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Machine learning galvanizing industry & science

Language Processing

biasing collective force

Materials Science / Chemistry



Google rebranded a "machine learning first company"”

The Great A.I. Awakening

How Google used artificial intelligence to transform Google

Translate, one of its more popular services — and how machine
learning is poised to reinvent computing itself.

TECHNOLOGY

Why A.IL. Researchers at Google Got Desks Next to the Boss
By CADE METZ FEB. 19, 2018 o o ° D

Neural nets replace linguistic
approach to Google Translate

arXiv.org > quant-ph > arXiv:1802.06002

Quantum Physics

Classification with Quantum Neural Networks on Near Term Processors

Edward Farhi, Hartmut Neven
(Submitted on 16 Feb 2018)

Quantum machine learning



Examples of Machine Learning



Image recognition

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca

2012 paper that launched recent deep learning craze (20k citations)
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ImageNet:

e 1.2 million training
images (150k test)

e 1000 categories
® 15% neural net error

o 26% next best error



Sound prediction

Visually Indicated Sounds

Andrew Owens'
Antonio Torralba'

MIT

Phillip Isola®! Josh McDermott!
Edward H. Adelson! ~ William T. Freeman'*
U.C. Berkeley 3Google Research
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Image Generation

man man woman
with glasses without glasses without glasses

woman with glasses

UNSUPERVISED REPRESENTATION LEARNING
WITH DEEP CONVOLUTIONAL
GENERATIVE ADVERSARIAL NETWORKS

Alec Radford & Luke Metz
indico Research

Boston, MA

{alec, luke}@indico.io

Soumith Chintala
Facebook Al Research
New York, NY
soumith@fb.com



Success at tasks previously thought impossible
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What is machine learning?

Data driven problem solving

Any system that, given more data, performs
increasingly better at some task

Framework / philosophy, not single method
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Software 2.0

Andrej Karpathy
A Director of Al at Tesla. Previously Research Scientist at OpenAl and PhD student at Stanford. | like
w to train deep neural nets on large datasets.

Nov 11,2017 - 7 min read
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https://medium.com/@karpathy/software-2-0-a64152b37c35



Basics of Machine Learning



Example of a Dataset — Fashion MNIST
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Anatomy of a Dataset

training set test set



Anatomy of a Dataset

training set test set

validation set




Types of learning tasks:

a priori knowledge

e Supervised learning (labeled data)

* Unsupervised learning (unlabeled data)

e Reinforcement learning (‘reward' data) low



Supervised Learning

Given labeled training data (labels A and B)

Find decision function f(x)

f(x) >0 x € A

f(x) <0 x € B

Example: identify photos of alligators and bears




Supervised Learning
Typical strategy:

given training set {x,,y;}, minimize cost function

1

- N2 _ r—|—1 X cA
C = N Z(f(xj) Ys) Yj 1_1 x; € B
J

by varying adjustable params of f

Cost function measures distance of trial function f(x;)
from idealized "indicator" function y;



Unsupervised Learning

Given unlabeled training data {x,}
*Find function f(x) such that f(x,) ~ p(x;)
 Find function f(x) such that ‘f(Xj)|2 ~ p(X;)

* Find data clusters and which data belongs to
each cluster

* Discover reduced representations of data
for other learning tasks (e.g. supervised)



Unsupervised Learning

Typical approach for inferring p(x)

Given data {x; }, maximize log likelihood
L= logp(x;)
J
by varying p

Can view log likelihood as distance measure between

p(x) and pdata(X) = Z 0(x — X;)
("Kullback-Leibler divergénce")



Reinforcement learning

Many flavors, but have common features

e environment & agent with states s, ,ﬁm
* agent actions a, ,f.tm\,

* reward R(sy) for being in state s, \Store_ @

Agent

Goal: determine a policy P(s,)—an ,
best actions to maximize reward in fewest steps

hidden layer

/ probability of
XK moving UP
»xv’:‘%‘A
S50

S
R
oo,
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raw pixel

Example: learning "Pong"
by observing screen state




General Philosophy of Machine Learning
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General Philosophy of Machine Learning

e Solution to problem just some function y(x)
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e Solution to problem just some function y(x)

» Parameterize very flexible functions f(x)
(prefer convenient over "correct")




General Philosophy of Machine Learning

e Solution to problem just some function y(x)

» Parameterize very flexible functions f(x)
(prefer convenient over "correct")

« Of all f that come closest to ¥ for training data,
prefer the simplest f




Bias-Variance Tradeoff



Bias-Variance Tradeoff

y(x) — ideal solution function

all functions
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y(x) — ideal solution function

all functions

hypothesis space




Bias-Variance Tradeoff

y(x) — ideal solution function

f*(x) — best possible hypothesis

all functions

hypothesis space




Bias-Variance Tradeoff

y(x) — ideal solution function
f¥(x) — best possible hypothesis
fp(x) — best hypothesis given training data

all functions

hypothesis space

o f7(x)

@ fD (X)
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Bias-Variance Tradeoff

y(x) — ideal solution function
f¥(x) — best possible hypothesis
fp(x) — best hypothesis given training data

all functions

hypothesis space

° f7(x)

'S' variance

@ fD (X)




Bias-Variance Tradeoff

Two extreme situations

y(‘X)

low variance: will generalize!

high bias: poor results

low bias: good result possible

low variance: might overfit




Model Architectures



Let's discuss the 3 most used types of models
(increasing complexity)

*The linear model
* Kernel learning / support vector machines

e Neural networks



The linear model
f(X) — W - X + W()
Where W and W/, are the weights to be learned

Can be surprisingly powertul, and a usetul
starting point

0.15 T T | I I
\ : k=n/4, exact
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time t



Kernel learning

Want f(x) to separate classes, say

Linear c{assifi.er. f(x) =W -x
may be insufficient




Kernel learning

Apply non-linear "feature map" x — ®(x)

/=




Kernel learning

Apply non-linear "feature map" x — ®(x)

A

NFZ/




Kernel learning

Apply non-linear "feature map" x — ®(x)

it

Decision function f(x) =W - ®(x)

A




Kernel learning

JEZ

Decision function f(x) =W - ®(x)

Linear classifier in feature space



Kernel learning

Example of feature map

X = (mlv L2, 333)

q)(X) — (1, L1, L2, X3, L1, L1X3, .213'2373)

x is "lifted" to feature space



Kernel learning

Technical notes:



Kernel learning

Technical notes:

e Also called "support vector machine" when using a
particular choice of cost function

e Name "kernel learning" comes from idea that o (x)
may be too high dimensional, yet K;; = ®(x;) - ®(x;)
may be efficiently computable, enough to optimize

* Very generally, optimal weights have the form
W=> a;®(x)
J

a result known as the "representer theorem"



Kernel learning

Kernel learning still popular among academics & for
certain applications (e.g. life sciences)

But "kernelization" approach scales as N3 where N
is size of training set — very costly!

Thus kernel methods not popular with engineers

Tomorrow: learning kernel models with tensor
network weights



Neural networks

Current favorite of M.L. engineers

output

Often notated diagrammatically
(not a tensor diagram!)



Neural networks

Actually very simple: compute a function f(x) as
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e Multiply input x by rectangular "weight" matrix W,




Neural networks

Actually very simple: compute a function f(x) as
e Multiply input x by rectangular "weight" matrix W,

e Point-wise evaluate components of x’ = WW;x by
some non-linear function [e.g. o(z}) = 1/(1 — e”i %) ]




Neural networks

Actually very simple: compute a function f(x) as
e Multiply input x by rectangular "weight" matrix W,

e Point-wise evaluate components of x’ = WW;x by
some non-linear function [e.g. o(z}) =1/(1 — €% 7") ]

e Multiply result by second weight matrix W5
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Neural networks

Actually very simple: compute a function f(x) as
e Multiply input x by rectangular "weight" matrix W,

e Point-wise evaluate components of x’ = WW;x by
some non-linear function [e.g. o(z}) = 1/(1 — e”i %) ]

e Multiply result by second weight matrix W5

* Plug new components into non-linearities, etc.

Wl W2
o
L3 —




Neural networks

Additional facts:

 Non-linearities o(x) called "neurons”

® Other neurons include tanh and RelLU J

* Neural net with more than one weight matrix is "deep”

e Number of neurons is arbitrary, but with enough can
represent any function

-371- Wl W2
2 %O/\__;O
L3




Neural networks

Many successful neural nets include "convolutional layers”
These have sparser weight layers with few parameters.

\ 55
27
O 13
1
- - 3
11 \ t 3 - =1 |13
224 27 3 g

Stride\| ¢ | Pooling pooling

Recent upsurge of neural nets since 2012 (ImageNet paper)

"Deep learning" often associated with 3 researchers:

j a
Yann LeCun (Facebook)  Geoff Hinton (Vector/Google) Yoshua Bengio (Montreal)



Other model types

Graphical models
very similar to tensor networks, except
- always interpreted as probability
- non-negative parameters only
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Graphical models
very similar to tensor networks, except
- always interpreted as probability
- non-negative parameters only

Boltzmann machines
identical to random-bond classical Ising (T=1)
Jij values learnable parameters
generate data by sampling subset of spins



Other model types

Graphical models
very similar to tensor networks, except
- always interpreted as probability
- non-negative parameters only

Boltzmann machines

identical to random-bond classical Ising (T=1)
Jij values learnable parameters
generate data by sampling subset of spins

Decision trees

make decisions about input by taking
forking paths



Recent Developments



GANs

Generative Adversarial Networks
(Goodfellow et al. arxiv:1406.2661)

Train two models simultaneously

training data ————»

Generator produces superior results compared to other methods

discriminator

Radford et al., arxiv:1511.06434




Progress in Understanding Generalization

Neural nets empirically generalize even when very expressive — why?

energy ———
local entropy ———
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Baldassi et al. arxiv:1605.06444

Reason may be training finds broad local minima
versus narrow global minimum

Intuitively broader minima (w/ more neighbors) are more "robust"
to changes in data



FALKON Algorithm

Kernel methods have strong theoretical guarantees,
but scale worse than neural nets (N3 training time, N> memory)

Algorithm 1 MATLAB code for FALKON. It requires O(nMt + M3) in time and O(M?) in
memory. See Sect. A and Alg. 2 in the appendixes for the complete algorithm.

Input: Dataset X = (x{)1~; € R™P { = (yi)I~, € R", centers C = (ﬁj)).’\il € RMxD|
KernelMatrix computing the kernel matrix given two sets of points, regularization parameter A,
number of iterations t.

Output: Nystrom coefficients o.

function alpha = FALKON(X, C, Y, KernelMatrix, lambda, t)
n = size(X,1); M = size(C,1); KMM = KernelMatrix(C,C);
T = chol(KMM + eps*Mxeye(M));
A = chol(T*T’/M + lambdaxeye(M));

function w = KnM_times_vector(u, v)
w = zeros(M,1); ms = ceil(linspace(0, n, ceil(n/M)+1));
for i=1:ceil(n/M)
Kr = KernelMatrix( X(ms(i)+1:ms(i+1),:), C );
w=uw+ Ke’x(Kr*u + v(ims(i)+1:ms(i+1),:));
end
end

BHB = @(u) A’\(T’\(KnM_times_vector(T\(A\u), zeros(n,1))/n) + lambdax(A\u));
r = A’\(T’\KnM_times_vector(zeros(M,1), Y/n));
alpha = T\(A\conjgrad(BHB, r, t));

end

Rudi, Carratino, Rosasco, arxiv:1705.10958

Through combination of subsampling data & preconditioned
conj gradient, reduce to Ny/N time, N memory

Results competitive with best neural net, can do ImageNet!



Selected Physics Applications



Phase recognition

phasebook phasebook

@ S5
K

Stripy +x String—net condensed st
Friends: Friends:
Lev Landau Michael Levin
Werner Heisenberg Xiao-Gang Wen

View Monte Carlo configurations as input data,
train model (supervised or unsupervised) to distinguish phases

Some relevant pPapers.

e Carrasquilla, Melko, Nature Phys. (2017) [supervised]

e Wang, PRB 94, 195105 [unsupervised]

e Broecker, Carrasquilla, Melko, Trebst Scientific Reports 7, 8823 (2017) [from aux. field QMC]
e Broecker, Assaad, Trebst arxiv:1707.00663 [unsupervised]

e ... and quite a few others ...



Learning to Control Quantum Systems

How to apply time-dependent field to quantum system
and reach some target state?

Treat fidelity as "reward" and train reinforcement learning agent
to work out best protocol

SEA=1(+=0.00)=0.00 "F,(t=0.00) =0.200

€1

.....

reward:
cpisode 8819 1) F(T)=0.99918

Bukov, Day, et al., arxiv:1705.00565



Many Other Creative Ideas

Learning quantum Monte Carlo updates
J. Liu, Y. Qi, et al. arxiv:1610.03137

L. Huang, L. Wang, arxiv:1610.02746
L. Wang, arxiv:1702.08586

H. Shen, J. Liu, L. Fu, arxiv:1801.01127
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Neural Net Representations of Wavefunctions
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Many Other Creative Ideas

Learning quantum Monte Carlo updates
J. Liu, Y. Qi, et al. arxiv:1610.03137

L. Huang, L. Wang, arxiv:1610.02746
L. Wang, arxiv:1702.08586

H. Shen, J. Liu, L. Fu, arxiv:1801.01127

Neural Net Representations of Wavefunctions

G. Carleo, M. Troyer, arxiv:1606.02318

D. Deng, X. Li, S. Das Sarma, arxiv:1609.09060, arxiv: 1701.04844
S. Clark, arxiv:1710.03545

Learning Density Functionals

J. Snyder, et al., arxiv:1112.5441
F. Brockherde, et al., arxiv:1609.02815
L. Li, et al., arxiv:1609.03705



Machine Learning Research Culture

One sub-community is academic: papers often
involve theorems

Another community is engineering-oriented: papers
focus on results, developments are intuitive/faddish

Conference talks/posters valued above journal articles

Strong industry ties: Google, Microsoft, etc. have
booths at conferences, grad students poached often



Recommended Resources

* Online book by Michael Nielsen (quant. computing author)
http://neuralnetworksanddeeplearning.com

e Caltech Lectures by Yaser Abu-Mostafa CS 156
Available on YouTube. Companion book "Learning from Data"

e Upcoming M.L. review article by Pankaj Mehta, David Schwab
aimed at physicists

 TensorFlow examples (MNIST demo)

* Blogs of Chris Olah and Andrej Karpathy


http://neuralnetworksanddeeplearning.com

