Learning Relevant Features of Data Using
Multi-Scale Tensor Networks
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Lots of interesting idea of applying machine
learning techniques to physics
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...this talk is the other way around...

physics concepts » machine learning



Many physics ideas appear in machine learning
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Boltzmann Disordered
Machines Ising Model

The "Renormalization
Group”

Deep Belief Networks

P. Mehta and D.J. Schwab, arxiv:1410.3831



Convolutional neural network

"MERA" tensor network
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Are tensor networks useful for
machine learning? AAAAAAA

This Talk

Tensor networks can represent weights of
useful and interesting machine learning models

Benefits include:

 Linear scaling

» Adaptive optimization

» Hybrid unsupervised / supervised



What is machine learning?




Goal: train model f(x)

mapping input X to target
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Philosophy of Machine Learning

* Map from images to labels is just a function

* Parameterize a set of very flexible functions
(prefer convenient functions over "correct" ones)

* Prevent overfitting by regularization (prefer simple functions)

A
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Supervised Learning

Given labeled training data (labels A and B)

Find decision function f(x)

f(x) >0 x € A

f(x) <0 x € B

Given training set {x; }, minimize cost function

1

o N N\2 o r_|_1 X c A
C—N—Tz(f(xﬂ) ;) 17121 x;€B

J



Unsupervised Learning

Given unlabeled training data {x,}
*Find function f(x) such that f(x,) ~ p(x;)
 Find function f(x) such that ‘f(Xj)|2 ~ p(X;)

* Find data clusters and which data belongs to
each cluster

* Discover reduced representations of data
for other learning tasks (e.g. supervised)

Han et al., "Unsupervised Generative Modeling Using Matrix Product States" arxiv:1709.01662



Tensor Network Machine Learning



Tensor diagram notation
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Joining lines implies contraction, can omit names
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Raw data vectors
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Example: grayscale images,
components of x are pixels



Propose following model

f(x) = W - d(x)
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Weights are N-index tensor
Like N-site wavefunction

Cohen et al. arxiv:1509.05009
Novikov, Trofimov, Oseledets, arxiv:1605.03795
Stoudenmire, Schwab, arxiv:1605.05775



N=3 example:
fx) =W @(x) = ) Wiss, a7 25°25

= Wooo + Wigo x1 + Woio 22 + Woo1 3
+ Wiito 129 + Wio1 z123 + Wo11 2223

+ Wi z1x223

Contains linear classifier, and various poly. kernels



More generally, apply local "feature maps" ¢% (z;)

Highly expressive

Could put additional parameters into maps ¢



X = input

For example, following local feature map

(s s

d(x;) = {COS (51;]-),8113 (551;])} z; € (0,1]

Picturesque idea of pixels as "spins”




X = input

@ = local feature map

Total feature map @(x)

BN (x) = 671 (01) © 6 (12) @ -+ © 6™ ()

» Tensor product of local feature maps / vectors
» Just like product state wavefunction of spins

* Vector in 2" dimensional space



X = input

@ = local feature map
Total feature map ®(x)
More detailed notation
X = |x1, X2, T3, ... , IN] raw inputs
B(x) — -le(fl?l)-@ [p1 () ] ; [ p1(x9 ] I [p1 (@) ] foature
o) | | p2(@d)| | P2(xa) P (xN) vector




Total feature map ®(x)

Tensor diagram notation

X = input

@ = local feature map

raw inputs

feature
vector



Construct decision function f(x) =W . ®(x)
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Construct decision function

F(x) = W - &(x)
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Construct decision function

F(x) = W - &(x)




Main approximation

W — ﬁ) order-N tensor

matrix
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Main approximation

W — ﬁ) order-N tensor

matrix

product
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Tensor diagrams of the approach
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Linear scaling
Can use algorithm similar to DMRG to optimize

N = size of input

Scalingis N - Np-m°

Nt = size of training set

m = MPS bond dimension
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Why should this work at all?

Linear classifier f(x) =V -x exactly m=2 MPS

W =
1 0 1 0 1 0
[V() 1 ] Vl i VQ i ‘73 i
i =1 o] f(x) =W - &(x)
V,=10 Vj % () = |1, =)

Novikov, Trofimov, Oseledets, arxiv:1605.03795



Experiment: handwriting classification (MNIST)

/

Train to 99.95% accuracy on 60,000 training images

Obtain 99.03% accuracy on 10,000 test images
(only 97 incorrect)

Stoudenmire, Schwab, arxiv:1605.05775



Papers using tensor network machine learning

Expressivity & priors of TN based models

e Levine et al., "Deep Learning and Quantum Entanglement: Fundamental Connections
with Implications to Network Design" arxiv:1704.01552

e Cohen, Shashua, "Inductive Bias of Deep Convolutional Networks through Pooling
Geometry" arxiv:1605.06743

e Cohen et al., "On the Expressive Power of Deep Learning: A Tensor Analysis" arxiv:
1509.05009

Generative Models

e Han et al., "Unsupervised Generative Modeling Using Matrix Product States" arxiv:
1709.01662

e Sharir et al., "Tractable Generative Convolutional Arithmetic Circuits" arxiv:
1610.04167

Supervised Learning

* Novikov et al., "Expressive power of recurrent neural networks", arxiv:1711.00811

e Liu et al., "Machine Learning by Two-Dimensional Hierarchical Tensor Networks: A
Quantum Information Theoretic Perspective on Deep Architectures”, arxiv:
1710.04833

e Stoudenmire, Schwab, "Supervised Learning with Quantum-Inspired Tensor
Networks", arxiv:1605.05775

* Novikov et al., "Exponential Machines", arxiv: 1605.03795



Related uses of tensor networks

Compressing weights of neural nets (& other models)

Yu et al., Advances in Neural Information Processing (2017), arxiv:1711.00073
Izmailov et al., arxiv:1710.07324 (2017)

Yang et al., arxiv:1707.01786 (2017)

Garipov et al., arxiv:1611.03214 (2016)

Novikov et al., Advances in Neural Information Processing (2015) (arxiv:1509.06569)

Large scale linear algebra (PCA/SVD)
Lee, Cichocki, arxiv: 1410.6895 (2014)

Feature extraction & tensor completion

Bengua et al., arxiv:1606.01500, arxiv:1607.03967, arxiv:1609.04541 (2016)
Phien et al., arxiv:1601.01083 (2016)
Bengua et al., IEEE Congress on Big Data (2015)



Learning Relevant Features of Data



For amodel f(x)=W - ®(x)
Given training data {x; }

Can show optimal W is of the form
W=> a;dx;)
J

Holds for wide variety of cost functions / tasks

"representer theorem”

Scholkopf, Smola, Miiller, Neural Comp. 10, 1299 (1998)
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Representer theorem says

) = C#S 03
WS Oéj

Really just says weights in the span of {®7}



Can choose any basis for span of {7}
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Why switch to US basis?

Orthonormal basis

Can discard basis vectors corresponding to small s. vals.

Can compute U, fully or partially using tensor networks



Computing U? efficiently

Detfine feature space covariance matrix
(similar to density matrix)
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HS
— i — 2
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Strategy: compute U? iteratively as a layered (tree)
tensor network



For eftficiency, exploit product structure of ®



Compute tree tensors from reduced matrices
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Compute tree tensors from reduced matrices
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Having computed a tree layer, rescale data
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With all layers, have approximately diagonalized p
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Equivalent to kernel PCA,
but linear scaling with size of data set



Can view as unsupervised learning of representation
of training data
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Use as starting point for supervised learning

Only train top tensor for supervised task

fi(x) = ——
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Experiment: handwriting classification (MNIST)
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Cutoff 6x104 gave top indices sizes 328 and 444
Training acc: 99.68% Test acc: 98.08%



Refinements and Extensions



No reason we must base tree around p

Could reweight based on importance of samples

i bbb
DA+ 14- 4



Another idea is to mix in a "lower level" model
trained on a given task (e.g. supervised learning)

pr =

Ly 0d00bb . bbbbbs

1

PPPPPP? PPPPP°?

It =1, tree provides basis for provided weights

If 0 < pu<1,treeis "enriched" by data set



Experiment: mixed correlation matrix for MNIST

Using p* = (1—p)p+py W)WY
14

with trial weights trained from a linear classifier
and u© = 0.5

Train acc: 99.798% Test acc: 98.110%
Top indices of size 279 and 393.

Comparable performance to unmixed case with
top index sizes 328 and 444



Also no reason to build entire tree
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Approximate top tensor by MPS



Experiment: "fashion MNIST" dataset
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28x28 grayscale
60,000 training images
10,000 testing images



Experiment: "fashion MNIST" dataset
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*Used 4 tree tensor layers

e Dimension of top "site" indices e e
nm -u&“ﬂﬁh-a-fiuﬁul fa - fﬂﬂ
ranged from 11 to 30 it

* Top MPS bond dimension of 300
and 30 sweeps

Train acc: 95.38% Test acc: 88.97%

Comparable to XGBoost (89.8%), AlexNet (89.9%),
Keras Conv Net (87.6%)

Best (w/o preprocessing) is GooglLeNet at 93.7%



Much Room for Improvement

*Use MERA instead of tree layers
* Optimize all layers, not just top, for specific task

*[terate mixed approach: feed trained network into
new covariance/density matrix

» Stochastic gradient based training



Implications for near-term quantum computing

* Tensor networks are equivalent to low-depth
quantum circuits

e Kim & Swingle recently showed layered tensor
network (MERA) inherently robust to noise*

* Prepare and optimize tensor networks on quantum
computer for classical data?

arXiv.org > quant-ph > arXiv:1802.06002

Robust entanglement renormalization on a noisy quantum computer

Quantum Physics
Isaac H. Kim®'2 and Brian Swingle® 4 o s .
& Classification with Quantum Neural Networks on Near Term Processors

Edward Farhi, Hartmut Neven

*arXiV:1 71 1 .07500 (Submitted on 16 Feb 2018)



Recap & Future Directions

* Trained layered tensor network on real-world data
in unsupervised fashion

*Specializing top layer gives very good results on
challenging supervised image recognition tasks

*Linear tensor network approach gives enormous
flexibility. Progress toward interpretability.
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