Signatures of the Many-body Localized Regime in Two Dimensions

Thorsten B. Wahl

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

Benasque, 28 February 2018

Marie Skłodowska-Curie Actions

▲□▶ ▲圖▶ ▲콜▶ ▲콜▶ ― 콜

SQC

T. B. Wahl, A. Pal, and S. H. Simon, arXiv:1711.02678

MBL in 1D

Quantum circuits for MBL

MBL in 2D

Numerical Results

Thermalization in classical systems

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

$$ert \psi(t)
angle = e^{iHt} ert \psi(0)
angle$$

 $H = H_A + H_B + H_{AB}$

$$ho_{\mathcal{A}} \propto e^{-eta H_{\mathcal{A}}}$$

Eigenstate Thermalization Hypothesis (ETH)

J. M. Deutsch, Phys. Rev. A. **43**, 2046 (1991) M. Srednicki, Phys. Rev. E **50**, 888 (1994)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

MBL in 1D

Quantum circuits for MBL

MBL in 2D

Numerical Results

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Many-body localization in one dimension

Sufficiently strong disorder in 1D \Rightarrow ergodicity breaking:

Many-body localization (MBL)

D. Basko, I. Aleiner, and B. Altshuler, Ann. Phys. 321, 1126 (2006).

I. Gornyi, A. Mirlin, and D. Polyakov, Phys. Rev. Lett. 95, 206603 (2005).

Rigorous proof: J. Z. Imbrie, J. Stat. Phys. 163, 998 (2016)

MBL in 1D

Quantum circuits for MBL

MBL in 2D

Numerical Results

Many-body localization in one dimension

Sufficiently strong disorder in 1D \Rightarrow ergodicity breaking:

taken from: M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Science **349**, 842 (2015) $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle$

MBL in 1D

Quantum circuits for MBL

MBL in 2D

Numerical Results

Many-body localization in higher dimensions?

The ralizing behavior in higher dimensions: $\rho_A \xrightarrow[t \to \infty]{} e^{-\beta H_A}$

W. De Roeck, J. Z. Imbrie, Phil. Trans. R. Soc. A 375, 20160422 (2017).

But:

taken from: J.-y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, Science 352, 1547 (2016).

MBL in 1D

Quantum circuits for MBL

MBL in 2D

Numerical Results

Many-body localization in higher dimensions?

The ralizing behavior in higher dimensions: $\rho_A \xrightarrow[t \to \infty]{} e^{-\beta H_A}$

W. De Roeck, J. Z. Imbrie, Phil. Trans. R. Soc. A 375, 20160422 (2017).

But:

taken from: J.-y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, Science 352, 1547 (2016).

Motivation	MBL in 1D	Quantum circuits for MBL	MBL in 2D	Numerical Results
Table of	content			

2 Many-body localization in one dimension

- 3 Quantum circuits for MBL
- 4 Many-body localized regime in two dimensions

5 Numerical Results

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Motivation	MBL in 1D	Quantum circuits for MBL	MBL in 2D	Numerical Results
Table of	content			

2 Many-body localization in one dimension

3 Quantum circuits for MBL

4 Many-body localized regime in two dimensions

5 Numerical Results

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Motivation MBL in 1D Quantum circuits for MBL MBL in 2D Numerical Results
Many-body localization (MBL)

Disordered Heisenberg antiferromagnet: MBL for $W > W_c \approx 3.5$

$$H = \sum_{i=1}^{N} (J \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + h_{i} S_{i}^{z}), \quad h_{i} \in [-W, W]$$

Local integrals of motion (LIOM):

$$\begin{aligned} \tau^z_i &= U\sigma^z_i U^{\dagger} \\ [H,\tau^z_i] &= [\tau^z_i,\tau^z_j] = 0 \end{aligned}$$

M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett. 110, 260601 (2013)

D. A. Huse, and V. Oganesyan, Phys. Rev. B 90, 174202 (2014)

Motivation MBL in 1D Quantum circuits for MBL MBL in 2D Numerical Results Many-body localization (MBL)

Disordered Heisenberg antiferromagnet: MBL for $W > W_c \approx 3.5$

$$H = \sum_{i=1}^{N} (J \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + h_{i} S_{i}^{z}), \quad h_{i} \in [-W, W]$$

Local integrals of motion (LIOM):

$$au_i^z = U\sigma_i^z U^\dagger$$

 $[H, au_i^z] = [au_i^z, au_j^z] = 0$

$$H|\psi_{i_1\dots i_N}\rangle = E_{i_1\dots i_N}|\psi_{i_1\dots i_N}\rangle$$

$$\begin{split} \tau_1^z |\psi_{\uparrow i_2...i_N}\rangle &= |\psi_{\uparrow i_2...i_N}\rangle \\ \tau_1^z |\psi_{\downarrow i_2...i_N}\rangle &= -|\psi_{\downarrow i_2...i_N}\rangle \ \, \text{etc.} \end{split}$$

M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett. 110, 260601 (2013)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

 $\rho_{A} = \operatorname{tr}_{\overline{A}}(|\psi_{i_{1}...i_{N}}\rangle\langle\psi_{i_{1}...i_{N}}|), \text{ entanglement entropy } S(\rho_{A}) \leq \operatorname{const.}$

M. Friesdorf, A. H. Werner, W. Brown, V. B. Scholz, and J. Eisert, Phys. Rev. Lett. 114, 170505 (2015).

 $\rho_A = \operatorname{tr}_{\overline{A}}(|\psi_{i_1...i_N}\rangle\langle\psi_{i_1...i_N}|), \quad \text{entanglement entropy } S(\rho_A) \leq \operatorname{const.}$

M. Friesdorf, A. H. Werner, W. Brown, V. B. Scholz, and J. Eisert, Phys. Rev. Lett. 114, 170505 (2015).

Approximation by Tensor Network States

• DMRG-X

V. Khemani, F. Pollmann, and S. L. Sondhi, Phys. Rev. Lett. 116, 247204 (2016)

spectral tensor networks

F. Pollmann, V. Khemani, J. I. Cirac, and S. L. Sondhi, Phys. Rev. B 94, 041116(R) (2016)

T. B. Wahl, A. Pal, and S. H. Simon, Phys. Rev. X 7, 021018 (2017)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B 91, 081103 (2015)

However:

W. De Roeck, F. Huveneers, M. Müller, and M. Schiulaz, Phys. Rev. B 93, 014203 (2016)

Motivation	MBL in 1D	Quantum circuits for MBL	MBL in 2D	Numerical Results
Table of	content			

2 Many-body localization in one dimension

3 Quantum circuits for MBL

4 Many-body localized regime in two dimensions

5 Numerical Results

Goal

 $ilde{U}H ilde{U}^{\dagger}pprox\,$ diagonal matrix

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Goal

 ${ ilde U} H { ilde U}^\dagger pprox\,$ diagonal matrix

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Goal

 ${ ilde U} H { ilde U}^\dagger pprox \,$ diagonal matrix

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

$$\tilde{\tau}_i^z = \tilde{U}\sigma_i^z \tilde{U}^{\dagger} \quad \Rightarrow \quad [\tilde{\tau}_i^z, \tilde{\tau}_i^z] = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

MBL in 1D

Quantum circuits for MBL

MBL in 2D

Numerical Results

Approximate local integrals of motion

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

MBL in 1D

Quantum circuits for MBL

MBL in 2D

Numerical Results

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Approximate local integrals of motion

$$\tilde{\tau}^{z}_{i} = \tilde{U}\sigma^{z}_{i}\tilde{U}^{\dagger} =$$

Motivation	MBL in 1D	Quantum circuits for MBL	MBL in 2D	Numerical Results
Figure o	f merit			

Minimize $[H, \tilde{\tau}_i^z]$:

$$f = \frac{1}{2^N} \sum_{i=1}^N \operatorname{tr}\left([H, \tilde{\tau}_i^z] [H, \tilde{\tau}_i^z]^\dagger \right) = \sum_i f_i$$

Motivation	MBL in 1D	Quantum circuits for MBL	MBL in 2D	Numerical Results
Figure of	merit			

Minimize $[H, \tilde{\tau}_i^z]$:

$$f = \frac{1}{2^N} \sum_{i=1}^N \operatorname{tr}\left([H, \tilde{\tau}_i^z] [H, \tilde{\tau}_i^z]^\dagger \right) = \sum_i f_i$$

Heisenberg model, N = 72:

Motivation	MBL in 1D	Quantum circuits for MBL	MBL in 2D	Numerical Results

Full MBL regime

- local integrals of motion: τ_i^z
- all eigenstates fulfill the area law \rightarrow spectral tensor networks: error $\propto exp\left(-\frac{\ell}{\xi_l}\right)$

<=> <=> <=> <=> <<<>><</><</></

Motivation	MBL in 1D	Quantum circuits for MBL	MBL in 2D	Numerical Results
Table of	content			

2 Many-body localization in one dimension

3 Quantum circuits for MBL

4 Many-body localized regime in two dimensions

5 Numerical Results

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

 Motivation
 MBL in 1D
 Quantum circuits for MBL
 MBL in 2D
 Numerical Results

 Delocalization in two dimensions
 MBL in 2D
 Numerical Results

For any set of local τ_i^z : $[H, \tau_i^z] \neq 0$ for some *i*

However: $\|[H, \tau_i^z]\|_{\text{op}} \ll 1$

Relaxation time: $\tau \geq \frac{1}{\max_i ||[H, \tau_i^z]||_{\text{op}}} \gg 1$

A. Chandran, A. Pal, C.R. Laumann, and A. Scardicchio, Phys. Rev. B 94, 144203 (2016)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

MBL in 1D

Quantum circuits for MBL

MBL in 2D

Numerical Results

2D quantum circuits

 Motivation
 MBL in 1D
 Quantum circuits for MBL
 MBL in 2D
 Numerical Results

 Approximate local integrals of motion in 2D

 </

$$ilde{ au}_i^z = ilde{U}\sigma_i^z ilde{U}^\dagger =$$

 Motivation
 MBL in 1D
 Quantum circuits for MBL
 MBL in 2D
 Numerical Results

 Approximate
 local integrals of motion in 2D

$$\tilde{\tau}_i^z = \tilde{U}\sigma_i^z \tilde{U}^\dagger =$$

$$\sigma^z =$$

 Motivation
 MBL in 1D
 Quantum circuits for MBL
 MBL in 2D
 Numerical Results

 Approximate
 local
 integrals
 of
 motion
 in 2D
 Numerical Results

$$ilde{ au}_i^z = ilde{U}\sigma_i^z ilde{U}^\dagger =$$

Motivation	MBL in 1D	Quantum circuits for MBL	MBL in 2D	Numerical Results
Table of o	content			

2 Many-body localization in one dimension

3 Quantum circuits for MBL

4 Many-body localized regime in two dimensions

5 Numerical Results

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

 10×10 lattice $\ell \times \ell = 2 \times 2$

 ρ_A : one-site reduced density matrix $\rightarrow S(\rho_A)$

for $n_{\max} = 1$:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

MBL in 1D

Quantum circuits for MBL

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Comparison to the experiment

• $n_{\rm max} = 1: \ \Delta_c = 18.3$

$$\begin{array}{l} n_{\max} = 2; \\ \Delta_c(U'=2) \approx 30 \\ \Delta_c(U'=8) \approx 50 \end{array}$$

Experimentally: $\Delta_c(U' = 24.4) \approx 5.3$ however: only ~ 7% doublons

J.-y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, Science 352, 1547 (2016).

taken from: P. Bordia, H. Lüschen, S. Scherg, S. Gopalakrishnan, M. Knap, U. Schneider, and I. Bloch, Phys. Rev. X 7, 041047

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○○

 Motivation
 MBL in 1D
 Quantum circuits for MBL
 MBL in 2D
 Numerical Results

 Summary and Outlook
 Summary and Outloy
 Summary and Outlook

Summary:

- experimentally observed MBL in 2D is "short"-time phenomenon
- approximately conserved local integrals of motion
- 2D quantum circuits
- experiment: $\Delta_c = 5.3$, theory (2×2) : $\Delta_c = 18.3$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation MBL in 1D Quantum circuits for MBL MBL in 2D Numerical Results
Summary and Outlook

Summary:

- experimentally observed MBL in 2D is "short"-time phenomenon
- approximately conserved local integrals of motion
- 2D quantum circuits
- experiment: $\Delta_c = 5.3$, theory (2 × 2): $\Delta_c = 18.3$

Outlook:

- experiment: charge density wave / larger filling
- theory: $\ell \times \ell = 3 \times 3$ simulations
- analytical tool to classify 2D topological and symmetry protected MBL phases
 - T. B. Wahl, arXiv:1712.07238

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

 2×2 reduced density matrix: $ho_{\mathcal{A}} = e^{-H_{\mathrm{ent}}}$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

