
Learning Relevant Features of Data Using
Multi-Scale Tensor Networks

E.M. Stoudenmire Feb 2018 - Benasque

Lots of interesting idea of applying machine
learning techniques to physics

NATURE PHYSICS DOI: 10.1038/NPHYS4035 LETTERS

p

2×2 maps
(64 per sublattice)

Fully connected
layer (64)

v

Softmax

Dropout
regularization

a High-temperature state b Ising square-ice ground state c Ising lattice gauge theory

d

Figure 2 | Typical configurations of square-ice and Ising gauge models. a, A high-temperature state. b, A ground state of the square-ice Hamiltonian.
c, A ground state configuration of the Ising lattice gauge theory. Dark circles represent spins up, while white circles represent spins down. The vertices and
plaquettes defining the models are shown in the insets of b and c. d, Illustration of the convolutional neural network of the Ising gauge theory. The
convolutional layer applies 64 2⇥2 filters to the configuration on each sublattice, followed by rectified linear units (ReLu). The outcome is followed by a
fully connected layer with 64 units and a softmax output layer. The green line represents the sliding of the maps across the configuration.

−1 0 1 2 3 4
�J

0.0

0.2

0.4

0.6

0.8

1.0

O
ut

pu
t l

ay
er

L = 4 L = 8 L = 12 L = 16

L = 20 L = 24 L = 28

100 101 102

L

1.0

1.5

2.0

2.5

3.0

3.5

�∗ J

Figure 3 | Detecting the logarithmic crossover temperatures in the Ising
gauge theory. Output neurons for di�erent system sizes averaged over test
sets versus �J. Linear system sizes L=4,8, 12, 16,20,24 and 28 are
represented by crosses, up triangles, circles, diamonds, squares, stars and
hexagons. The inset displays �⇤J (octagons) versus L in a semilog scale.
The error bars represent one standard deviation statistical uncertainty.

A final implementation of our approach on a system of non-
interacting spinless fermions subject to a quasi-periodic poten-
tial24 demonstrates that neural networks can distinguish metallic

from Anderson localized phases, and can be used to study
the localization transition between them (see the Supplementary
Figs 3 and 4).

We have shown that neural network technology, developed
for applications such as computer vision and natural language
processing, can be used to encode phases ofmatter and discriminate
phase transitions in correlated many-body systems. In particular,
we have argued that neural networks encode information about
conventional ordered phases by learning the order parameter of the
phase, without knowledge of the energy or locality conditions of
theHamiltonian. Furthermore, we have shown that neural networks
can encode basic information about unconventional phases such
as the ones present in the square-ice model and the Ising lattice
gauge theory, as well as Anderson localized phases. These results
indicate that neural networks have the potential to represent ground
state wavefunctions. For instance, ground states of the toric code1,8
can be represented by convolutional neural networks akin to the
one in Fig. 2d (see Supplementary Fig. 6 and Supplementary
Table 1). We thus anticipate their use in the field of quantum
technology25, such as quantum error correction protocols26, and
quantum state tomography27. As in all other areas of ‘big data’,
we are already witnessing the rapid adoption of machine learning
techniques as a basic research tool in condensed matter and
statistical physics.

Data availability. The data that support the plots within this paper
and other findings of this study are available from the corresponding
author upon request.

Received 27 June 2016; accepted 11 January 2017;
published online 13 February 2017

NATURE PHYSICS | VOL 13 | MAY 2017 | www.nature.com/naturephysics 433

Recognizing phases of matter

Control of Quantum Systems

2

Machine
Learning

(ii)Trial simulation by local update(i)

Ηeff

Learning

Ηeff

Detailed
balance

Η

(iii) (iv)

Propose
trial Conf.

Simulating

FIG. 1. (color online) Schematic illustration of learning pro-
cess (top panel) and simulating process (bottom panel) in
self-learning Monte Carlo.

namical exponent z in MC simulation.
Guided by these requirements, we now propose the de-

tailed procedure of SLMC method. As shown in Fig. 1,
SLMC consists of four steps: (i) perform a trial MC sim-
ulation using local update to generate a large number of
configurations, which serve as training data; (ii) learn an
e↵ective Hamiltonian He↵ from this training data; (iii)
propose moves according to He↵ in the actual MC sim-
ulation; (iv) determine whether the proposed moves will
be accepted or rejected based on the detailed balance
principle of the original Hamiltonian H. Steps (i) and
(ii) constitute the learning process, whereas steps (iii)
and (iv) are repeated in the actual MC simulation to
calculate physical observables.

We further outline how to implement step (ii) and (iii)
in actual simulations for a model to be presented below.
We use machine learning15 in step (ii) to train an e↵ective
Hamiltonian, which can be e�ciently simulated using a
global update method even though the original Hamilto-
nian cannot. Then step (iii) can be easily implemented
using this global update.

Model and results: To demonstrate the power of
SLMC, we study a classical model on a 2D square lattice

H = �J
X

hiji

SiSj �K
X

ijkl2

SiSjSkSl, (1)

where Si = ±1 is the Ising spin on site i. J is the near-
est neighbor (NN) interaction and K is the interaction
among the four spins in the same plaquette. We set fer-
romagnetic interactions, i.e., J > 0 and K > 0. For any
finite J and K, there is a phase transition from paramag-
netic phase at high temperature to ferromagnetic phase
at low temperature, which belongs to the 2D Ising uni-
versality class. For K = 0, this model reduces to the
standard Ising model which can be simulated e�ciently
by the Wol↵ method. However, for K 6= 0, no simple and
e�cient global update method is known. Below we will
show that SLMC method significantly reduces the auto-
correlation time near the critical point, using K/J = 0.2

TABLE I. The trained parameters {J̃n} of the e↵ective model
in Eq. 2, without and with setting J̃n = 0 (n � 2).

J̃1 J̃2 J̃3 Mean error
Train 1 1.2444 -0.0873 -0.0120 0.0009
Train 2 1.1064 - - 0.0011

as an example. More results can be found in the Supple-
mental Material (SM)16.
As outlined before, the initial step of the SLMC is to

train an e↵ective Hamiltonian, He↵, from a sample of
configurations generated by local update based on the
original Hamiltonian in Eq. 1. We choose He↵ to be a
generalized Ising Hamiltonian with two-body spin inter-
actions over various ranges,

He↵ = E0 � J̃1
X

hiji1

SiSj � J̃2
X

hiji2

SiSj � . . . , (2)

where hijin denotes the n-th NN interaction and J̃n is
the corresponding interaction parameter.
We now train He↵ from the training sample by opti-

mizing E0 and {J̃n}. In principle, this can be viewed as
an unsupervised learning process15,17, where a new sta-
tistical model He↵ is trained using a subset of features
extracted from the configurations. However, by taking
advantage of knowing H for each configuration, we can
more e�ciently train He↵ through a simple and reliable
linear regression. For the a-th configuration in the sam-
ple, we compute its energy Ea [from Eq. 1] and all the
n-th NN spin-spin correlations Ca

n =
P

hijin SiSj , which

serve as the actual training data. Then, E0 and {J̃n}
can be easily trained from a multi-linear regression of
Ea and {Ca

n}, Ea =
P

n J̃nC
a
n + E0. The results are as

shown in Table I (Train 1). It is clear that J̃1 is dominant
and much larger than others, which implies we could set
J̃n = 0 (n � 2). And then, by a linear regression, we
can successfully extract the most optimized J̃1 (Train 2
in Table I). It is found that the mean error is almost the
same to the case without setting J̃n = 0 (n � 2), which
is expected since all J̃n (n � 2) obtained from the multi-
linear regression are negligible. Through this training
process, we conclude that only the nearest interaction is
relevant there, thus we only keep this term in the follow-
ing simulations. We emphasize that this trained model
He↵ only approximates the original one for the configura-
tions that are statistically significant in the sample, i.e.,
the ones near the free energy minimum. Thus He↵ can be
regarded as an e↵ective model. We notice that, recently,
there are many other attempts to apply machine learning
to MC simulations18–23.

In addition, it should be addressed that the training of
He↵ could be self-improved by a reinforced learning pro-
cess. Usually, a good initial sample could be very hard to
generate using only local update, especially for systems
at the critical temperature Tc or with strong fluctuation.
In this case, we first train an e↵ective model He↵ using

Self-Learning Monte Carlo

...this talk is the other way around...

physics concepts machine learning

Many physics ideas appear in machine learning

Boltzmann
Machines

Disordered
Ising Model

" # # " " ## "

Tensor Network States and Geometry 899

Fig. 4 (Color online) As pointed
out by Swingle [91], the scale
invariant MERA for the ground
state of a quantum spin chain can
be interpreted as a discrete
realization of the AdS/CFT
correspondence. The ground state
of the one-dimensional lattice
model corresponds to a discrete
version of the vacuum of a
CFT1+1, whereas the MERA
spans a two dimensional
geometry that corresponds to a
discrete version of a time slice of
AdS2+1. The Figure shows a
MERA similar to that of Fig. 3,
but from another perspective,
with the scale parameter z as a
radial coordinate

Fig. 5 (Color online) Homogeneous tensor network states for the ground state in an infinite lattice in D = 1
spacial dimensions. (i) A homogeneous MPS is characterized by a single tensor that is repeated infinitely
many times throughout the tensor network. (ii) A homogeneous scale invariant MERA is characterized by two
tensors, a disentangler and an isometry, repeated throughout the tensor network, which consists of infinitely
many layers

4 Correlations and Geodesics

The asymptotic decay of correlations has long been known to be exponential in an MPS
[1–3] and polynomial in the scale invariant MERA [16, 18, 19]. In this section we point out
that such behavior is dictated by the structure of geodesics in the geometry attached to each
of these tensor network states. For an MPS, the later is a rather straightforward statement;
for the MERA, it was first noted by Swingle [91].

4.1 Geodesics Within a Tensor Network

Given a tensor network state for the state |!⟩ of a lattice L, and two sites of L at positions
x1 and x2, we can define a notion of distance between these two sites within the tensor

The "Renormalization
Group"

Deep Belief Networks

P. Mehta and D.J. Schwab, arxiv:1410.3831

Convolutional neural network

"MERA" tensor network

Are tensor networks useful for
machine learning?

This Talk

Tensor networks can represent weights of
useful and interesting machine learning models

• Linear scaling

• Adaptive optimization

• Hybrid unsupervised / supervised

Benefits include:

What is machine learning?

Goal: train model

mapping input to target

f(x)

x

f(x) 1
0

"dog"

f(x)
1
0 "cat"

Goal: train model

mapping input to target

f(x)

x

Philosophy of Machine Learning

• Map from images to labels is just a function

• Parameterize a set of very flexible functions
(prefer convenient functions over "correct" ones)

• Prevent overfitting by regularization (prefer simple functions)

= training data

Philosophy of Machine Learning

• Map from images to labels is just a function

• Parameterize a set of very flexible functions
(prefer convenient functions over "correct" ones)

• Prevent overfitting by regularization (prefer simple functions)

= training data

Philosophy of Machine Learning

• Map from images to labels is just a function

• Parameterize a set of very flexible functions
(prefer convenient functions over "correct" ones)

• Prevent overfitting by regularization (prefer simple functions)

= training data

Philosophy of Machine Learning

• Map from images to labels is just a function

• Parameterize a set of very flexible functions
(prefer convenient functions over "correct" ones)

• Prevent overfitting by regularization (prefer simple functions)

= training data
= testing data

Given training set , minimize cost function

Given labeled training data (labels and)

Find decision function

Supervised Learning

f(x)

f(x) > 0

f(x) < 0

x 2 A

x 2 B

A B

{xj}

C =
1

NT

X

j

(f(xj)� yj)
2 yj = { A

B

xj 2
xj 2

+1

�1

•Find function such that

•Find function such that

•Find data clusters and which data belongs to
each cluster

•Discover reduced representations of data
for other learning tasks (e.g. supervised)

Given unlabeled training data

Unsupervised Learning

{xj}

f(x) f(xj) ' p(xj)

f(x) |f(xj)|2 ' p(xj)

Han et al., "Unsupervised Generative Modeling Using Matrix Product States" arxiv:1709.01662

Tensor Network Machine Learning

Tensor diagram notation

vj
j

Tensor diagram notation

vj
j

j Miji

Tensor diagram notation

vj
j

j Miji

j

i Tijkk

Joining lines implies contraction, can omit names

X

j

Mijvj
ji

Joining lines implies contraction, can omit names

X

j

Mijvj
ji

Joining lines implies contraction, can omit names

X

j

Mijvj
ji

AijBjk = AB

Joining lines implies contraction, can omit names

X

j

Mijvj
ji

AijBjk = AB

Joining lines implies contraction, can omit names

X

j

Mijvj
ji

AijBjk = AB

AijBji = Tr[AB]

Raw data vectors

x = (x1, x2, x3, . . . , xN)

Example: grayscale images,
components of are pixels

x

xj 2 [0, 1]

Propose following model

=
X

s

Ws1s2s3···sN x

s1
1 x

s2
2 x

s3
3 · · ·xsN

N

f(x) = W · �(x)

sj = 0, 1

Weights are N-index tensor
Like N-site wavefunction

Novikov, Trofimov, Oseledets, arxiv:1605.03795
Stoudenmire, Schwab, arxiv:1605.05775

Cohen et al. arxiv:1509.05009

f(x) = W · �(x)

N=3 example:

=
X

s

Ws1s2s3 x

s1
1 x

s2
2 x

s3
3

= W000 +W100 x1 +W010 x2 +W001 x3

+W111 x1x2x3

+W110 x1x2 +W101 x1x3 +W011 x2x3

Contains linear classifier, and various poly. kernels

More generally, apply local "feature maps"

f(x) = W · �(x)

�

sj (xj)

=
X

s

Ws1s2s3···sN�

s1(x1)�
s2(x2)�

s3(x3) · · ·�sN (xN)

Highly expressive

Could put additional parameters into maps �

For example, following local feature map

�(xj) =

h
cos

⇣
⇡

2

xj

⌘
, sin

⇣
⇡

2

xj

⌘i
xj 2 [0, 1]

x = input

Picturesque idea of pixels as "spins"

Total feature map

�s1s2···sN (x) = �

s1(x1)⌦ �

s2(x2)⌦ · · ·⌦ �

sN (xN)

• Tensor product of local feature maps / vectors

• Just like product state wavefunction of spins

• Vector in dimensional space

� = local feature map

x = input

2N

�(x)

Total feature map
� = local feature map

x = input

raw inputs

�(x) =

x = [x1, x2, x3, . . . , xN]

�1()

�2()[[⌦ �1()

�2()[[⌦ �1()

�2()[[⌦ �1()

�2()[[x1

x1

x2

x2

x3 xN

x3 xN

⌦. . . feature
vector

More detailed notation

�(x)

Total feature map
� = local feature map

x = input

raw inputsx = [x1, x2, x3, . . . , xN]

feature
vector

Tensor diagram notation

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

· · ·
sN

�sN

�(x)

�(x)

f(x) = W · �(x)Construct decision function

�(x)

f(x) = W · �(x)Construct decision function

�(x)

W

f(x) = W · �(x)Construct decision function

�(x)

W=f(x)

f(x) = W · �(x)Construct decision function

�(x)

W=f(x)

W =

Main approximation

W = order-N tensor

⇡
matrix
product
state (MPS)

Main approximation

W = order-N tensor

⇡
matrix
product
state (MPS)

⇡ PEPS))

Tensor diagrams of the approach

�(x)

W=

⇡

⇡

(Ms1Ms2 · · ·MsN)�s1s2···sN (x)

f(x) W · �(x)=

Linear scaling

=
�(x)

Wf(x)

Can use algorithm similar to DMRG to optimize

Scaling is N ·NT ·m3
N = size of input

NT = size of training set
m = MPS bond dimension

Linear scaling

=
�(x)

Wf(x)

Can use algorithm similar to DMRG to optimize

Scaling is N ·NT ·m3
N = size of input

NT = size of training set
m = MPS bond dimension

Linear scaling

=
�(x)

Wf(x)

Can use algorithm similar to DMRG to optimize

Scaling is N ·NT ·m3
N = size of input

NT = size of training set
m = MPS bond dimension

Linear scaling

=
�(x)

Wf(x)

Can use algorithm similar to DMRG to optimize

Scaling is N ·NT ·m3
N = size of input

NT = size of training set
m = MPS bond dimension

Linear scaling

=
�(x)

Wf(x)

Can use algorithm similar to DMRG to optimize

Scaling is N ·NT ·m3
N = size of input

NT = size of training set
m = MPS bond dimension

Linear scaling

=
�(x)

Wf(x)

Can use algorithm similar to DMRG to optimize

Scaling is N ·NT ·m3
N = size of input

NT = size of training set
m = MPS bond dimension

Why should this work at all?

Linear classifier exactly m=2 MPS

W =

[[V̂1

1̂ 0

1̂ [[1̂ 0

1̂ [[1̂ 0

1̂V̂2 V̂3[[V0

· · ·

V̂j = [0 Vj]

1̂ = [1 0]

1

�

sj (xj) = [1 , xj]

f(x) = W · �(x)

f(x) = V · x

Novikov, Trofimov, Oseledets, arxiv:1605.03795

Experiment: handwriting classification (MNIST)

Train to 99.95% accuracy on 60,000 training images

Obtain 99.03% accuracy on 10,000 test images
(only 97 incorrect)

Stoudenmire, Schwab, arxiv:1605.05775

Papers using tensor network machine learning

Expressivity & priors of TN based models
• Levine et al., "Deep Learning and Quantum Entanglement: Fundamental Connections

with Implications to Network Design" arxiv:1704.01552
• Cohen, Shashua, "Inductive Bias of Deep Convolutional Networks through Pooling

Geometry" arxiv:1605.06743
• Cohen et al., "On the Expressive Power of Deep Learning: A Tensor Analysis" arxiv:

1509.05009

Generative Models

Supervised Learning

• Han et al., "Unsupervised Generative Modeling Using Matrix Product States" arxiv:
1709.01662

• Sharir et al., "Tractable Generative Convolutional Arithmetic Circuits" arxiv:
1610.04167

• Novikov et al., "Expressive power of recurrent neural networks", arxiv:1711.00811
• Liu et al., "Machine Learning by Two-Dimensional Hierarchical Tensor Networks: A

Quantum Information Theoretic Perspective on Deep Architectures", arxiv:
1710.04833

• Stoudenmire, Schwab, "Supervised Learning with Quantum-Inspired Tensor
Networks", arxiv:1605.05775

• Novikov et al., "Exponential Machines", arxiv: 1605.03795

Lee, Cichocki, arxiv: 1410.6895 (2014)

Large scale linear algebra (PCA/SVD)

Bengua et al., IEEE Congress on Big Data (2015)

Feature extraction & tensor completion

Novikov et al., Advances in Neural Information Processing (2015) (arxiv:1509.06569)

Compressing weights of neural nets (& other models)
Yu et al., Advances in Neural Information Processing (2017), arxiv:1711.00073

Phien et al., arxiv:1601.01083 (2016)

Bengua et al., arxiv:1606.01500, arxiv:1607.03967, arxiv:1609.04541 (2016)

Garipov et al., arxiv:1611.03214 (2016)

Izmailov et al., arxiv:1710.07324 (2017)

Related uses of tensor networks

Yang et al., arxiv:1707.01786 (2017)

Learning Relevant Features of Data

For a model f(x) = W · �(x)

Given training data {xj}

Can show optimal is of the formW

W =
X

j

↵j �(xj)

Holds for wide variety of cost functions / tasks

"representer theorem"

Schölkopf, Smola, Müller, Neural Comp. 10, 1299 (1998)

View as a tensor�s(xj) = �s
j

�s(xj)

j

�s
j

Representer theorem says

=
↵j

�s
j

W s

Really just says weights in the span of {�s
j}

Can choose any basis for span of

= �s
j

W s

{�s
j}

↵j

Can choose any basis for span of

= �s
j

W s

{�s
j}

↵j

=
U s
⌫

S⌫
⌫0

V ⌫0

j

↵j

(SVD)

Can choose any basis for span of

= �s
j

W s

{�s
j}

↵j

U s
⌫

�⌫==
U s
⌫

S⌫
⌫0

V ⌫0

j

↵j

(SVD)

Why switch to basis?

�s
j =

U s
⌫

S⌫
⌫0

V ⌫0

j

(SVD)

U s
⌫

Orthonormal basis

Can compute fully or partially using tensor networksU s
⌫

Can discard basis vectors corresponding to small s. vals.

Computing efficiently

�s
j

U s
⌫

Define feature space covariance matrix
(similar to density matrix)

�† j
s

=

U s
⌫

U † ⌫
s

(S⌫)
2

Strategy: compute iteratively as a layered (tree)
tensor network

U s
⌫

⇢ =
1

NT

For efficiency, exploit product structure of �

⇢ = ��† =
1

NT

�(xj)

�†(xj)
=

1

NT

NTX

j=1

=

s1 s2

s01 s02

s1 s2

s01 s02

⇢12 =

s1 s2

s01 s02

s1 s2

s01 s02

= P12

U12

U †
12

Compute tree tensors from reduced matrices

Truncate small
eigenvalues

⇢12 =
X

j2 training

P34

U †
34

U34

s03

=

=

s04

s3 s4

⇢34 =

s03 s04

s03 s04

s3 s4

s3 s4

Compute tree tensors from reduced matrices

Truncate small
eigenvalues

⇢34 =
X

j2 training

�(x)

= �1(x)

Having computed a tree layer, rescale data

With all layers, have approximately diagonalized ⇢

⇢ '

Equivalent to kernel PCA,
but linear scaling with size of data set

U

U †

Can view as unsupervised learning of representation
of training data

Use as starting point for supervised learning

`

Only train top tensor for supervised task

f `(x) =

Experiment: handwriting classification (MNIST)

`

Cutoff 6x10-4 gave top indices sizes 328 and 444
Training acc: 99.68% Test acc: 98.08%

Refinements and Extensions

No reason we must base tree around

�(xj)

�†(xj)
=

1

NT

NTX

j=1

⇢

Could reweight based on importance of samples

⇢̃ wj

Another idea is to mix in a "lower level" model
trained on a given task (e.g. supervised learning)

+ µ
X

j

(1� µ)

If , tree provides basis for provided weightsµ = 1

If , tree is "enriched" by data set0 < µ < 1

⇢µ =

Using

with trial weights trained from a linear classifier
and

Experiment: mixed correlation matrix for MNIST

⇢µ = (1� µ)⇢+ µ
X

`

|W `ihW `|

Train acc: 99.798% Test acc: 98.110%
Top indices of size 279 and 393.

µ = 0.5

Comparable performance to unmixed case with
top index sizes 328 and 444

Also no reason to build entire tree

Approximate top tensor by MPS

Experiment: "fashion MNIST" dataset

28x28 grayscale

60,000 training images

10,000 testing images

Experiment: "fashion MNIST" dataset

•Used 4 tree tensor layers

•Dimension of top "site" indices
ranged from 11 to 30

•Top MPS bond dimension of 300
and 30 sweeps

Train acc: 95.38% Test acc: 88.97%

Comparable to XGBoost (89.8%), AlexNet (89.9%),
Keras Conv Net (87.6%)

Best (w/o preprocessing) is GoogLeNet at 93.7%

Much Room for Improvement

•Use MERA instead of tree layers

•Optimize all layers, not just top, for specific task

•Iterate mixed approach: feed trained network into
new covariance/density matrix

•Stochastic gradient based training

Implications for near-term quantum computing

*arxiv:1711.07500

•Tensor networks are equivalent to low-depth
quantum circuits

•Kim & Swingle recently showed layered tensor
network (MERA) inherently robust to noise*

•Prepare and optimize tensor networks on quantum
computer for classical data?

Recap & Future Directions

•Trained layered tensor network on real-world data
in unsupervised fashion

•Specializing top layer gives very good results on
challenging supervised image recognition tasks

•Linear tensor network approach gives enormous
flexibility. Progress toward interpretability.

