Learning Relevant Features of Data Using Multi-Scale Tensor Networks

E.M. Stoudenmire

Feb 2018 - Benasque

Lots of interesting idea of applying machine learning techniques to physics

۲

<u>+</u> L = 4

Control of Quantum Systems

Self-Learning Monte Carlo

Propose

trial Conf.

4

Η

Detailed

balance

...this talk is the other way around...

physics concepts — machine learning

Many physics ideas appear in machine learning

Boltzmann Machines Disordered Ising Model

Deep Belief Networks

The "Renormalization Group"

Convolutional neural network

"MERA" tensor network

Are tensor networks useful for machine learning?

This Talk

Tensor networks can represent weights of useful and interesting machine learning models

Benefits include:

- Linear scaling
- Adaptive optimization
- Hybrid unsupervised / supervised

What is machine learning?

Goal: train model $f(\mathbf{x})$

mapping input \mathbf{X} to target

Goal: train model $f(\mathbf{x})$

mapping input \mathbf{X} to target

- Map from images to labels is just a function
- Parameterize a set of very flexible functions
 (prefer convenient functions over "correct" ones)
- Prevent overfitting by regularization (prefer simple functions)

- Map from images to labels is just a function
- Parameterize a set of very flexible functions
 (prefer convenient functions over "correct" ones)
- Prevent overfitting by regularization (prefer simple functions)

- Map from images to labels is just a function
- Parameterize a set of very flexible functions
 (prefer convenient functions over "correct" ones)
- Prevent overfitting by regularization (prefer simple functions)

- Map from images to labels is just a function
- Parameterize a set of very flexible functions
 (prefer convenient functions over "correct" ones)
- Prevent overfitting by regularization (prefer simple functions)

Supervised Learning

Given labeled training data (labels A and B)

```
Find decision function f(\mathbf{x})
```

 $f(\mathbf{x}) > 0 \qquad \mathbf{x} \in A$ $f(\mathbf{x}) < 0 \qquad \mathbf{x} \in B$

Given training set $\{\mathbf{x}_j\}$, minimize cost function

$$C = \frac{1}{N_T} \sum_{j} (f(\mathbf{x}_j) - y_j)^2 \qquad \qquad y_j = \begin{cases} +1 & \mathbf{x}_j \in A \\ -1 & \mathbf{x}_j \in B \end{cases}$$

Unsupervised Learning

Given unlabeled training data $\{\mathbf{x}_j\}$

- Find function $f(\mathbf{x})$ such that $f(\mathbf{x}_j) \simeq p(\mathbf{x}_j)$
- Find function $f(\mathbf{x})$ such that $|f(\mathbf{x}_j)|^2 \simeq p(\mathbf{x}_j)$
- Find data clusters and which data belongs to each cluster
- Discover reduced representations of data for other learning tasks (e.g. supervised)

Tensor Network Machine Learning

 $--- \quad \longleftarrow \quad A_{ij}B_{jk} = AB$

Raw data vectors

$$\mathbf{x} = (x_1, x_2, x_3, \dots, x_N)$$

Example: grayscale images, components of x are pixels

$$x_j \in [0,1]$$

Propose following model

$$f(\mathbf{x}) = W \cdot \Phi(\mathbf{x})$$

$$= \sum_{\mathbf{s}} W_{s_1 s_2 s_3 \cdots s_N} x_1^{s_1} x_2^{s_2} x_3^{s_3} \cdots x_N^{s_N} \qquad s_j = 0, 1$$

Weights are N-index tensor Like N-site wavefunction

Cohen et al. arxiv:1509.05009 Novikov, Trofimov, Oseledets, arxiv:1605.03795 Stoudenmire, Schwab, arxiv:1605.05775 N=3 example:

$$f(\mathbf{x}) = W \cdot \Phi(\mathbf{x}) = \sum_{\mathbf{s}} W_{s_1 s_2 s_3} x_1^{s_1} x_2^{s_2} x_3^{s_3}$$

 $= W_{000} + W_{100} x_1 + W_{010} x_2 + W_{001} x_3$

 $+ W_{110} x_1 x_2 + W_{101} x_1 x_3 + W_{011} x_2 x_3$ $+ W_{111} x_1 x_2 x_3$

Contains linear classifier, and various poly. kernels

More generally, apply local "feature maps" $\phi^{s_j}(x_j)$

$$f(\mathbf{x}) = W \cdot \Phi(\mathbf{x})$$

$$= \sum_{\mathbf{s}} W_{s_1 s_2 s_3 \cdots s_N} \phi^{s_1}(x_1) \phi^{s_2}(x_2) \phi^{s_3}(x_3) \cdots \phi^{s_N}(x_N)$$

Highly expressive

Could put additional parameters into maps $\,\phi\,$

 $\mathbf{x} = \mathsf{input}$

For example, following local feature map

$$\phi(x_j) = \left[\cos\left(\frac{\pi}{2}x_j\right), \sin\left(\frac{\pi}{2}x_j\right)\right] \qquad x_j \in [0, 1]$$

Picturesque idea of pixels as "spins"

 $\mathbf{x} = \mathsf{input}$

Total feature map $\Phi(\mathbf{x})$

$$\Phi^{s_1s_2\cdots s_N}(\mathbf{x}) = \phi^{s_1}(x_1) \otimes \phi^{s_2}(x_2) \otimes \cdots \otimes \phi^{s_N}(x_N)$$

- Tensor product of local feature maps / vectors
- Just like product state wavefunction of spins
- Vector in 2^N dimensional space

 $\mathbf{x}=~ ext{input}$ $\phi=~ ext{local feature map}$

Total feature map $\Phi(\mathbf{x})$

More detailed notation

$$\mathbf{x} = \begin{bmatrix} x_1, & x_2, & x_3, & \dots & , & x_N \end{bmatrix} \quad \text{raw inputs}$$

$$\mathbf{\overline{\psi}}$$

$$\Phi(\mathbf{x}) = \begin{bmatrix} \phi_1(x_1) \\ \phi_2(x_1) \end{bmatrix} \otimes \begin{bmatrix} \phi_1(x_2) \\ \phi_2(x_2) \end{bmatrix} \otimes \begin{bmatrix} \phi_1(x_3) \\ \phi_2(x_3) \end{bmatrix} \otimes \dots \otimes \begin{bmatrix} \phi_1(x_N) \\ \phi_2(x_N) \end{bmatrix} \quad \begin{array}{c} \text{feature} \\ \text{vector} \end{bmatrix}$$

 $\mathbf{x}=~ ext{input}$ $\phi=~ ext{local feature map}$

Total feature map $\Phi(\mathbf{x})$

$$\mathbf{x} = \begin{bmatrix} x_1, & x_2, & x_3, & \dots & , & x_N \end{bmatrix} \quad \text{raw inputs}$$

$$\mathbf{v}$$

$$\Phi(\mathbf{x}) = \oint_{\phi^{s_1}} \oint_{\phi^{s_2}} \oint_{\phi^{s_3}} \oint_{\phi^{s_4}} \oint_{\phi^{s_5}} \oint_{\phi^{s_6}} \cdots \oint_{\phi^{s_N}} \quad \text{feature}$$

$$\mathbf{vector}$$

 $f(\mathbf{x}) = W \cdot \Phi(\mathbf{x})$

 $f(\mathbf{x}) = W \cdot \Phi(\mathbf{x})$

 $f(\mathbf{x}) = W \cdot \Phi(\mathbf{x})$

 $f(\mathbf{x}) = W \cdot \Phi(\mathbf{x})$

Main approximation

Main approximation

Tensor diagrams of the approach

$$f(\mathbf{x}) = W \cdot \Phi(\mathbf{x}) = \begin{matrix} & & \\ &$$

$$\approx (M_{s_1}M_{s_2}\cdots M_{s_N})\Phi^{s_1s_2\cdots s_N}(\mathbf{x})$$

Can use algorithm similar to DMRG to optimize

Scaling is $N \cdot N_T \cdot m^3$

$$f(\mathbf{x}) = \mathbf{O} - \mathbf{O}$$

Can use algorithm similar to DMRG to optimize

Scaling is $N \cdot N_T \cdot m^3$

Can use algorithm similar to DMRG to optimize

Scaling is $N \cdot N_T \cdot m^3$

$$f(\mathbf{x}) = \mathbf{O} - \mathbf{O}$$

Can use algorithm similar to DMRG to optimize

Scaling is $N \cdot N_T \cdot m^3$

$$f(\mathbf{x}) = \mathbf{O} - \mathbf{O}$$

Can use algorithm similar to DMRG to optimize

Scaling is $N \cdot N_T \cdot m^3$

$$f(\mathbf{x}) = \mathbf{O} - \mathbf{O}$$

Can use algorithm similar to DMRG to optimize

Scaling is $N \cdot N_T \cdot m^3$

$$f(\mathbf{x}) = \mathbf{O} - \mathbf{O}$$

Why should this work at all?

Linear classifier $f(\mathbf{x}) = V \cdot \mathbf{x}$ exactly m=2 MPS

Novikov, Trofimov, Oseledets, arxiv:1605.03795

Experiment: handwriting classification (MNIST)

Train to 99.95% accuracy on 60,000 training images

Obtain **99.03%** accuracy on 10,000 test images (only 97 incorrect)

Stoudenmire, Schwab, arxiv:1605.05775

Papers using tensor network machine learning

Expressivity & priors of TN based models

- Levine et al., "Deep Learning and Quantum Entanglement: Fundamental Connections with Implications to Network Design" arxiv:1704.01552
- Cohen, Shashua, "Inductive Bias of Deep Convolutional Networks through Pooling Geometry" arxiv:1605.06743
- Cohen et al., "On the Expressive Power of Deep Learning: A Tensor Analysis" arxiv: 1509.05009

Generative Models

- Han et al., "Unsupervised Generative Modeling Using Matrix Product States" arxiv: 1709.01662
- Sharir et al., "Tractable Generative Convolutional Arithmetic Circuits" arxiv: 1610.04167

Supervised Learning

- Novikov et al., "Expressive power of recurrent neural networks", arxiv:1711.00811
- Liu et al., "Machine Learning by Two-Dimensional Hierarchical Tensor Networks: A Quantum Information Theoretic Perspective on Deep Architectures", arxiv: 1710.04833
- Stoudenmire, Schwab, "Supervised Learning with Quantum-Inspired Tensor Networks", arxiv:1605.05775
- Novikov et al., "Exponential Machines", arxiv: 1605.03795

Related uses of tensor networks

Compressing weights of neural nets (& other models) Yu et al., Advances in Neural Information Processing (2017), arxiv:1711.00073 Izmailov et al., arxiv:1710.07324 (2017) Yang et al., arxiv:1707.01786 (2017) Garipov et al., arxiv:1611.03214 (2016) Novikov et al., Advances in Neural Information Processing (2015) (arxiv:1509.06569)

Large scale linear algebra (PCA/SVD)

Lee, Cichocki, arxiv: 1410.6895 (2014)

Feature extraction & tensor completion

Bengua et al., arxiv:1606.01500, arxiv:1607.03967, arxiv:1609.04541 (2016) Phien et al., arxiv:1601.01083 (2016) Bengua et al., IEEE Congress on Big Data (2015)

Learning Relevant Features of Data

For a model $f(\mathbf{x}) = W \cdot \Phi(\mathbf{x})$

Given training data $\{\mathbf{x}_j\}$

Can show optimal W is of the form

$$W = \sum_{j} \alpha_{j} \Phi(\mathbf{x}_{j})$$

Holds for wide variety of cost functions / tasks

"representer theorem"

Schölkopf, Smola, Müller, Neural Comp. 10, 1299 (1998)

View $\Phi^{\mathbf{s}}(\mathbf{x}_j) = \Phi_j^{\mathbf{s}}$ as a tensor

Representer theorem says

Really just says weights in the span of $\{\Phi_j^s\}$

Can choose any basis for span of $\{\Phi_j^s\}$

Can choose any basis for span of $\{\Phi_j^s\}$

Can choose any basis for span of $\{\Phi_j^s\}$

Why switch to U_{ν}^{s} basis?

Orthonormal basis

Can discard basis vectors corresponding to small s. vals.

Can compute U_{ν}^{s} fully or partially using <u>tensor networks</u>

Computing U_{ν}^{s} efficiently

Define feature space covariance matrix (similar to density matrix)

Strategy: compute U_{ν}^{s} iteratively as a layered (tree) tensor network

For efficiency, exploit product structure of Φ

Compute tree tensors from reduced matrices

Truncate small eigenvalues

Compute tree tensors from reduced matrices

$$\rho_{34} = \sum_{j \in \text{training}} \Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta = \prod_{s_3 s_4}^{s_3' s_4'} S_3 S_4'$$

Truncate small eigenvalues

Having computed a tree layer, rescale data

With all layers, have approximately diagonalized $\,
ho$

Equivalent to *kernel PCA*, but linear scaling with size of data set

Can view as unsupervised learning of representation of training data

Use as starting point for supervised learning

Only train top tensor for supervised task $f^{\ell}(\mathbf{x}) =$

Experiment: handwriting classification (MNIST)

Cutoff 6x10⁻⁴ gave top indices sizes 328 and 444 Training acc: 99.68% Test acc: 98.08%

Refinements and Extensions

No reason we must base tree around $~\rho$

Could reweight based on importance of samples

Another idea is to mix in a "lower level" model trained on a given task (e.g. supervised learning)

 $\rho^{\mu} =$

If $\mu = 1$, tree provides basis for provided weights

If $0 < \mu < 1$, tree is "enriched" by data set

Experiment: mixed correlation matrix for MNIST

Using
$$\rho^{\mu} = (1 - \mu)\rho + \mu \sum_{\ell} |W^{\ell}\rangle \langle W^{\ell}|$$

with trial weights trained from a linear classifier and $\,\mu=0.5$

Train acc: 99.798% Test acc: 98.110% Top indices of size 279 and 393.

Comparable performance to unmixed case with top index sizes 328 and 444

Also no reason to build entire tree

Approximate top tensor by MPS

Experiment: "fashion MNIST" dataset

28x28 grayscale

60,000 training images

10,000 testing images

Experiment: "fashion MNIST" dataset

- Used 4 tree tensor layers
- Dimension of top "site" indices ranged from 11 to 30
- Top MPS bond dimension of 300 and 30 sweeps
- Train acc: 95.38% Test acc: 88.97%

Comparable to XGBoost (89.8%), AlexNet (89.9%), Keras Conv Net (87.6%)

Best (w/o preprocessing) is GoogLeNet at **93.7%**

Much Room for Improvement

- Use MERA instead of tree layers
- Optimize all layers, not just top, for specific task
- Iterate mixed approach: feed trained network into new covariance/density matrix
- Stochastic gradient based training

Implications for near-term quantum computing

- Tensor networks are equivalent to low-depth quantum circuits
- Kim & Swingle recently showed layered tensor network (MERA) inherently robust to noise*
- Prepare and optimize tensor networks on quantum computer for classical data?

Robust entanglement renormalization on a noisy quantum computer

Isaac H. Kim^{1,2} and Brian Swingle^{3,4}

*arxiv:1711.07500

arXiv.org > quant-ph > arXiv:1802.06002

Quantum Physics

Classification with Quantum Neural Networks on Near Term Processors

Edward Farhi, Hartmut Neven (Submitted on 16 Feb 2018)

Recap & Future Directions

- Trained layered tensor network on real-world data in unsupervised fashion
- Specializing top layer gives very good results on challenging supervised image recognition tasks
- Linear tensor network approach gives enormous flexibility. Progress toward interpretability.

