions, since it is possible to index every
pair of connected sites with consecutive numbers.47 In-
cidentally, this also means that the computation of the
exact energies is faster for open boundary conditions than
for periodic boundary conditions.

For m = 2, we list in Table I the ground state energies
per site for periodic boundary conditions (EP

GS(Ns)), as
well as for open boundary conditions (EO

GS(Ns)) since it
can be useful for benchmarking future DMRG studies.
When the number of sites Ns is a multiple of the number
of colorsN , Ns = pN , the ground state is always a singlet
(for antiferromagnetic couplings), so that the minimal
energy is obtained by diagonalizing the Hamiltonian in
the SU(N) singlet sector, i.e the sector corresponding
to the shape ↵ = [q, q, ..., q], where q = Nsm/N = pm.
We also provide in Table I the corresponding dimensions
f̄ [q,...,q] that give the size of the matrices we diagonalized.

p = 2
possible trimerized constructionp=2
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FIG. 4. Gap of the SU(N) antiferromagnetic Heisenberg
chain with three particles per site in the symmetric irrep with
periodic boundary conditions. The gap has been determined
as the energy di↵erence between the first excited state (al-
ways located in the irrep of smaller non vanishing quadratic
Casimir) and the ground state, which is a SU(N) singlet in
the systems we have considered, where the number of sites is
a multiple of N . In the case N = 2 (spin-3/2 chain), which
is known to be gapless, the curve is slightly convex, consis-
tent with a vanishing gap in the thermodynamic limit. For
N = 3, 4, 6, the concavity is opposite and the curves seem to
converge towards zero; however the maximal sizes reached in
the simulations are quite small (Ns  12).

where EP
GS(1) is the ground state energy per site in the

thermodynamic limit. The case SU(3) with m = 2 is
shown as an example in the right panel of Fig. 5. The
scaling as 1/N2

s is already quite accurate for the largest
available sizes.

Secondly, one can extract the sound velocity v from the
energy of the first excited state of momentum k = 2⇡/Ns

and non zero quadratic Casimir51:

EP
2⇡/N

s

(Ns)� EP
GS(Ns) =

2⇡v

Ns
+ o(1/Ns). (48)

where EP
2⇡/N

s

(Ns) and EP
GS(Ns) are total energies. To

check the momentum of the excited state, which is not
available right away in our approach since we do not use
spatial symmetries, we had to extract the ground state
wave function, and to apply directly the translation op-
erator. This is tedious but straightforward because the
translation operator can be written in terms of permu-
tations. It turns out that in all the gapless cases inves-
tigated (m = 2, 3 for N > 2), and as soon as Ns = pN
with p > 1, the first excited state in the adjoint irrep has
a momentum k = 2⇡/N , and it is actually only the sec-
ond excited state which has the momentum k = 2⇡/Ns.
Examples of the resulting finite-size estimates of the ve-
locity v are given in the left panel of Fig. 5 for N = 3,
m = 2.

FIG. 5. Examples of finite size results that were used
to extract the central charge for SU(3) and m = 2. Left:
Excitation energy of the first excited state with momentum
k = 2⇡/Ns times the number of sites as a function of 1/N2

s .
In a critical system, this is expected to tend to 2⇡v in the
thermodynamic limit, where v is the sound velocity. Right:
Ground state energy per site EP

GS(Ns) as a function of 1/N2
s .

In a critical system, it is expected to converge to EP
GS(1) lin-

early with 1/N2
s , with a slope equal to 2⇡cv/12, where c is

the central charge.

To avoid uncertainties due to extrapolations in extract-
ing the central charge c, we have used for the velocity v
the value for the largest available size, and for the prod-
uct cv the slope deduced from the values of the ground
state energy for the two largest sizes. The central charges
extracted in this way can be expected to be slightly over-
estimated since the product cv decreases with the size
while the velocity v increases with the size. The corre-
sponding estimates for the central charge are listed in Ta-
ble IV for m = 2 and in Table V for m = 3, together with
the theoretical values for SU(N)1 and SU(N)m. Quite
remarkably, in all cases, the results m particles per site
for are in good agreement with SU(N)m (and slightly
above, as expected), and very far from SU(N)1.

This result is quite surprising since, according to field
theory, the SU(N)k>1 WZWmodels have at least one rel-
evant operator allowed by symmetry46,52, implying that
one should adjust at least one parameter to sit at such a
critical point, as in the case of integrable models53.

SU(3) SU(4) SU(5) SU(6) SU(7) SU(8)

m=2 c 3.23 5.16 7.16 9.77 11.65 13.56

k=2 N2�1
N+2 3.2 5 6.86 8.75 10.67 12.60

k=1 N2�1
N+1 2 3 4 5 6 7

TABLE IV. Finite-size estimates of the central charge c (see
main text and Fig. 5) for SU(N) Heisenberg chains with
two particles per site in the symmetric irrp (m = 2), com-
pared to the predictions for the SU(N)2 and SU(N)1 WZW
universality classes.

p = 3

p=3
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Figure 3: Sketch of the low energy fluctuations around the classical three sublattice ground state. The spin states are
given by Eq. (4.3). The lattice constant a is the distance between neighbouring sites.

where the ⇤n matrices are defined by
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while "µ⌫ is the two dimensional Levi-Civita tensor ("x⌧ = �"⌧x = 1). The coupling constant
1/g = p

p
(J1J2 + 2J3J1 + 2J3J2)/(J1 + J2) and the velocity v = 3ap

p
J1J2 + 2J3J1 + 2J3J2, in

agreement with the flavour wave calculations in Sec. 2.
The imaginary term containing the ✓n parameters is topological, with the integer valued topo-

logical charges [77]

Qn =
1

2⇡i
"µ⌫

Z

dxd⌧tr
h

⇤n@µU@⌫U†
i

. (4.8)

The �-term is also imaginary, but non-topological. In fact, the value of � is non-universal:

� = p
2⇡
3

2J2 � J1

J1 + J2
. (4.9)

For simplicity, let us introduce the notation

qmn =
1

2⇡i

Z

dxd⌧ "µ⌫tr
h

⇤mU@µU†⇤n@⌫UU†
i

, (4.10)

where qmn = �qnm. In terms of these quantities, the �-term of the action can be written:
i� (q12 + q23 + q31). The topological charges can also be expressed using the qmn’s as

Q1 = q12 + q13 , Q2 = q21 + q23 , Q3 = q31 + q32 . (4.11)

The antisymmetry of the qmn implies that Q1 + Q2 + Q3 = 0. So the action is invariant under
a global shift of the topological angles, and one can set one of them to 0. Unless specified
otherwise, we will work with the convention ✓2 = 0.

For the translationally invariant model of Eq. (4.1), and with this convention, the topological
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SU(3) case, coherent state path integral

classical ground state

Low energy fluctutations in path integral:

3 orthogonal states
 in the unit cellnon-orthogonality of the spin states in the unit cell

L variables can be integrated out

where ~�(i, ⌧) is a three dimensional complex unit vector at site i and imaginary time ⌧, while
� is the inverse temperature. For antiferromagnetic J1, J2 and ferromagnetic J3 the real part
of the action is minimal for the classical three sublattice ground state manifold, which can be
parametrized by a set of three orthogonal spin states corresponding to the rows of a U matrix in
SU(3)/[U(1)⇥U(1)] [77]. Considering low energy fluctuations around the classical ground state
manifold, on the one hand the U matrix can depend on the position, corresponding to the slow
joint rotation of the orthogonal states of the three site unit cell. On the other hand the states inside
a unit cell can also be non-orthogonal to each other. Accordingly, the low energy configurations
can be described as [78, 79]
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where the rows of U( j, ⌧) can be seen as three orthogonal states in unit cell j,
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and L( j, ⌧) describes the transverse fluctuations, which make the spin states non-orthogonal in-
side the unit cell:
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For compactness we omitted the ( j, ⌧) dependence of the the matrix elements of L. In this ex-
pression, a stands for the lattice spacing and p for the number of the boxes of the spin repre-
sentation. The a/p factors emphasize that these fluctuations are small, as large fluctuations are
exponentially suppressed in the path integral. The L matrix can be chosen to be hermitian as
the skew-hermitian part would describe an infinitesimal joint rotation of the three spin states and
could thus be merged into the unitary U matrix. The diagonal elements of L have been chosen to
keep the spin states normalized2.

Substituting the above parametrization of the low-energy fluctuations into the action in Eq.
(4.2), the functional integral over the L variables can be carried out, leading to a form of the
imaginary time action in terms of the U(x, ⌧) field only:
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(4.6)

2Since the rows of U( j) form an orthonormal basis, the spin states will be normalized if the rows of L are also
normalized.
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where ~�(i, ⌧) is a three dimensional complex unit vector at site i and imaginary time ⌧, while
� is the inverse temperature. For antiferromagnetic J1, J2 and ferromagnetic J3 the real part
of the action is minimal for the classical three sublattice ground state manifold, which can be
parametrized by a set of three orthogonal spin states corresponding to the rows of a U matrix in
SU(3)/[U(1)⇥U(1)] [77]. Considering low energy fluctuations around the classical ground state
manifold, on the one hand the U matrix can depend on the position, corresponding to the slow
joint rotation of the orthogonal states of the three site unit cell. On the other hand the states inside
a unit cell can also be non-orthogonal to each other. Accordingly, the low energy configurations
can be described as [78, 79]
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For compactness we omitted the ( j, ⌧) dependence of the the matrix elements of L. In this ex-
pression, a stands for the lattice spacing and p for the number of the boxes of the spin repre-
sentation. The a/p factors emphasize that these fluctuations are small, as large fluctuations are
exponentially suppressed in the path integral. The L matrix can be chosen to be hermitian as
the skew-hermitian part would describe an infinitesimal joint rotation of the three spin states and
could thus be merged into the unitary U matrix. The diagonal elements of L have been chosen to
keep the spin states normalized2.

Substituting the above parametrization of the low-energy fluctuations into the action in Eq.
(4.2), the functional integral over the L variables can be carried out, leading to a form of the
imaginary time action in terms of the U(x, ⌧) field only:
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2Since the rows of U( j) form an orthonormal basis, the spin states will be normalized if the rows of L are also
normalized.
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where ~�(i, ⌧) is a three dimensional complex unit vector at site i and imaginary time ⌧, while
� is the inverse temperature. For antiferromagnetic J1, J2 and ferromagnetic J3 the real part
of the action is minimal for the classical three sublattice ground state manifold, which can be
parametrized by a set of three orthogonal spin states corresponding to the rows of a U matrix in
SU(3)/[U(1)⇥U(1)] [77]. Considering low energy fluctuations around the classical ground state
manifold, on the one hand the U matrix can depend on the position, corresponding to the slow
joint rotation of the orthogonal states of the three site unit cell. On the other hand the states inside
a unit cell can also be non-orthogonal to each other. Accordingly, the low energy configurations
can be described as [78, 79]
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For compactness we omitted the ( j, ⌧) dependence of the the matrix elements of L. In this ex-
pression, a stands for the lattice spacing and p for the number of the boxes of the spin repre-
sentation. The a/p factors emphasize that these fluctuations are small, as large fluctuations are
exponentially suppressed in the path integral. The L matrix can be chosen to be hermitian as
the skew-hermitian part would describe an infinitesimal joint rotation of the three spin states and
could thus be merged into the unitary U matrix. The diagonal elements of L have been chosen to
keep the spin states normalized2.

Substituting the above parametrization of the low-energy fluctuations into the action in Eq.
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2Since the rows of U( j) form an orthonormal basis, the spin states will be normalized if the rows of L are also
normalized.
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local zero mode

short range quantum fluctuations select 3-sublattice order (order by disorder)
effective further neighbour (J2, J3) interactions
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nontrivial otherwise

i
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✓nQn

3 fields are orthogonal
from a unitary matrix

where ~�(i, ⌧) is a three dimensional complex unit vector at site i and imaginary time ⌧, while
� is the inverse temperature. For antiferromagnetic J1, J2 and ferromagnetic J3 the real part
of the action is minimal for the classical three sublattice ground state manifold, which can be
parametrized by a set of three orthogonal spin states corresponding to the rows of a U matrix in
SU(3)/[U(1)⇥U(1)] [77]. Considering low energy fluctuations around the classical ground state
manifold, on the one hand the U matrix can depend on the position, corresponding to the slow
joint rotation of the orthogonal states of the three site unit cell. On the other hand the states inside
a unit cell can also be non-orthogonal to each other. Accordingly, the low energy configurations
can be described as [78, 79]
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where the rows of U( j, ⌧) can be seen as three orthogonal states in unit cell j,
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and L( j, ⌧) describes the transverse fluctuations, which make the spin states non-orthogonal in-
side the unit cell:
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For compactness we omitted the ( j, ⌧) dependence of the the matrix elements of L. In this ex-
pression, a stands for the lattice spacing and p for the number of the boxes of the spin repre-
sentation. The a/p factors emphasize that these fluctuations are small, as large fluctuations are
exponentially suppressed in the path integral. The L matrix can be chosen to be hermitian as
the skew-hermitian part would describe an infinitesimal joint rotation of the three spin states and
could thus be merged into the unitary U matrix. The diagonal elements of L have been chosen to
keep the spin states normalized2.

Substituting the above parametrization of the low-energy fluctuations into the action in Eq.
(4.2), the functional integral over the L variables can be carried out, leading to a form of the
imaginary time action in terms of the U(x, ⌧) field only:
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,

(4.6)

2Since the rows of U( j) form an orthonormal basis, the spin states will be normalized if the rows of L are also
normalized.
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Figure 9: Extrapolation of the inverse of the correlation length from Monte Carlo calculations of imaginary ✓ angles
along the ✓1 = �✓3 line, for a system of 192 ⇥ 192 sites. The inset shows the extrapolated value of the mass gap at
✓ = 2⇡/3.

On the other hand, shifting ✓1, ✓3 slightly away from ±2⇡/3 corresponds to breaking the Z3
symmetry. We expect this symmetry to correspond to g! ei2⇡/3g in the SU(3)1 WZW model, the
symmetry which forbids a trg term in the e↵ective Hamiltonian. When this symmetry is broken
we expect a relevant perturbation / trg. This operator has dimension d = 2/3 so we expect the
gap to scale as |✓ � 2⇡/3|1/(2�d) = |✓ � 2⇡/3|3/4, up to log corrections coming from the marginal
operator JA

R JA
L . If the Z3 symmmetry is broken, but a parity symmetry is preserved, along the

✓1 = �✓3 = ✓ line for example, we believe that the extra term should have the form trg + trg†
since g ! g† corresponds to the parity transformation. In this case the extra term in the SU(3)1
WZW model should have the form / (✓ � 2⇡/3)(trg+ trg†). If we write the diagonal elements of
g as ei↵ j for ↵ = 1, 2, 3 with

P

j ↵ j ⌘ 0(mod 2⇡), the extra term takes the form

V / (✓ � 2⇡/3)
X

j

cos↵ j. (8.2)

For ✓ < 2⇡/3, this term has a unique minimum with ↵ j = 0. But if ✓ > 2⇡/3, there are two
minima, with ↵ j = 2⇡/3 or ↵ j = �2⇡/3 . As discussed in Sec. 7.1, the two cases correspond
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Phase diagram

p = 3m + 1

p = 3m + 2

p = 3m 

gapped, trimerized

sition along the ✓ = ⇡ line is controlled by the marginal, symmetry preserving operator ~JR · ~JL
where ~JR/L are the right and left-moving current operators, with coupling constant / g� gc. One
sign of the coupling is marginally irrelevant and the other marginally relevant, leading to the
transition at g = gc and the gap is exponentially small in g � gc. Moving ✓ away from ⇡ corre-
sponds to adding a term (✓�⇡)trg to the e↵ective Hamiltonian, where g is the primary field of the
WZW model, an SU(2) matrix field of dimension d = 1/2. Thus the gap is expected to scale as
|✓ � ⇡|1/(2�d) = |✓ � ⇡|2/3, up to log corrections coming from the marginal operator. Our predicted
phase diagram for the SU(3) �-model in the special case when the two topological angles are
equal and opposite is sketched in Fig. 1b. We identify the critical theory at ✓ = ±2⇡/3 with the
SU(3)1 WZW model. We again expect a gapped phase for g > gc and for non-zero ✓ ⌥ 2⇡/3 and
can again predict the gap scaling. A more general phase diagram in which the two topological
angles can vary independently will be discussed in Sec. 7.

SU(3)1

SU(3)1

1⇥

2⇥

3⇥

1⇥

3⇥
gapless

gapless

gapped

gapped

SU(2)1
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gappedgapless
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⇡

2⇡
(a)
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✓

Figure 1: (a) The renormalization group flow diagram of the O(3) nonlinear �-model, as proposed in Ref. [45]. At ✓ = ⇡
the system undergoes a phase transition from a gapless phase at g < gc into a gapped phase with a spontaneously broken
Z2 symmetry at g > gc. For ✓ , ⇡ the system is gapped with a unique ground state for all values of g. (b) Proposed
renormalization group flow diagram for the SU(3)/[U(1) ⇥ U(1)] nonlinear �-model in the special case where the two
topological angles are equal and opposite. At ✓ = 2⇡/3 and 4⇡/3 the system undergoes a phase transition from a gapless
phase at g < gc into a gapped phase with a spontaneously broken Z3 symmetry at g > gc. For 2⇡/3 < ✓ < 4⇡/3 the
system is gapped with a spontaneously broken Z2 symmetry, while for ✓ < 2⇡/3 and ✓ > 4⇡/3 the system is gapped with
a unique ground state for all values of g.

There are three pieces of rigorous evidence for the SU(2) phase diagram. One is the Bethe
Ansatz solution for s = 1/2 [50], giving the expected gapless ground state with no broken
symmetries. Another is provided by the Lieb-Schultz-Mattis-A✏eck (LSMA) theorem [51, 52]
which proves that the model is either gapless or has a ground state degeneracy for half-integer
(but not integer) spin. The third is provided by the A✏eck-Kennedy-Lieb-Tasaki (AKLT) models
for integer spin [53]. The exact ground states were found for these models and seen to be gapped
with no broken symmetries. We observe that these results carry over simply to SU(3). The p = 1
case is the Sutherland model, solvable by Bethe ansatz [54], and known to have a gapless low en-
ergy theory corresponding to SU(3)1 [55–57]. The LSMA theorem was proven for general SU(n)
and implies, for SU(3), either a gapless ground state or a ground state degeneracy for p , 3m
[52]. The AKLT construction was also generalized to di↵erent SU(n) spin chains [58–61], in
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Figure 9: Extrapolation of the inverse of the correlation length from Monte Carlo calculations of imaginary ✓ angles
along the ✓1 = �✓3 line, for a system of 192 ⇥ 192 sites. The inset shows the extrapolated value of the mass gap at
✓ = 2⇡/3.

On the other hand, shifting ✓1, ✓3 slightly away from ±2⇡/3 corresponds to breaking the Z3
symmetry. We expect this symmetry to correspond to g! ei2⇡/3g in the SU(3)1 WZW model, the
symmetry which forbids a trg term in the e↵ective Hamiltonian. When this symmetry is broken
we expect a relevant perturbation / trg. This operator has dimension d = 2/3 so we expect the
gap to scale as |✓ � 2⇡/3|1/(2�d) = |✓ � 2⇡/3|3/4, up to log corrections coming from the marginal
operator JA

R JA
L . If the Z3 symmmetry is broken, but a parity symmetry is preserved, along the

✓1 = �✓3 = ✓ line for example, we believe that the extra term should have the form trg + trg†
since g ! g† corresponds to the parity transformation. In this case the extra term in the SU(3)1
WZW model should have the form / (✓ � 2⇡/3)(trg+ trg†). If we write the diagonal elements of
g as ei↵ j for ↵ = 1, 2, 3 with

P

j ↵ j ⌘ 0(mod 2⇡), the extra term takes the form

V / (✓ � 2⇡/3)
X

j

cos↵ j. (8.2)

For ✓ < 2⇡/3, this term has a unique minimum with ↵ j = 0. But if ✓ > 2⇡/3, there are two
minima, with ↵ j = 2⇡/3 or ↵ j = �2⇡/3 . As discussed in Sec. 7.1, the two cases correspond
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Symmetries of the field theory
~
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Figure 3: Sketch of the low energy fluctuations around the classical three sublattice ground state. The spin states are
given by Eq. (4.3). The lattice constant a is the distance between neighbouring sites.

where the ⇤n matrices are defined by
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, (4.7)

while "µ⌫ is the two dimensional Levi-Civita tensor ("x⌧ = �"⌧x = 1). The coupling constant
1/g = p

p
(J1J2 + 2J3J1 + 2J3J2)/(J1 + J2) and the velocity v = 3ap

p
J1J2 + 2J3J1 + 2J3J2, in

agreement with the flavour wave calculations in Sec. 2.
The imaginary term containing the ✓n parameters is topological, with the integer valued topo-

logical charges [77]

Qn =
1

2⇡i
"µ⌫

Z

dxd⌧tr
h

⇤n@µU@⌫U†
i

. (4.8)

The �-term is also imaginary, but non-topological. In fact, the value of � is non-universal:

� = p
2⇡
3

2J2 � J1

J1 + J2
. (4.9)

For simplicity, let us introduce the notation

qmn =
1

2⇡i

Z

dxd⌧ "µ⌫tr
h

⇤mU@µU†⇤n@⌫UU†
i

, (4.10)

where qmn = �qnm. In terms of these quantities, the �-term of the action can be written:
i� (q12 + q23 + q31). The topological charges can also be expressed using the qmn’s as

Q1 = q12 + q13 , Q2 = q21 + q23 , Q3 = q31 + q32 . (4.11)

The antisymmetry of the qmn implies that Q1 + Q2 + Q3 = 0. So the action is invariant under
a global shift of the topological angles, and one can set one of them to 0. Unless specified
otherwise, we will work with the convention ✓2 = 0.

For the translationally invariant model of Eq. (4.1), and with this convention, the topological
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R13

5.1. SU(3) symmetry
Throughout this paper we only consider spin models with global SU(3) symmetry, hence the

resulting �-models are also invariant under SU(3) rotations. These are of the form U0(x, ⌧) =
U(x, ⌧)V , or equivalently ~�0n(x, ⌧) = VT~�(x, ⌧) where the unitary V matrix clearly cancels out in
every term of the action in Eq. (4.6) or Eq. (4.14).

5.2. Gauge invariance
The overall phases of the spin coherent states shouldn’t change the form of the action. This

manifests in the gauge invariance of the action in Eq. (4.6) under the transformation U0(x, ⌧) =
D(x, ⌧)U(x, ⌧), where

D(x, ⌧) =

0
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A

(5.1)

with #3(x, ⌧) = �(#1(x, ⌧) + #2(x, ⌧)). In terms of the fields, this transformation corresponds to
~�0n = ei#n~�n. A proof of gauge invariance in this language can be found in Appendix E.1. Gauge
invariance is also evident in the formulation of Eq. (4.15), where gauge fields are explicitly
introduced.

5.3. Time reversal symmetry
Another fundamental symmetry is time reversal symmetry. The e↵ect of time reversal (in real

time) is simply TU(x, t)T = U(x,�t), or equivalently T~�n(x, t)T = ~�n(x,�t), as well as complex
conjugation of c-numbers: i ! �i. The first term in the action in Eq. (4.14) is clearly invariant
under T-reversal. The topological ✓-term and the �-terms pick up a factor of i when going to real
time, which makes these terms real (Hermitian). The i to �i transformation then compensates for
@t ! �@t, also leaving these terms time reversal invariant.

5.4. Z3 symmetry
The field theory has an additional global Z3 symmetry: U0(x, ⌧) = RZ3 U(x, ⌧), with
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, (5.2)

which cyclically permutes the three ~�n fields. This symmetry is a consequence of the invariance
of the spin model under translation by one site. In the field theory derivation we assumed a three
sublattice ordered ground state, which is only suitable for spin models which are invariant under
three site translation, hence R3

Z3
= I is a symmetry independently of the parameters of the field

theory.
It is clear in any formulation that the real part of the action in Eq. (4.14) is invariant under

Z3 as long as the coupling g is the same for all three CP2 theories. When ✓1 = �✓3 = p2⇡/3, the
topological term is also invariant. Indeed it transforms as

ip
2⇡
3

(Q1 � Q3)! ip
2⇡
3
�

Q2 � Q1
�

= ip
2⇡
3
�

Q1 � Q3
�

+ ip
2⇡
3
�

Q1 + Q2 + Q3
� � i3p

2⇡
3

Q1.

(5.3)
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Translation by one site: ~�1 ! ~�2 ! ~�3 ! ~�1 Z3 symmetry in NLSM 

Mirror symmetry: ~

�1(3)(x, ⌧) $ ~

�3(1)(�x, ⌧) ~

�2(x, ⌧) $ ~

�2(�x, ⌧)

Since Q1 +Q2 +Q3 = 0 and Q1 is integer-valued, the second term of the right hand side is 0, and
the third term gives an integer multiple of 2⇡, leading to:

ei(2p⇡/3)(Q1�Q3) ⌘ ei(2p⇡/3)(Q2�Q1). (5.4)

Finally, the �-term is clearly invariant under Z3 symmetry as q12+q23+q31 transforms into itself.

5.5. Parity symmetry
The action in Eq. (4.14) is invariant under parity symmetries as well, which correspond to

mirror symmetries between two neighbouring sites in the spin model. Since a three site transla-
tion symmetry is always conserved, there are three non-equivalent mirror symmetries in the spin
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In terms of the fields it corresponds to ~�1(3)(x, ⌧) ! ~�3(1)(�x, ⌧) and ~�2(x, ⌧) ! ~�2(�x, ⌧), i.e. it
exchanges fields 1 and 3. This means that in the real part of the action the terms for the fields
1 and 3 will be exchanged, while the terms for field 2 will be unchanged. This is clearly a
symmetry of the action of Eq. (4.14).

The topological term transforms as ✓(Q1 � Q3) ! �✓(Q3 � Q1), which is the same as the
original one. The extra � sign appears as there is always exactly one spatial derivative in the
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coordinate. Similarly, the �-term becomes ��(q21+q32+q13), which is equal to the original term
as qmn = �qnm.

The invariance of the action in Eq. (4.14) under the other two parity symmetries R12 and R13
can be shown in a similar way as for R13.

5.6. Breaking lattice symmetries and general form of the action
If the spin model is not invariant under the translation and the mirror symmetries, the Z3 and
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S =
Z

dxd⌧
" 3
X

n=1

 

vn

2gn

✓

�

�

�@x~�n

�

�

�

2 �
�

�

�

~�⇤n · @x~�n

�

�

�

2
◆

+
1

2vngn

✓

�

�

�@⌧~�n

�

�

�

2 �
�

�

�

~�⇤n · @⌧~�n

�

�

�

2
◆

!

+ i
3

X

n=1

✓nQn + i�(q12 + q23 + q31)
#

,

(5.6)

In general, the three copies of the CP2 model do not have the same coupling constants and ve-
locities any more. The topological angles can also take arbitrary values, but since the topological
charges still satisfy Q1 + Q2 + Q3 = 0 because of the orthogonality of the fields, one can still set
one of them to 0, and one is left with two independent topological charges, for instance ✓1 and
✓3. All these statements are illlustrated in the case where the nearest neighbor interaction takes
three di↵erent values between each pair of sublattices discussed in Appendix E.3. We also show
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we only discuss the phase diagram for the 0  ✓1,�✓3 < 2⇡ region, referred to as reduced phase
diagram in the following.
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2m⇡/3(mod 2⇡) with m = 0, 1, 2. At these points the action has a Z3 symmetry, which can be
understood as a cyclic permutation of the three fields (see Sec. 5.4). Additionally, three parity
symmetries are also present, each corresponding to the exchange of two out of the three fields
(complemented by an invertion of the space coordinates as explained in Sec. 5.5). At each high
symmetry point three special lines meet, each corresponding to the conservation of one of the
three parity symmetries. Consider for example the ✓1 = �✓3 = 2⇡/3 point, and the parity
symmetric lines meeting there, illustrated on Figs. 5, 6. The ✓1 = �✓3 line is invariant under
the R13 parity transformation defined in Sec. 5.5, which exchanges the fields �1 and �3. On the
other two lines (�✓3 = ⇡ � ✓1/2 and �✓3 = 2⇡ � 2✓1) the parities exchanging fields ~�1 $ ~�2
and ~phi2 $ ~�3 are conserved, respectively3. In one direction the parity symmetric lines are
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equivalent to ✓1 = �✓3 = 4⇡/3 (mod 2⇡) (solid lines in Fig. 5b), while in the other direction they
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Fig. 5b). A general point in the phase diagram transforms under the Z3 symmetry as
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3 Expressing the topological term with Q1 and Q2 along �✓3 = ⇡ � ✓1/2 one finds that ✓1 = �✓2 (mod 2⇡), hence the
R12 parity is conserved, while using Q2 and Q3 along �✓3 = 2⇡ � 2✓1 one finds that ✓2 = �✓3 (mod 2⇡), hence the R23
parity is conserved.
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2m⇡/3(mod 2⇡) with m = 0, 1, 2. At these points the action has a Z3 symmetry, which can be
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symmetries are also present, each corresponding to the exchange of two out of the three fields
(complemented by an invertion of the space coordinates as explained in Sec. 5.5). At each high
symmetry point three special lines meet, each corresponding to the conservation of one of the
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There are three high symmetry points in the reduced phase diagram defined by ✓1 = �✓3 =
2m⇡/3(mod 2⇡) with m = 0, 1, 2. At these points the action has a Z3 symmetry, which can be
understood as a cyclic permutation of the three fields (see Sec. 5.4). Additionally, three parity
symmetries are also present, each corresponding to the exchange of two out of the three fields
(complemented by an invertion of the space coordinates as explained in Sec. 5.5). At each high
symmetry point three special lines meet, each corresponding to the conservation of one of the
three parity symmetries. Consider for example the ✓1 = �✓3 = 2⇡/3 point, and the parity
symmetric lines meeting there, illustrated on Figs. 5, 6. The ✓1 = �✓3 line is invariant under
the R13 parity transformation defined in Sec. 5.5, which exchanges the fields �1 and �3. On the
other two lines (�✓3 = ⇡ � ✓1/2 and �✓3 = 2⇡ � 2✓1) the parities exchanging fields ~�1 $ ~�2
and ~phi2 $ ~�3 are conserved, respectively3. In one direction the parity symmetric lines are
also transition lines between di↵erent Rm,n sectors until they reach another high symmetry point
equivalent to ✓1 = �✓3 = 4⇡/3 (mod 2⇡) (solid lines in Fig. 5b), while in the other direction they
run inside a sector towards a high symmetric point equivalent to ✓1 = �✓3 = 0 (dashed lines in
Fig. 5b). A general point in the phase diagram transforms under the Z3 symmetry as
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In Fig. 7 we show the free energy f (a✓, b✓, g! 1) as a function of ✓2 for di↵erent fixed values of
a, b. Since we know that the system undergoes a phase transition between di↵erent Rm,n sectors,
we can only hope to get information for points inside or at the boundary of R0,0. Fortunately due
to the symmetries of the phase diagram, this is all that we need. For example, the high symmetry
point ✓1 = �✓3 = 2⇡/3 can be reached by extrapolation along the ✓1 = �✓3 line (a = �b = 1).
The point ✓1 = �✓3 = ⇡ cannot be reached by extrapolating along this line since it is beyond a
phase transition. However, this point is related to the point ✓1 = ⇡, ✓3 = 0 by a Z3 transformation,
and this latter point is reachable by an extrapolation with a = 1, b = 0. In the following we
present numerical Monte Carlo results along these two lines, but in general one can choose any
values of a, b to reach any point of the R0,0 sector via an extrapolation.
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Figure 7: (a) The free energy along cuts in the ✓1 � ✓3 plane in the g ! 1 limit. We show the f (✓,�✓), and f (✓, 0)
cases for which we carried out MC extrapolation calculations at finite g values. (b) Free energy as a function of ✓2 for
imaginary and real topological angles for the mentioned two cases at g ! 1. It is clear that the extrapolation breaks
down for real topological angles beyond a phase transition.

To implement the lattice Monte Carlo calculation, we discretize the action in Eq. (4.14) on a
1+1 dimensional square lattice for imaginary topological angles ✓ = i#, extending the scheme of
Allés and Papa [18] to the SU(3) case. We discretize the real part of the action as [89, 90]
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where r j is a site on the discretized two dimensional space time and ~�x,~�⌧ are the lattice unit
vectors of the discretized square lattice. One can show that this discretization gives back the
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There are three high symmetry points in the reduced phase diagram defined by ✓1 = �✓3 =
2m⇡/3(mod 2⇡) with m = 0, 1, 2. At these points the action has a Z3 symmetry, which can be
understood as a cyclic permutation of the three fields (see Sec. 5.4). Additionally, three parity
symmetries are also present, each corresponding to the exchange of two out of the three fields
(complemented by an invertion of the space coordinates as explained in Sec. 5.5). At each high
symmetry point three special lines meet, each corresponding to the conservation of one of the
three parity symmetries. Consider for example the ✓1 = �✓3 = 2⇡/3 point, and the parity
symmetric lines meeting there, illustrated on Figs. 5, 6. The ✓1 = �✓3 line is invariant under
the R13 parity transformation defined in Sec. 5.5, which exchanges the fields �1 and �3. On the
other two lines (�✓3 = ⇡ � ✓1/2 and �✓3 = 2⇡ � 2✓1) the parities exchanging fields ~�1 $ ~�2
and ~phi2 $ ~�3 are conserved, respectively3. In one direction the parity symmetric lines are
also transition lines between di↵erent Rm,n sectors until they reach another high symmetry point
equivalent to ✓1 = �✓3 = 4⇡/3 (mod 2⇡) (solid lines in Fig. 5b), while in the other direction they
run inside a sector towards a high symmetric point equivalent to ✓1 = �✓3 = 0 (dashed lines in
Fig. 5b). A general point in the phase diagram transforms under the Z3 symmetry as
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while "µ⌫ is the two dimensional Levi-Civita tensor ("x⌧ = �"⌧x = 1). The coupling constant
1/g = p

p
(J1J2 + 2J3J1 + 2J3J2)/(J1 + J2) and the velocity v = 3ap

p
J1J2 + 2J3J1 + 2J3J2, in

agreement with the flavour wave calculations in Sec. 2.
The imaginary term containing the ✓n parameters is topological, with the integer valued topo-

logical charges [77]
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2⇡i
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The �-term is also imaginary, but non-topological. In fact, the value of � is non-universal:

� = p
2⇡
3

2J2 � J1

J1 + J2
. (4.9)

For simplicity, let us introduce the notation

qmn =
1

2⇡i

Z

dxd⌧ "µ⌫tr
h

⇤mU@µU†⇤n@⌫UU†
i

, (4.10)

where qmn = �qnm. In terms of these quantities, the �-term of the action can be written:
i� (q12 + q23 + q31). The topological charges can also be expressed using the qmn’s as

Q1 = q12 + q13 , Q2 = q21 + q23 , Q3 = q31 + q32 . (4.11)

The antisymmetry of the qmn implies that Q1 + Q2 + Q3 = 0. So the action is invariant under
a global shift of the topological angles, and one can set one of them to 0. Unless specified
otherwise, we will work with the convention ✓2 = 0.

For the translationally invariant model of Eq. (4.1), and with this convention, the topological
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which is spontaneously broken on the solid, but not dotted, lines. At the intersection of the lines, at (2⇡/3,�2⇡/3) a Z3
symmetry is also present.

we only discuss the phase diagram for the 0  ✓1,�✓3 < 2⇡ region, referred to as reduced phase
diagram in the following.

There are three high symmetry points in the reduced phase diagram defined by ✓1 = �✓3 =
2m⇡/3(mod 2⇡) with m = 0, 1, 2. At these points the action has a Z3 symmetry, which can be
understood as a cyclic permutation of the three fields (see Sec. 5.4). Additionally, three parity
symmetries are also present, each corresponding to the exchange of two out of the three fields
(complemented by an invertion of the space coordinates as explained in Sec. 5.5). At each high
symmetry point three special lines meet, each corresponding to the conservation of one of the
three parity symmetries. Consider for example the ✓1 = �✓3 = 2⇡/3 point, and the parity
symmetric lines meeting there, illustrated on Figs. 5, 6. The ✓1 = �✓3 line is invariant under
the R13 parity transformation defined in Sec. 5.5, which exchanges the fields �1 and �3. On the
other two lines (�✓3 = ⇡ � ✓1/2 and �✓3 = 2⇡ � 2✓1) the parities exchanging fields ~�1 $ ~�2
and ~phi2 $ ~�3 are conserved, respectively3. In one direction the parity symmetric lines are
also transition lines between di↵erent Rm,n sectors until they reach another high symmetry point
equivalent to ✓1 = �✓3 = 4⇡/3 (mod 2⇡) (solid lines in Fig. 5b), while in the other direction they
run inside a sector towards a high symmetric point equivalent to ✓1 = �✓3 = 0 (dashed lines in
Fig. 5b). A general point in the phase diagram transforms under the Z3 symmetry as

(✓1Q1 + ✓3Q3) !
Z3

(✓1Q2 + ✓3Q1) = (✓3 � ✓1)Q1 � ✓1Q3

(✓1Q1 + ✓3Q3) !
Z�1

3

(✓1Q3 + ✓3Q2) = �✓3Q1 + (✓1 � ✓3)Q3
(7.15)

3 Expressing the topological term with Q1 and Q2 along �✓3 = ⇡ � ✓1/2 one finds that ✓1 = �✓2 (mod 2⇡), hence the
R12 parity is conserved, while using Q2 and Q3 along �✓3 = 2⇡ � 2✓1 one finds that ✓2 = �✓3 (mod 2⇡), hence the R23
parity is conserved.
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Under the Z3 transformation the high symmetry points are mapped into themselves modulo 2⇡ as
was discussed in Sec. 5.4. The parity symmetric lines meeting at a Z3 symmetric point transform
into each other modulo 2⇡. For example, along the ✓1 = �✓3 line the topological term is given
by i✓(Q1 � Q3), which transforms to i✓(Q2 � Q1) = i(�2✓Q1 � ✓Q3) under Z3. The transformed
term is along the ✓3 = ✓1/2 line which is equivalent to the ✓3 = ✓1/2 � ⇡ line going through the
✓1 = �✓3 = 2⇡/3 point. Similarly, under Z�1

3 the i✓(Q1 � Q3) term transforms into i✓(Q3 � Q2) =
i(✓Q1+2✓Q3) along the ✓3 = 2✓1 line, which is equivalent to the ✓3 = 2✓1�2⇡ line going through
✓1 = �✓3 = 2⇡/3.

In the same spirit, one can follow the action of a parity transformation for a general point
inside the reduced phase diagram:

(✓1Q1 + ✓3Q3)!
R13

(�✓1Q3 � ✓3Q1)

(✓1Q1 + ✓3Q3)!
R12

(�✓1Q2 � ✓3Q3) = ✓1Q1 + (✓1 � ✓3)Q3

(✓1Q1 + ✓3Q3)!
R23

(�✓1Q1 � ✓3Q2) = (✓3 � ✓1)Q1 + ✓3Q3

(7.16)

The high symmetry points are once again invariant, while each parity transformation conserves
one parity symmetric line and maps the other two into each other. For example the ✓1 = �✓3 line
is invariant under R13, and maps to ✓3 = ✓1/2 ⌘ ✓1/2 � ⇡ or to ✓3 = 2✓1 ⌘ 2✓1 � 2⇡ under R23 or
R12, respectively. All these transformation properties are illustrated in Fig. 6.
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Figure 6: The transformation of di↵erent points in the ✓1 � ✓3 phase diagram under the Z3 and parity transformations.
(a) A point on the ✓1 = �✓3 line is transformed into points on the ✓1 = �✓2 and ✓2 = �✓3 lines. Each point is conserved
by one of the three parity transformations. (b) Transformation of a generic point resulting in 6 equivalent points in the
phase diagram (mod 2⇡).

In the g! 1 limit the system is gapped for all values of ✓1 and ✓3. This can be seen from the
gauge field formulation of the action in Eq. (4.15) (or Eqs. (7.1) and (7.3) for the lattice model).
In the the g ! 1 limit the action only consists of the topological term, which only depends on
the gauge fields, thus the ~�n(x) fields are correlation free. This means that the mass gap, which is
the inverse of the correlation length, diverges in this limit for all values of the topological angles.

At ✓1 = �✓3 = 2⇡/3 this is accompanied by a spontaneous breakdown of the Z3 and parity
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Figure 3: Sketch of the low energy fluctuations around the classical three sublattice ground state. The spin states are
given by Eq. (4.3). The lattice constant a is the distance between neighbouring sites.
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while "µ⌫ is the two dimensional Levi-Civita tensor ("x⌧ = �"⌧x = 1). The coupling constant
1/g = p

p
(J1J2 + 2J3J1 + 2J3J2)/(J1 + J2) and the velocity v = 3ap

p
J1J2 + 2J3J1 + 2J3J2, in

agreement with the flavour wave calculations in Sec. 2.
The imaginary term containing the ✓n parameters is topological, with the integer valued topo-

logical charges [77]

Qn =
1

2⇡i
"µ⌫

Z

dxd⌧tr
h

⇤n@µU@⌫U†
i

. (4.8)

The �-term is also imaginary, but non-topological. In fact, the value of � is non-universal:

� = p
2⇡
3

2J2 � J1

J1 + J2
. (4.9)

For simplicity, let us introduce the notation

qmn =
1

2⇡i

Z

dxd⌧ "µ⌫tr
h

⇤mU@µU†⇤n@⌫UU†
i

, (4.10)

where qmn = �qnm. In terms of these quantities, the �-term of the action can be written:
i� (q12 + q23 + q31). The topological charges can also be expressed using the qmn’s as

Q1 = q12 + q13 , Q2 = q21 + q23 , Q3 = q31 + q32 . (4.11)

The antisymmetry of the qmn implies that Q1 + Q2 + Q3 = 0. So the action is invariant under
a global shift of the topological angles, and one can set one of them to 0. Unless specified
otherwise, we will work with the convention ✓2 = 0.

For the translationally invariant model of Eq. (4.1), and with this convention, the topological
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Figure 5: (a)The di↵erent Rm,n sector on the ✓1 � ✓3 plane derived from the g ! 1 calculations, and (b) a zoomed
in version with the expected RG flow. The phase diagram is similar for all g values, the flow in the ✓1 � ✓3 plane is
everywhere complemented with a flow towards g! 1. The transition lines correspond to a conserved parity symmetry,
which is spontaneously broken on the solid, but not dotted, lines. At the intersection of the lines, at (2⇡/3,�2⇡/3) a Z3
symmetry is also present.

we only discuss the phase diagram for the 0  ✓1,�✓3 < 2⇡ region, referred to as reduced phase
diagram in the following.

There are three high symmetry points in the reduced phase diagram defined by ✓1 = �✓3 =
2m⇡/3(mod 2⇡) with m = 0, 1, 2. At these points the action has a Z3 symmetry, which can be
understood as a cyclic permutation of the three fields (see Sec. 5.4). Additionally, three parity
symmetries are also present, each corresponding to the exchange of two out of the three fields
(complemented by an invertion of the space coordinates as explained in Sec. 5.5). At each high
symmetry point three special lines meet, each corresponding to the conservation of one of the
three parity symmetries. Consider for example the ✓1 = �✓3 = 2⇡/3 point, and the parity
symmetric lines meeting there, illustrated on Figs. 5, 6. The ✓1 = �✓3 line is invariant under
the R13 parity transformation defined in Sec. 5.5, which exchanges the fields �1 and �3. On the
other two lines (�✓3 = ⇡ � ✓1/2 and �✓3 = 2⇡ � 2✓1) the parities exchanging fields ~�1 $ ~�2
and ~phi2 $ ~�3 are conserved, respectively3. In one direction the parity symmetric lines are
also transition lines between di↵erent Rm,n sectors until they reach another high symmetry point
equivalent to ✓1 = �✓3 = 4⇡/3 (mod 2⇡) (solid lines in Fig. 5b), while in the other direction they
run inside a sector towards a high symmetric point equivalent to ✓1 = �✓3 = 0 (dashed lines in
Fig. 5b). A general point in the phase diagram transforms under the Z3 symmetry as

(✓1Q1 + ✓3Q3) !
Z3

(✓1Q2 + ✓3Q1) = (✓3 � ✓1)Q1 � ✓1Q3

(✓1Q1 + ✓3Q3) !
Z�1

3

(✓1Q3 + ✓3Q2) = �✓3Q1 + (✓1 � ✓3)Q3
(7.15)

3 Expressing the topological term with Q1 and Q2 along �✓3 = ⇡ � ✓1/2 one finds that ✓1 = �✓2 (mod 2⇡), hence the
R12 parity is conserved, while using Q2 and Q3 along �✓3 = 2⇡ � 2✓1 one finds that ✓2 = �✓3 (mod 2⇡), hence the R23
parity is conserved.
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Figure 5: (a)The di↵erent Rm,n sector on the ✓1 � ✓3 plane derived from the g ! 1 calculations, and (b) a zoomed
in version with the expected RG flow. The phase diagram is similar for all g values, the flow in the ✓1 � ✓3 plane is
everywhere complemented with a flow towards g! 1. The transition lines correspond to a conserved parity symmetry,
which is spontaneously broken on the solid, but not dotted, lines. At the intersection of the lines, at (2⇡/3,�2⇡/3) a Z3
symmetry is also present.

we only discuss the phase diagram for the 0  ✓1,�✓3 < 2⇡ region, referred to as reduced phase
diagram in the following.

There are three high symmetry points in the reduced phase diagram defined by ✓1 = �✓3 =
2m⇡/3(mod 2⇡) with m = 0, 1, 2. At these points the action has a Z3 symmetry, which can be
understood as a cyclic permutation of the three fields (see Sec. 5.4). Additionally, three parity
symmetries are also present, each corresponding to the exchange of two out of the three fields
(complemented by an invertion of the space coordinates as explained in Sec. 5.5). At each high
symmetry point three special lines meet, each corresponding to the conservation of one of the
three parity symmetries. Consider for example the ✓1 = �✓3 = 2⇡/3 point, and the parity
symmetric lines meeting there, illustrated on Figs. 5, 6. The ✓1 = �✓3 line is invariant under
the R13 parity transformation defined in Sec. 5.5, which exchanges the fields �1 and �3. On the
other two lines (�✓3 = ⇡ � ✓1/2 and �✓3 = 2⇡ � 2✓1) the parities exchanging fields ~�1 $ ~�2
and ~phi2 $ ~�3 are conserved, respectively3. In one direction the parity symmetric lines are
also transition lines between di↵erent Rm,n sectors until they reach another high symmetry point
equivalent to ✓1 = �✓3 = 4⇡/3 (mod 2⇡) (solid lines in Fig. 5b), while in the other direction they
run inside a sector towards a high symmetric point equivalent to ✓1 = �✓3 = 0 (dashed lines in
Fig. 5b). A general point in the phase diagram transforms under the Z3 symmetry as

(✓1Q1 + ✓3Q3) !
Z3

(✓1Q2 + ✓3Q1) = (✓3 � ✓1)Q1 � ✓1Q3

(✓1Q1 + ✓3Q3) !
Z�1

3

(✓1Q3 + ✓3Q2) = �✓3Q1 + (✓1 � ✓3)Q3
(7.15)

3 Expressing the topological term with Q1 and Q2 along �✓3 = ⇡ � ✓1/2 one finds that ✓1 = �✓2 (mod 2⇡), hence the
R12 parity is conserved, while using Q2 and Q3 along �✓3 = 2⇡ � 2✓1 one finds that ✓2 = �✓3 (mod 2⇡), hence the R23
parity is conserved.
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Figure 5: (a)The di↵erent Rm,n sector on the ✓1 � ✓3 plane derived from the g ! 1 calculations, and (b) a zoomed
in version with the expected RG flow. The phase diagram is similar for all g values, the flow in the ✓1 � ✓3 plane is
everywhere complemented with a flow towards g! 1. The transition lines correspond to a conserved parity symmetry,
which is spontaneously broken on the solid, but not dotted, lines. At the intersection of the lines, at (2⇡/3,�2⇡/3) a Z3
symmetry is also present.

we only discuss the phase diagram for the 0  ✓1,�✓3 < 2⇡ region, referred to as reduced phase
diagram in the following.

There are three high symmetry points in the reduced phase diagram defined by ✓1 = �✓3 =
2m⇡/3(mod 2⇡) with m = 0, 1, 2. At these points the action has a Z3 symmetry, which can be
understood as a cyclic permutation of the three fields (see Sec. 5.4). Additionally, three parity
symmetries are also present, each corresponding to the exchange of two out of the three fields
(complemented by an invertion of the space coordinates as explained in Sec. 5.5). At each high
symmetry point three special lines meet, each corresponding to the conservation of one of the
three parity symmetries. Consider for example the ✓1 = �✓3 = 2⇡/3 point, and the parity
symmetric lines meeting there, illustrated on Figs. 5, 6. The ✓1 = �✓3 line is invariant under
the R13 parity transformation defined in Sec. 5.5, which exchanges the fields �1 and �3. On the
other two lines (�✓3 = ⇡ � ✓1/2 and �✓3 = 2⇡ � 2✓1) the parities exchanging fields ~�1 $ ~�2
and ~phi2 $ ~�3 are conserved, respectively3. In one direction the parity symmetric lines are
also transition lines between di↵erent Rm,n sectors until they reach another high symmetry point
equivalent to ✓1 = �✓3 = 4⇡/3 (mod 2⇡) (solid lines in Fig. 5b), while in the other direction they
run inside a sector towards a high symmetric point equivalent to ✓1 = �✓3 = 0 (dashed lines in
Fig. 5b). A general point in the phase diagram transforms under the Z3 symmetry as

(✓1Q1 + ✓3Q3) !
Z3

(✓1Q2 + ✓3Q1) = (✓3 � ✓1)Q1 � ✓1Q3

(✓1Q1 + ✓3Q3) !
Z�1

3

(✓1Q3 + ✓3Q2) = �✓3Q1 + (✓1 � ✓3)Q3
(7.15)

3 Expressing the topological term with Q1 and Q2 along �✓3 = ⇡ � ✓1/2 one finds that ✓1 = �✓2 (mod 2⇡), hence the
R12 parity is conserved, while using Q2 and Q3 along �✓3 = 2⇡ � 2✓1 one finds that ✓2 = �✓3 (mod 2⇡), hence the R23
parity is conserved.
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(b)(a)

m=1, n=1 m=0, n=1 m=−1, n=1

m=−1, n=−1m=0, n=−1m=1, n=−1

m=0, n=0 m=−1, n=0m=1, n=0 ✓ 1
=

�✓
3

✓
2
=

�
✓
3

⇡

⇡

✓1

�✓3

✓1

(4⇡/3,�4⇡/3)

�✓3

(2⇡/3,�2⇡/3)

✓1
= �✓2

Figure 5: (a)The di↵erent Rm,n sector on the ✓1 � ✓3 plane derived from the g ! 1 calculations, and (b) a zoomed
in version with the expected RG flow. The phase diagram is similar for all g values, the flow in the ✓1 � ✓3 plane is
everywhere complemented with a flow towards g! 1. The transition lines correspond to a conserved parity symmetry,
which is spontaneously broken on the solid, but not dotted, lines. At the intersection of the lines, at (2⇡/3,�2⇡/3) a Z3
symmetry is also present.

we only discuss the phase diagram for the 0  ✓1,�✓3 < 2⇡ region, referred to as reduced phase
diagram in the following.

There are three high symmetry points in the reduced phase diagram defined by ✓1 = �✓3 =
2m⇡/3(mod 2⇡) with m = 0, 1, 2. At these points the action has a Z3 symmetry, which can be
understood as a cyclic permutation of the three fields (see Sec. 5.4). Additionally, three parity
symmetries are also present, each corresponding to the exchange of two out of the three fields
(complemented by an invertion of the space coordinates as explained in Sec. 5.5). At each high
symmetry point three special lines meet, each corresponding to the conservation of one of the
three parity symmetries. Consider for example the ✓1 = �✓3 = 2⇡/3 point, and the parity
symmetric lines meeting there, illustrated on Figs. 5, 6. The ✓1 = �✓3 line is invariant under
the R13 parity transformation defined in Sec. 5.5, which exchanges the fields �1 and �3. On the
other two lines (�✓3 = ⇡ � ✓1/2 and �✓3 = 2⇡ � 2✓1) the parities exchanging fields ~�1 $ ~�2
and ~phi2 $ ~�3 are conserved, respectively3. In one direction the parity symmetric lines are
also transition lines between di↵erent Rm,n sectors until they reach another high symmetry point
equivalent to ✓1 = �✓3 = 4⇡/3 (mod 2⇡) (solid lines in Fig. 5b), while in the other direction they
run inside a sector towards a high symmetric point equivalent to ✓1 = �✓3 = 0 (dashed lines in
Fig. 5b). A general point in the phase diagram transforms under the Z3 symmetry as

(✓1Q1 + ✓3Q3) !
Z3

(✓1Q2 + ✓3Q1) = (✓3 � ✓1)Q1 � ✓1Q3

(✓1Q1 + ✓3Q3) !
Z�1

3

(✓1Q3 + ✓3Q2) = �✓3Q1 + (✓1 � ✓3)Q3
(7.15)

3 Expressing the topological term with Q1 and Q2 along �✓3 = ⇡ � ✓1/2 one finds that ✓1 = �✓2 (mod 2⇡), hence the
R12 parity is conserved, while using Q2 and Q3 along �✓3 = 2⇡ � 2✓1 one finds that ✓2 = �✓3 (mod 2⇡), hence the R23
parity is conserved.
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3. Rigorous results and SU(3)k critical points

3.1. Lieb-Schultz-Mattis-A✏eck theorem
Let | i be a ground state of the model defined in Eq. (2.1) on a system of length L (periodic

boundary conditions assumed). Then we can obtain a low energy state by acting on | i with the
unitary operator [52]:

U = exp

2

6

6

6

6

6

6

4

i
2⇡
3L

L
X

j=1

jQ j

3

7

7

7

7

7

7

5

, (3.1)

where Qj = S 1
1( j) + S 2

2( j) � 2S 3
3( j) = p � 3b†3( j)b3( j) is a generator of SU(3). See Appendix B

for details. There we show that

h |T�1UT | i = ei2⇡p/3h |U | i, (3.2)

where T is the operator which translates states by 1 site. Thus, translational invariance of | i
implies

h |U | i = ei2⇡p/3h |U | i. (3.3)

This implies that h |U | i = 0 for p , 3m, i.e. U | i is a low energy state which is orthogonal
to | i. This leaves two possibilities. If the ground state is unique, then there is a low energy
excitation. Alternatively, there may be degenerate ground states in the thermodynamic limit,
with the finite system containing an exponentially low energy excited state which is essentially a
linear combinations of these ground states. It can also be seen (Appendix B) that

h |U2| i = ei4⇡p/3h |U | i, (3.4)

implying that U2| i is another low energy state which is orthogonal to | i and U | i, for p , 3m.
Furthermore, | i, U | i and U2| i are all invariant under T 3, translation by 3 sites. Thus, if
there are no low energy excited states, we might expect a triplet of trimerized ground states, as
illustrated in Fig. 2a. These 3 states map into each other under translations by 1 or 2 sites. For a
long finite system, we then expect linear combinations of these 3 ground states to give, to good
approximation, the ground state and the two exponentially low-lying excited states as discussed
above.

projection onto

| 1i

| 3i

| 2i

(a) p=1 (b) p=3

Figure 2: Illustration of the exact ground states discussed by Greiter et al. [43]. (a) Threefold degenerate trimerized
ground states in the p = 1 case, and (b) the uniqe ground state of an AKLT construction for the p = 3 case. See sections
III.A and VIII.B of Ref. [43] for the construction of the corresponding Hamiltonians.

We remark that, for p = 1, a Hamiltonian was found by Greiter and Rachel [43] that has the
simple trimer ground states. Their Hamiltonian can be written as a sum of projection operators

7

WWSW
WS

3.
Rigo

ro
us res

ults
an

d SU(3)
k
cri

tic
al

poin
ts

3.1
. Lieb

-Sc
hu

ltz
-M

att
is-

A✏
eck

the
ore

m

Let
| i

be
a gro

un
d sta

te
of

the
mod

el
de

fine
d in

Eq.
(2.

1)
on

a sys
tem

of
len

gth
L (pe

rio
dic

bo
un

da
ry

co
nd

itio
ns

ass
um

ed
).

The
n we can

ob
tai

n a low
en

erg
y sta

te
by

act
ing

on
| i

with
the

un
ita

ry
op

era
tor

[52
]:

U
=

ex
p

2

6

6

6

6

6

6

4

i
2⇡

3L

L
X

j=
1

jQ
j

3

7

7

7

7

7

7

5

,

(3.
1)

whe
re

Q j
=

S
1

1
( j)
+

S
2

2
( j)
� 2S

3
3
( j)
=

p �
3b
†

3
( j)

b 3
( j)

is
a ge

ne
rat

or
of

SU(3)
. See

App
en

dix
B

for
de

tai
ls.

The
re

we sho
w

tha
t

h |
T
�1 UT | 

i =
ei
2⇡

p/
3 h |

U | 
i,

(3.
2)

whe
re

T
is

the
op

era
tor

whic
h tra

nsl
ate

s sta
tes

by
1 sit

e.
Thu

s,
tra

nsl
ati

on
al

inv
ari

an
ce

of
| i

im
pli

es

h |
U | 
i =

ei
2⇡

p/
3 h |

U | 
i.

(3.
3)

This
im

pli
es

tha
t h 
|U |
 i
=

0 for
p
,

3m
, i.e

. U | 
i is

a low
en

erg
y sta

te
whic

h is
ort

ho
go

na
l

to
| i

. This
lea

ve
s tw

o po
ssi

bil
itie

s.
If

the
gro

un
d sta

te
is

un
iqu

e,
the

n the
re

is
a low

en
erg

y

ex
cit

ati
on

.
Alte

rna
tiv

ely
, the

re
may

be
de

ge
ne

rat
e gro

un
d sta

tes
in

the
the

rm
od

yn
am

ic
lim

it,

with
the

finit
e sys

tem
co

nta
ini

ng
an

ex
po

ne
nti

all
y low

en
erg

y ex
cit

ed
sta

te
whic

h is
ess

en
tia

lly
a

lin
ear

co
mbin

ati
on

s of
the

se
gro

un
d sta

tes
. It c

an
als

o be
see

n (A
pp

en
dix

B) tha
t

h |
U
2 | i
=

ei
4⇡

p/
3 h |

U | 
i,

(3.
4)

im
ply

ing
tha

t U
2 | i

is
an

oth
er

low
en

erg
y sta

te
whic

h is
ort

ho
go

na
l to
| i

an
d U | 
i, f

or
p ,

3m
.

Furt
he

rm
ore

, | 
i, U | 
i a

nd
U
2 | i

are
all

inv
ari

an
t un

de
r T

3 , tra
nsl

ati
on

by
3 sit

es.
Thu

s,
if

the
re

are
no

low
en

erg
y ex

cit
ed

sta
tes

, we migh
t ex

pe
ct

a trip
let

of
trim

eri
zed

gro
un

d sta
tes

, as

illu
str

ate
d in

Fig.
2a

. The
se

3 sta
tes

map
int

o eac
h oth

er
un

de
r tra

nsl
ati

on
s by

1 or
2 sit

es.
For

a

lon
g finit

e sys
tem

, we the
n ex

pe
ct

lin
ear

co
mbin

ati
on

s of
the

se
3 gro

un
d sta

tes
to

giv
e,

to
go

od

ap
pro

xim
ati

on
, th

e gro
un

d sta
te

an
d the

tw
o ex

po
ne

nti
all

y low
-ly

ing
ex

cit
ed

sta
tes

as
dis

cu
sse

d

ab
ov

e.

p

r

o

j

e

c

t

i

o

n

o

n

t

o

| 1
i

| 3
i

| 2
i

(

a

)

p

=

1

(

b

)

p

=

3

Figu
re

2:
Illu

str
ati

on
of

the
ex

act
gro

un
d sta

tes
dis

cu
sse

d by
Grei

ter
et

al.
[43

].
(a)

Thre
efo

ld
de

ge
ne

rat
e trim

eri
zed

gro
un

d sta
tes

in
the

p =
1 cas

e,
an

d (b)
the

un
iqe

gro
un

d sta
te

of
an

AKLT
co

nst
ruc

tio
n for

the
p =

3 cas
e.

See
sec

tio
ns

III
.A

an
d VIII

.B
of

Ref.
[43

] for
the

co
nst

ruc
tio

n of
the

co
rre

spo
nd

ing
Ham

ilto
nia

ns.

We rem
ark

tha
t, f

or
p =

1,
a Ham

ilto
nia

n was
fou

nd
by

Grei
ter

an
d Rach

el
[43

] tha
t ha

s the

sim
ple

trim
er

gro
un

d sta
tes

. The
ir Ham

ilto
nia

n can
be

writt
en

as
a sum

of
pro

jec
tio

n op
era

tor
s

73.
Rigo

ro
us res

ults
an

d SU(3)
k
cri

tic
al

poin
ts

3.1
. Lieb

-Sc
hu

ltz
-M

att
is-

A✏
eck

the
ore

m

Let
| i

be
a gro

un
d sta

te
of

the
mod

el
de

fine
d in

Eq.
(2.

1)
on

a sys
tem

of
len

gth
L (pe

rio
dic

bo
un

da
ry

co
nd

itio
ns

ass
um

ed
).

The
n we can

ob
tai

n a low
en

erg
y sta

te
by

act
ing

on
| i

with
the

un
ita

ry
op

era
tor

[52
]:

U
=

ex
p

2

6

6

6

6

6

6

4

i
2⇡

3L

L
X

j=
1

jQ
j

3

7

7

7

7

7

7

5

,

(3.
1)

whe
re

Q j
=

S
1

1
( j)
+

S
2

2
( j)
� 2S

3
3
( j)
=

p �
3b
†

3
( j)

b 3
( j)

is
a ge

ne
rat

or
of

SU(3)
. See

App
en

dix
B

for
de

tai
ls.

The
re

we sho
w

tha
t

h |
T
�1 UT | 

i =
ei
2⇡

p/
3 h |

U | 
i,

(3.
2)

whe
re

T
is

the
op

era
tor

whic
h tra

nsl
ate

s sta
tes

by
1 sit

e.
Thu

s,
tra

nsl
ati

on
al

inv
ari

an
ce

of
| i

im
pli

es

h |
U | 
i =

ei
2⇡

p/
3 h |

U | 
i.

(3.
3)

This
im

pli
es

tha
t h 
|U |
 i
=

0 for
p
,

3m
, i.e

. U | 
i is

a low
en

erg
y sta

te
whic

h is
ort

ho
go

na
l

to
| i

. This
lea

ve
s tw

o po
ssi

bil
itie

s.
If

the
gro

un
d sta

te
is

un
iqu

e,
the

n the
re

is
a low

en
erg

y

ex
cit

ati
on

.
Alte

rna
tiv

ely
, the

re
may

be
de

ge
ne

rat
e gro

un
d sta

tes
in

the
the

rm
od

yn
am

ic
lim

it,

with
the

finit
e sys

tem
co

nta
ini

ng
an

ex
po

ne
nti

all
y low

en
erg

y ex
cit

ed
sta

te
whic

h is
ess

en
tia

lly
a

lin
ear

co
mbin

ati
on

s of
the

se
gro

un
d sta

tes
. It c

an
als

o be
see

n (A
pp

en
dix

B) tha
t

h |
U
2 | i
=

ei
4⇡

p/
3 h |

U | 
i,

(3.
4)

im
ply

ing
tha

t U
2 | i

is
an

oth
er

low
en

erg
y sta

te
whic

h is
ort

ho
go

na
l to
| i

an
d U | 
i, f

or
p ,

3m
.

Furt
he

rm
ore

, | 
i, U | 
i a

nd
U
2 | i

are
all

inv
ari

an
t un

de
r T

3 , tra
nsl

ati
on

by
3 sit

es.
Thu

s,
if

the
re

are
no

low
en

erg
y ex

cit
ed

sta
tes

, we migh
t ex

pe
ct

a trip
let

of
trim

eri
zed

gro
un

d sta
tes

, as

illu
str

ate
d in

Fig.
2a

. The
se

3 sta
tes

map
int

o eac
h oth

er
un

de
r tra

nsl
ati

on
s by

1 or
2 sit

es.
For

a

lon
g finit

e sys
tem

, we the
n ex

pe
ct

lin
ear

co
mbin

ati
on

s of
the

se
3 gro

un
d sta

tes
to

giv
e,

to
go

od

ap
pro

xim
ati

on
, th

e gro
un

d sta
te

an
d the

tw
o ex

po
ne

nti
all

y low
-ly

ing
ex

cit
ed

sta
tes

as
dis

cu
sse

d

ab
ov

e.

p

r

o

j

e

c

t

i

o

n

o

n

t

o

| 1
i

| 3
i

| 2
i

(

a

)

p

=

1

(

b

)

p

=

3

Figu
re

2:
Illu

str
ati

on
of

the
ex

act
gro

un
d sta

tes
dis

cu
sse

d by
Grei

ter
et

al.
[43

].
(a)

Thre
efo

ld
de

ge
ne

rat
e trim

eri
zed

gro
un

d sta
tes

in
the

p =
1 cas

e,
an

d (b)
the

un
iqe

gro
un

d sta
te

of
an

AKLT
co

nst
ruc

tio
n for

the
p =

3 cas
e.

See
sec

tio
ns

III
.A

an
d VIII

.B
of

Ref.
[43

] for
the

co
nst

ruc
tio

n of
the

co
rre

spo
nd

ing
Ham

ilto
nia

ns.

We rem
ark

tha
t, f

or
p =

1,
a Ham

ilto
nia

n was
fou

nd
by

Grei
ter

an
d Rach

el
[43

] tha
t ha

s the

sim
ple

trim
er

gro
un

d sta
tes

. The
ir Ham

ilto
nia

n can
be

writt
en

as
a sum

of
pro

jec
tio

n op
era

tor
s

7



(b)(a)

m=1, n=1 m=0, n=1 m=−1, n=1

m=−1, n=−1m=0, n=−1m=1, n=−1

m=0, n=0 m=−1, n=0m=1, n=0 ✓ 1
=

�✓
3

✓
2
=

�
✓
3

⇡

⇡

✓1

�✓3

✓1

(4⇡/3,�4⇡/3)

�✓3

(2⇡/3,�2⇡/3)

✓1
= �✓2

Figure 5: (a)The di↵erent Rm,n sector on the ✓1 � ✓3 plane derived from the g ! 1 calculations, and (b) a zoomed
in version with the expected RG flow. The phase diagram is similar for all g values, the flow in the ✓1 � ✓3 plane is
everywhere complemented with a flow towards g! 1. The transition lines correspond to a conserved parity symmetry,
which is spontaneously broken on the solid, but not dotted, lines. At the intersection of the lines, at (2⇡/3,�2⇡/3) a Z3
symmetry is also present.

we only discuss the phase diagram for the 0  ✓1,�✓3 < 2⇡ region, referred to as reduced phase
diagram in the following.

There are three high symmetry points in the reduced phase diagram defined by ✓1 = �✓3 =
2m⇡/3(mod 2⇡) with m = 0, 1, 2. At these points the action has a Z3 symmetry, which can be
understood as a cyclic permutation of the three fields (see Sec. 5.4). Additionally, three parity
symmetries are also present, each corresponding to the exchange of two out of the three fields
(complemented by an invertion of the space coordinates as explained in Sec. 5.5). At each high
symmetry point three special lines meet, each corresponding to the conservation of one of the
three parity symmetries. Consider for example the ✓1 = �✓3 = 2⇡/3 point, and the parity
symmetric lines meeting there, illustrated on Figs. 5, 6. The ✓1 = �✓3 line is invariant under
the R13 parity transformation defined in Sec. 5.5, which exchanges the fields �1 and �3. On the
other two lines (�✓3 = ⇡ � ✓1/2 and �✓3 = 2⇡ � 2✓1) the parities exchanging fields ~�1 $ ~�2
and ~phi2 $ ~�3 are conserved, respectively3. In one direction the parity symmetric lines are
also transition lines between di↵erent Rm,n sectors until they reach another high symmetry point
equivalent to ✓1 = �✓3 = 4⇡/3 (mod 2⇡) (solid lines in Fig. 5b), while in the other direction they
run inside a sector towards a high symmetric point equivalent to ✓1 = �✓3 = 0 (dashed lines in
Fig. 5b). A general point in the phase diagram transforms under the Z3 symmetry as

(✓1Q1 + ✓3Q3) !
Z3

(✓1Q2 + ✓3Q1) = (✓3 � ✓1)Q1 � ✓1Q3

(✓1Q1 + ✓3Q3) !
Z�1

3

(✓1Q3 + ✓3Q2) = �✓3Q1 + (✓1 � ✓3)Q3
(7.15)

3 Expressing the topological term with Q1 and Q2 along �✓3 = ⇡ � ✓1/2 one finds that ✓1 = �✓2 (mod 2⇡), hence the
R12 parity is conserved, while using Q2 and Q3 along �✓3 = 2⇡ � 2✓1 one finds that ✓2 = �✓3 (mod 2⇡), hence the R23
parity is conserved.
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3. Rigorous results and SU(3)k critical points

3.1. Lieb-Schultz-Mattis-A✏eck theorem
Let | i be a ground state of the model defined in Eq. (2.1) on a system of length L (periodic

boundary conditions assumed). Then we can obtain a low energy state by acting on | i with the
unitary operator [52]:

U = exp

2

6

6

6

6

6

6

4

i
2⇡
3L

L
X

j=1

jQ j

3

7

7

7

7

7

7

5

, (3.1)

where Qj = S 1
1( j) + S 2

2( j) � 2S 3
3( j) = p � 3b†3( j)b3( j) is a generator of SU(3). See Appendix B

for details. There we show that

h |T�1UT | i = ei2⇡p/3h |U | i, (3.2)

where T is the operator which translates states by 1 site. Thus, translational invariance of | i
implies

h |U | i = ei2⇡p/3h |U | i. (3.3)

This implies that h |U | i = 0 for p , 3m, i.e. U | i is a low energy state which is orthogonal
to | i. This leaves two possibilities. If the ground state is unique, then there is a low energy
excitation. Alternatively, there may be degenerate ground states in the thermodynamic limit,
with the finite system containing an exponentially low energy excited state which is essentially a
linear combinations of these ground states. It can also be seen (Appendix B) that

h |U2| i = ei4⇡p/3h |U | i, (3.4)

implying that U2| i is another low energy state which is orthogonal to | i and U | i, for p , 3m.
Furthermore, | i, U | i and U2| i are all invariant under T 3, translation by 3 sites. Thus, if
there are no low energy excited states, we might expect a triplet of trimerized ground states, as
illustrated in Fig. 2a. These 3 states map into each other under translations by 1 or 2 sites. For a
long finite system, we then expect linear combinations of these 3 ground states to give, to good
approximation, the ground state and the two exponentially low-lying excited states as discussed
above.

projection onto

| 1i

| 3i

| 2i

(a) p=1 (b) p=3

Figure 2: Illustration of the exact ground states discussed by Greiter et al. [43]. (a) Threefold degenerate trimerized
ground states in the p = 1 case, and (b) the uniqe ground state of an AKLT construction for the p = 3 case. See sections
III.A and VIII.B of Ref. [43] for the construction of the corresponding Hamiltonians.

We remark that, for p = 1, a Hamiltonian was found by Greiter and Rachel [43] that has the
simple trimer ground states. Their Hamiltonian can be written as a sum of projection operators
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Figure 10: Extrapolation of the inverse of the correlation length from Monte Carlo calculations of imaginary ✓ angles,
for a system of 192 ⇥ 192 sites. For two couplings (we compare the extrapolations along the ✓3 = 0, ✓ = ✓1 line with
those along the ✓ = ✓1 = �✓3 line. (a) Presents a case, when g > gc, while (b) shows a scenario where g < gc. It is clear,
that in the ✓3 = 0, ✓ = ✓1 case the gap remains open at ✓ = ⇡ for both g > gc, and g < gc .

to spin chains with ...SSWSSW... and ...WWSWWS... bond patterns, with a unique and gapped
ground state in the former, and gapped twofold degenerate ground states in the latter case. The
situation is similar along the other two parity conserving lines (�✓3 = ⇡ � ✓1/2 and �✓3 =
2⇡ � 2✓1), which are connected to the ✓1 = �✓3 line by the Z3 transformation. Therefore along
these lines the extra term in the WZW model should be / (e±i2⇡/3trg + e⌥i2⇡/3trg†), which will
also have 1 or 2 minima depending on the sign. For a generic point around ✓1 = �✓3 = 2⇡/3
the extra term should have the form (µtrg + µ⇤trg†), where µ is complex in general, and vanishes
at the Z3 symmetric point. Based on the above considerations we believe the general form is
µ = exp(i✓1) + exp(i✓2) + exp(i✓3), where in our discussion we fixed ✓2 = 0.

It is interesting to contrast these results with those of the CP2 model with a topological term.
If we ignore the non-topological term whose coupling constant � renormalizes to zero, the flag
manifold �-model we have studied can be seen as three copies of the CP2 model coupled by the
orthogonality constraint. Now, it is well established that, as soon as n > 2, the CPn�1 model
with a topological term is gapped for all values of the coupling constant and of the topological

28

sition along the ✓ = ⇡ line is controlled by the marginal, symmetry preserving operator ~JR · ~JL
where ~JR/L are the right and left-moving current operators, with coupling constant / g� gc. One
sign of the coupling is marginally irrelevant and the other marginally relevant, leading to the
transition at g = gc and the gap is exponentially small in g � gc. Moving ✓ away from ⇡ corre-
sponds to adding a term (✓�⇡)trg to the e↵ective Hamiltonian, where g is the primary field of the
WZW model, an SU(2) matrix field of dimension d = 1/2. Thus the gap is expected to scale as
|✓ � ⇡|1/(2�d) = |✓ � ⇡|2/3, up to log corrections coming from the marginal operator. Our predicted
phase diagram for the SU(3) �-model in the special case when the two topological angles are
equal and opposite is sketched in Fig. 1b. We identify the critical theory at ✓ = ±2⇡/3 with the
SU(3)1 WZW model. We again expect a gapped phase for g > gc and for non-zero ✓ ⌥ 2⇡/3 and
can again predict the gap scaling. A more general phase diagram in which the two topological
angles can vary independently will be discussed in Sec. 7.
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Figure 1: (a) The renormalization group flow diagram of the O(3) nonlinear �-model, as proposed in Ref. [45]. At ✓ = ⇡
the system undergoes a phase transition from a gapless phase at g < gc into a gapped phase with a spontaneously broken
Z2 symmetry at g > gc. For ✓ , ⇡ the system is gapped with a unique ground state for all values of g. (b) Proposed
renormalization group flow diagram for the SU(3)/[U(1) ⇥ U(1)] nonlinear �-model in the special case where the two
topological angles are equal and opposite. At ✓ = 2⇡/3 and 4⇡/3 the system undergoes a phase transition from a gapless
phase at g < gc into a gapped phase with a spontaneously broken Z3 symmetry at g > gc. For 2⇡/3 < ✓ < 4⇡/3 the
system is gapped with a spontaneously broken Z2 symmetry, while for ✓ < 2⇡/3 and ✓ > 4⇡/3 the system is gapped with
a unique ground state for all values of g.

There are three pieces of rigorous evidence for the SU(2) phase diagram. One is the Bethe
Ansatz solution for s = 1/2 [50], giving the expected gapless ground state with no broken
symmetries. Another is provided by the Lieb-Schultz-Mattis-A✏eck (LSMA) theorem [51, 52]
which proves that the model is either gapless or has a ground state degeneracy for half-integer
(but not integer) spin. The third is provided by the A✏eck-Kennedy-Lieb-Tasaki (AKLT) models
for integer spin [53]. The exact ground states were found for these models and seen to be gapped
with no broken symmetries. We observe that these results carry over simply to SU(3). The p = 1
case is the Sutherland model, solvable by Bethe ansatz [54], and known to have a gapless low en-
ergy theory corresponding to SU(3)1 [55–57]. The LSMA theorem was proven for general SU(n)
and implies, for SU(3), either a gapless ground state or a ground state degeneracy for p , 3m
[52]. The AKLT construction was also generalized to di↵erent SU(n) spin chains [58–61], in
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Figure 5: (a)The di↵erent Rm,n sector on the ✓1 � ✓3 plane derived from the g ! 1 calculations, and (b) a zoomed
in version with the expected RG flow. The phase diagram is similar for all g values, the flow in the ✓1 � ✓3 plane is
everywhere complemented with a flow towards g! 1. The transition lines correspond to a conserved parity symmetry,
which is spontaneously broken on the solid, but not dotted, lines. At the intersection of the lines, at (2⇡/3,�2⇡/3) a Z3
symmetry is also present.

we only discuss the phase diagram for the 0  ✓1,�✓3 < 2⇡ region, referred to as reduced phase
diagram in the following.

There are three high symmetry points in the reduced phase diagram defined by ✓1 = �✓3 =
2m⇡/3(mod 2⇡) with m = 0, 1, 2. At these points the action has a Z3 symmetry, which can be
understood as a cyclic permutation of the three fields (see Sec. 5.4). Additionally, three parity
symmetries are also present, each corresponding to the exchange of two out of the three fields
(complemented by an invertion of the space coordinates as explained in Sec. 5.5). At each high
symmetry point three special lines meet, each corresponding to the conservation of one of the
three parity symmetries. Consider for example the ✓1 = �✓3 = 2⇡/3 point, and the parity
symmetric lines meeting there, illustrated on Figs. 5, 6. The ✓1 = �✓3 line is invariant under
the R13 parity transformation defined in Sec. 5.5, which exchanges the fields �1 and �3. On the
other two lines (�✓3 = ⇡ � ✓1/2 and �✓3 = 2⇡ � 2✓1) the parities exchanging fields ~�1 $ ~�2
and ~phi2 $ ~�3 are conserved, respectively3. In one direction the parity symmetric lines are
also transition lines between di↵erent Rm,n sectors until they reach another high symmetry point
equivalent to ✓1 = �✓3 = 4⇡/3 (mod 2⇡) (solid lines in Fig. 5b), while in the other direction they
run inside a sector towards a high symmetric point equivalent to ✓1 = �✓3 = 0 (dashed lines in
Fig. 5b). A general point in the phase diagram transforms under the Z3 symmetry as

(✓1Q1 + ✓3Q3) !
Z3

(✓1Q2 + ✓3Q1) = (✓3 � ✓1)Q1 � ✓1Q3

(✓1Q1 + ✓3Q3) !
Z�1

3

(✓1Q3 + ✓3Q2) = �✓3Q1 + (✓1 � ✓3)Q3
(7.15)

3 Expressing the topological term with Q1 and Q2 along �✓3 = ⇡ � ✓1/2 one finds that ✓1 = �✓2 (mod 2⇡), hence the
R12 parity is conserved, while using Q2 and Q3 along �✓3 = 2⇡ � 2✓1 one finds that ✓2 = �✓3 (mod 2⇡), hence the R23
parity is conserved.
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Figure 9: Extrapolation of the inverse of the correlation length from Monte Carlo calculations of imaginary ✓ angles
along the ✓1 = �✓3 line, for a system of 192 ⇥ 192 sites. The inset shows the extrapolated value of the mass gap at
✓ = 2⇡/3.

On the other hand, shifting ✓1, ✓3 slightly away from ±2⇡/3 corresponds to breaking the Z3
symmetry. We expect this symmetry to correspond to g! ei2⇡/3g in the SU(3)1 WZW model, the
symmetry which forbids a trg term in the e↵ective Hamiltonian. When this symmetry is broken
we expect a relevant perturbation / trg. This operator has dimension d = 2/3 so we expect the
gap to scale as |✓ � 2⇡/3|1/(2�d) = |✓ � 2⇡/3|3/4, up to log corrections coming from the marginal
operator JA

R JA
L . If the Z3 symmmetry is broken, but a parity symmetry is preserved, along the

✓1 = �✓3 = ✓ line for example, we believe that the extra term should have the form trg + trg†
since g ! g† corresponds to the parity transformation. In this case the extra term in the SU(3)1
WZW model should have the form / (✓ � 2⇡/3)(trg+ trg†). If we write the diagonal elements of
g as ei↵ j for ↵ = 1, 2, 3 with

P

j ↵ j ⌘ 0(mod 2⇡), the extra term takes the form

V / (✓ � 2⇡/3)
X

j

cos↵ j. (8.2)

For ✓ < 2⇡/3, this term has a unique minimum with ↵ j = 0. But if ✓ > 2⇡/3, there are two
minima, with ↵ j = 2⇡/3 or ↵ j = �2⇡/3 . As discussed in Sec. 7.1, the two cases correspond
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What we learned

!47" for N=6 as well, where we were able to obtain the full
spectrum. We obtained five zero-energy ground states, two at
momentum k=0 and one each at k=2,3 ,4. One of the
ground states at k=0 and the k=2,4 ground states constitute
the space of momentum eigenstates obtained by Fourier
transform of the space spanned by the three 6 VBS states
#Eq. !45". The remaining two states at k=0,3 are the mo-
mentum eigenstates formed by superposition of the state

❝❝ ❝❝❝ ❝ ❝ ❝ ❝ ❝❝ ❝ ❝ ❝ ❝ ❝✚ ✚ ✚

i = 6 1 2 3 4 5 6 1 !49"

and the same translated by one lattice spacing. It is readily
seen that these two states are likewise zero-energy eigen-
states of Eq. !47" for N=6 sites. The crucial difference, how-
ever, is that the 6 VBS states #Eq. !45"$ remain zero-energy
eigenstates of Eq. !47" for all N’s divisible by 3, while the
equivalent of Eq. !49" for larger N do not. We hence attribute
these two additional ground states for N=6 to the finite size
and conclude that the three states #Eq. !45"$ are the only
zero-energy ground states of Eq. !47" for general N’s divis-
ible by 3.

Excitations of the 6 VBS model are given by domain
walls between two of the ground states #Eq. !45"$. As in the
trimer model, two distinct types of domain walls exist, which
transform according to representations 3̄ and 3:

❝ ❝ ❝ " " ❝ ❝ ❝ ❝ ❝ ❝ " ❝ ❝ ❝❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝
Ψ1 ·Ψ2 Ψ2 ·Ψ3 Ψ1 ·Ψ2

3̄ 3

!50"
It is not clear which excitation has the lower energy, and it
appears likely that both of them are stable against decay. Let
us first look at the representation. 3̄ excitation. The four-site
Hamiltonian #Eq. !48"$ annihilates the state for all i’s except
the four sites in the dashed box in Eq. !50", which contains
the representations

3̄ ! 3̄ ! 3̄ ! 3 ! 3

= 6 · 3̄ " 5 · 6 " 6 · 15 " 15! " 2 · 24 " 42,

i.e., the representations 15!= !0,4", 24= !3,1" twice, and 42̄
= !2,3" with Casimirs 28

3 , 25
3 , and 34

3 , respectively, in addition
to representations annihilated by Hi. For the representation 3
excitation sketched on the right in Eq. !50", there are two sets
of four neighboring sites not annihilated by Hi as indicated
by the dashed and the dotted box. Each set contains the rep-
resentations

3̄ ! 3 ! 3 ! 3 = 3 · 3̄ " 3 · 6 " 2 · 15 " 24,

i.e., only the representation 24 in addition to representations
annihilated by Hi. For our parent Hamiltonian #Eq. !47"$, it
hence may well be that the representation 3 anticoloron has
the lower energy, but it is all but clear that the representation

3̄ has sufficiently higher energy to decay. For general repre-
sentation 6 spin chains, it may depend on the specifics of the
model which excitation is lower in energy and whether the
conjugate excitation decays or not.

Since the excitations of the representation 6 VBS chain
are merely domain walls between different ground states,
there is no confinement between them. We expect the generic
antiferromagnetic representation 6 chain to be gapless, even
though the model we proposed here has a gap associated
with the energy cost of creating a domain wall.

B. Representation 10 VBS

Let us now turn to the 10 VBS chain, which is a direct
generalization of the AKLT chain to SU!3". By combining
the three different trimer states #Eq. !43"$ for !=1, 2, and 3
symmetrically,

%"10VBS& = #1#b†,r†,g†$ · #2#b†,r†,g†$ · #3#b†,r†,g†$%0&

= '
i
( )

!$,%,&"='!b,r,g"
sgn!'"$i

†%i+1
† &i+2

† *%0& , !51"

we automatically project out the representation 10 in the de-
composition 3 ! 3 ! 3=1 " 2·8 " 10 generated on each lat-
tice site by the three trimer chains. This construction yields a
unique state, as illustrated by

❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝
projection onto 10 = (3, 0)

one site

!52"

In order to construct a parent Hamiltonian, note first that the
total spin on two !neighboring" sites of a representation 10
chain is given by

10 ! 10 = 10 " 27 " 28 " 35. !53"

On the other hand, the total spin of two neighboring sites for
the 10 VBS state can contain only the representations

3̄ ! 3̄ ! 3 ! 3 = 2 · 1 " 4 · 8 " 10 " 10 " 27, !54"

as can be seen easily from the dashed box in the diagram
above. !Note that this result is independent of how many
sites we include in the dashed box." After the projection onto
representation 10 on each lattice site, we find that only rep-
resentations 10= !0,3" and 27= !2,2" occur for the total spin
of two neighboring sites for the 10 VBS state. With the Ca-
simirs CSU!3"

2 !0,3"=6 and CSU!3"
2 !2,2"=8, we obtain the par-

ent Hamiltonian
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Figure 5: (a)The di↵erent Rm,n sector on the ✓1 � ✓3 plane derived from the g ! 1 calculations, and (b) a zoomed
in version with the expected RG flow. The phase diagram is similar for all g values, the flow in the ✓1 � ✓3 plane is
everywhere complemented with a flow towards g! 1. The transition lines correspond to a conserved parity symmetry,
which is spontaneously broken on the solid, but not dotted, lines. At the intersection of the lines, at (2⇡/3,�2⇡/3) a Z3
symmetry is also present.

we only discuss the phase diagram for the 0  ✓1,�✓3 < 2⇡ region, referred to as reduced phase
diagram in the following.

There are three high symmetry points in the reduced phase diagram defined by ✓1 = �✓3 =
2m⇡/3(mod 2⇡) with m = 0, 1, 2. At these points the action has a Z3 symmetry, which can be
understood as a cyclic permutation of the three fields (see Sec. 5.4). Additionally, three parity
symmetries are also present, each corresponding to the exchange of two out of the three fields
(complemented by an invertion of the space coordinates as explained in Sec. 5.5). At each high
symmetry point three special lines meet, each corresponding to the conservation of one of the
three parity symmetries. Consider for example the ✓1 = �✓3 = 2⇡/3 point, and the parity
symmetric lines meeting there, illustrated on Figs. 5, 6. The ✓1 = �✓3 line is invariant under
the R13 parity transformation defined in Sec. 5.5, which exchanges the fields �1 and �3. On the
other two lines (�✓3 = ⇡ � ✓1/2 and �✓3 = 2⇡ � 2✓1) the parities exchanging fields ~�1 $ ~�2
and ~phi2 $ ~�3 are conserved, respectively3. In one direction the parity symmetric lines are
also transition lines between di↵erent Rm,n sectors until they reach another high symmetry point
equivalent to ✓1 = �✓3 = 4⇡/3 (mod 2⇡) (solid lines in Fig. 5b), while in the other direction they
run inside a sector towards a high symmetric point equivalent to ✓1 = �✓3 = 0 (dashed lines in
Fig. 5b). A general point in the phase diagram transforms under the Z3 symmetry as

(✓1Q1 + ✓3Q3) !
Z3

(✓1Q2 + ✓3Q1) = (✓3 � ✓1)Q1 � ✓1Q3

(✓1Q1 + ✓3Q3) !
Z�1

3

(✓1Q3 + ✓3Q2) = �✓3Q1 + (✓1 � ✓3)Q3
(7.15)

3 Expressing the topological term with Q1 and Q2 along �✓3 = ⇡ � ✓1/2 one finds that ✓1 = �✓2 (mod 2⇡), hence the
R12 parity is conserved, while using Q2 and Q3 along �✓3 = 2⇡ � 2✓1 one finds that ✓2 = �✓3 (mod 2⇡), hence the R23
parity is conserved.
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p=3m+2
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sition along the ✓ = ⇡ line is controlled by the marginal, symmetry preserving operator ~JR · ~JL
where ~JR/L are the right and left-moving current operators, with coupling constant / g� gc. One
sign of the coupling is marginally irrelevant and the other marginally relevant, leading to the
transition at g = gc and the gap is exponentially small in g � gc. Moving ✓ away from ⇡ corre-
sponds to adding a term (✓�⇡)trg to the e↵ective Hamiltonian, where g is the primary field of the
WZW model, an SU(2) matrix field of dimension d = 1/2. Thus the gap is expected to scale as
|✓ � ⇡|1/(2�d) = |✓ � ⇡|2/3, up to log corrections coming from the marginal operator. Our predicted
phase diagram for the SU(3) �-model in the special case when the two topological angles are
equal and opposite is sketched in Fig. 1b. We identify the critical theory at ✓ = ±2⇡/3 with the
SU(3)1 WZW model. We again expect a gapped phase for g > gc and for non-zero ✓ ⌥ 2⇡/3 and
can again predict the gap scaling. A more general phase diagram in which the two topological
angles can vary independently will be discussed in Sec. 7.
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Figure 1: (a) The renormalization group flow diagram of the O(3) nonlinear �-model, as proposed in Ref. [45]. At ✓ = ⇡
the system undergoes a phase transition from a gapless phase at g < gc into a gapped phase with a spontaneously broken
Z2 symmetry at g > gc. For ✓ , ⇡ the system is gapped with a unique ground state for all values of g. (b) Proposed
renormalization group flow diagram for the SU(3)/[U(1) ⇥ U(1)] nonlinear �-model in the special case where the two
topological angles are equal and opposite. At ✓ = 2⇡/3 and 4⇡/3 the system undergoes a phase transition from a gapless
phase at g < gc into a gapped phase with a spontaneously broken Z3 symmetry at g > gc. For 2⇡/3 < ✓ < 4⇡/3 the
system is gapped with a spontaneously broken Z2 symmetry, while for ✓ < 2⇡/3 and ✓ > 4⇡/3 the system is gapped with
a unique ground state for all values of g.

There are three pieces of rigorous evidence for the SU(2) phase diagram. One is the Bethe
Ansatz solution for s = 1/2 [50], giving the expected gapless ground state with no broken
symmetries. Another is provided by the Lieb-Schultz-Mattis-A✏eck (LSMA) theorem [51, 52]
which proves that the model is either gapless or has a ground state degeneracy for half-integer
(but not integer) spin. The third is provided by the A✏eck-Kennedy-Lieb-Tasaki (AKLT) models
for integer spin [53]. The exact ground states were found for these models and seen to be gapped
with no broken symmetries. We observe that these results carry over simply to SU(3). The p = 1
case is the Sutherland model, solvable by Bethe ansatz [54], and known to have a gapless low en-
ergy theory corresponding to SU(3)1 [55–57]. The LSMA theorem was proven for general SU(n)
and implies, for SU(3), either a gapless ground state or a ground state degeneracy for p , 3m
[52]. The AKLT construction was also generalized to di↵erent SU(n) spin chains [58–61], in
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