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Refresher on Field Quantization: Electrodynamics

o We start with the action for the electromagnetic field,
S /—EFMVFW —AuJ¥ = /%(EQ — B?) — AgJo + AiJ;

Fuy = 0uAy — OV A, Foi = Ei, Fij = €iji B

e The equations of motion are the Maxwell equations 9, F#* = J* which can be
written out as
0;E; = Jo, OoE; + €;1,0; B, = J;

o Notice that these also imply the conservation of the current, 9, J* = 0.

e There are two issues which arise in quantizing this theory:
* There is a redundancy of variables; A, and A, + 9,6, for some function 6,
give the same F,,.
* The equation 9; Z; = 0 (Gauss law) cannot be obtained as a Heisenberg
equation of motion (not of the form (0C/9t) = something).



Refresher on Field Quantization: Electrodynamics (contd.)

o Elimination of redundancy: We can choose Ag = 0. If it is not zero, we use
A}, = Ay + 0,0, choose 6 such that A = 0. Then use A} (which we call A;).

e Split A; as
A=A +8if, %A =0
o Dealing the Gauss law: We write the electric field as E; = AT + 8;(8o f). Then
the Gauss law equation becomes
V2 (0f) = Jo
e The solution is in terms of the Coulomb Green's function G,
of = [ &y Gel@ - D)

1 1

Gc(f—?j):—gm7 V2Gg(f—gj’):5(3)(x—y)

e fisnotanindependent degree of freedom, its dynamics is entirely determined by
Jo, i.e., by matter fields.



Refresher on Field Quantization: Electrodynamics (contd.)

o The interaction term is just A;.J; and this is simplified as

[ = [dealsv o= [atoal s o)

/d4x(AzTJ7i — fdoJo) = /d4$(AiTJ¢ + 0o fJo)
= / dz AT J; + / da’d®zd®y Jo(2°, )G (Z — i) Jo(a°, 7)
o The magnetic field only depends on A7, so the action becomes
s = / d4m% |604T 0] — 6:47 0,47 |

1 = =
+y [ dhadty @)Go(@ - Do - o) + [ s AT,
e The theory reduces to that of two massless fields corresponding to the two
independent directions in A7, with some interaction terms.

o This way of quantizing, with Ay = 0 and V - A = 0, corresponds to the radiation
gauge.



Refresher on Field Quantization: Electrodynamics (contd.)

The quantum operator for A7 has the expansion

* 1 ik
AT (2) = Zak,\e U +a£>\e()\) L(x), uk(a;):\/me ik

e One choice of polarization vectors, consistent with V- A = 0, is

Mo Ly, —ky,0), D=L
\/ k2 + k2 |K|

The Hamiltonian is

Ji = ZwkaLAak)\
kA

A small aside on zero-point energy:

6:;{0|H|0) = (0| (K; P; — Pj K;) |0) =0 = No zero — point energy



Refresher on Field Quantization: Electrodynamics (contd.)
e The propagator can be obtained as

d*k kik; i k(o
D) = O AT@ATWI0) = [ 7557 (%—,ﬁ;) e oY

This is not manifestly covariant as it stands.

o The S-matrix functional can be written down as

eisint

=ex /D 0
P e 5AT( ) 5AT (y)
o The first term which involves a photon propagator is quadratic in the currents,
FO = i [ dadty @6 - D3 - 1°)0()

_ % / d*zd*y J; () Dij(z,y)J; (y)



Refresher on Field Quantization: Electrodynamics (contd.)

e The term involving the kikj/l?- k part of the propagator is

kik; e~ tk(@—y) 1 e~ th(z—y)
I g _.717.: 0;J; Bl =5
/Iy z(l‘) ](y)/kk~k k2+ze /Ly ) 7.(1‘) J J(y)/];k“k k‘2+26

B0Jo ()0 1 ey
—/m’y 0Jo ()0 O(y)/kﬂm
k3 e~ tk(z—y)

_ / Jo(@)Jo(y) | -0
x,y

)

k;EE k2+i€

We used the conservation of the current.
e G (& — i) is the Fourier transform of —(1/k - k), so we can combine as
3 —ik(z—y) —ik(z—y)
f@):f/J J /76 — Ji(x)J; /7e
5 ) [0@n0) | Gammm - 5@ | S

1 v
= §/d4$d4/y JM(LU)D;U/(myy)J (y)

Ak i k)
D#V(l‘7y) = 77/»“// (27T)4 k2 +i€e




Refresher on Field Quantization: Electrodynamics (contd.)

e Invariance under 4,, — A, + 9,0 (and the associated conservation law
duJ" = 0) are crucial to
* Eliminate redundancy
* Correctly implement all equations of motion
* Obtain a Lorentz covariant answer

o Thus the action for quantum electrodynamics would involve the covariant
derivative D, = 0, — ie Ay,

S /d4x 1&(27 - D— m)w = 1/7)(1’}/ .0 — m)"/} 1 ETZ’Y#?/}A/L
e This has the gauge invariance
S(¢/7 15/7 Al) = S(¢7 1&7 A), A:L S AM + 8H97 ¢/ = 6169 ¢

e The interaction part of the Lagrangian has the form of A%.J,, J* = eyt ).



Refresher on Field Quantization: Electrodynamics (contd.)

o The S-matrix functional for quantum electrodynamics (QED) is

F = 1 eie S Auirts

W= exp [7/ (%Dw("”’y) 6Aj AT Sy &ZS (y>)}

o We formulate a functional integral version. For a scalar field, propagators and

amplitudes can be calculated from
219 =N [ldgl eSO 1o

e For a gauge theory, the same result holds except that we must integrate over
physical (dynamical, nonredundant) degrees of freedom.

o Physical fields are A, modulo the identification A,, + 9,.6. We need [dA],,,, for
the functional integral Z.



Refresher on Field Quantization: Electrodynamics (contd.)

By definition we have

We can then write
7 / (dAlppys ¢S = / [d ALy [d6] 516) =5
= / [dA] 8]6] e~ S5

o Consider separating A4,, into a (4-dim) transverse part AZ and 9,0 as
Ay = AL+ 9,0. then
1

At =00 = 5[8ILA“}:5[DQ]:W—D)

516]

So we finally have a manifestly covariant form

7= / [dA] det(—[T) 6[0, A*] e~ S



What are Anomalies?

o We consider quantum field theory defined in terms of a functional integral
4= /[d physical fields] e*S(ﬁeldS)

o We are interested in quantum anomalies which arise because there is no
regularization of this integral which preserves all the symmetries of the classical
action.

o We will consider a general action of the form

§ = /LQFL+4612Fﬁwm(am)mwm-(a+R>wR]
R

/{412 FL+ FR-H/)’Y (3+V+V5A)w}
L
where 1, = 1(1 ++°)y, wR_%( )¢, V=3(L+R), A= i(L-R).

o These correspond to a general symmetry group U(N), x U(N)g; thus
Ly = —iTALY, Ry = —TAR4, T4,



What are Anomalies? (contd.)

o The field strength tensors have the usual form

Fiow = 0uLd -8, LA+ fAB°LELS  Ff,, = 8uRe -0, R+ 4B RERY

Flu = 0uVi =V + fAPOVIVE 4 AP AT AT

Fin, = OuAl -0, Al + 2B EAS —vPAD)

o Although a bit cumbersome, we can regularize using

(_D2) L A2 A2
SReg = — /TY<FW 7 » G 2.2~ 1
LZR A p*+ A?p P

o This takes care of gauge boson loops, but fermion one-loop diagrams are not
regularized by this = Fermion loops can give anomalies.



What are Anomalies? (contd.)

e The potential diagrams for anomalies are

T

e Under a charge conjugation
/d4x Py (0+V +~ A = /d4w Py - (0—
— VV A, AAA are the diagrams to worry about.

o Instead of evaluating diagrams, we use a functional integral method due to
Fujikawa.



Anomalies: Calculation

o First consider the fermion functional integral with only vector fields

/ [dpdg) e SPD S, ) = / iz Gy (0 + V)P

e The classical action has the chiral U (1) symmetry

P — e 150y, & — e 10

for constant (spacetime-independent) 6.
o We make a change of variables in the functional integral with 6(z),
7 = /[dd)ldd_)/] 6—3(1[1/71;/)
/ [dwdd] det(e?150) e=SW¥) exp|: / d*z 0(x a,tjﬂg,]

/[dz/)dw ~S(®.¥) exp [2 1 Tr(y50) — / (96,“7“5]

Jus = WyrsP



Anomalies: Calculation (contd.)

e Since Z is unaltered by the change of variables, we get
/ [dypdip] e=SP) [ / d*z 00, Ju5 — 2iTr(v50)| =0
This is the basic Ward-Takahashi identity.
e The trace involves a functional trace as well, and can be evaluated by

regularization as

lim d*z Tr(z|vs e(’Y'D)z/M2|x)
M—o00

Tr(vs0) =

e Using (v D)? = D? + L, FM, we get

4
4 d'p —p2/M?> 1
Test) = [ e Tt (oM 0 g e Fas)
1
= W d4fL' ENVQ’BTI“(G F/“’FOCB)
1

. _
= =3 / d*z 0 Tr(F F*)



Anomalies: Calculation (contd.)

e Thus the WT identity becomes
/ [dwdd] e S®P) / d*z 6 {aMJ,@ - 82—2 Tr(FuwFuw)| =0
s
This shows the breaking of conservation of axial current by the quantum effects.

o For a full nonabelian case, the regularization has to be done a bit more carefully.
We can use the ¢-function regularization:

Ti(o60) = [ o Teoat(@) 6D @—)] | = [dto tm T0¢00)

s—=0,y—zx

where the ¢-function is defined by

(s,2,9) Z fult )\2(;;” ) ¥ Don =1ilnon



Anomalies: Calculation (contd.)

o The ¢-function has an expression in terms of the so-called heat kernel,

1 o s—1 T(v-D)?
—_— drt h(T,x, h(t,z,y) = (z|e
). () hiney) = @l TP’y

o The heat kernel has a short-distance expansion in the form,

1 (N2
h(rt,z,y) = We (e=y)*/dr ZTn an(z,y)

<(57 m? y) =

n=0

with ¢(0, z, 2) = az/(1672).
e Calculating a5 and taking the trace

Tr(v56) diz VP Str

1 1
_W 9(4FVMUFVDLﬁ + EFAMUFAOLB

2
—g(AHAVFVQB + AMFVVozAﬁ + FV;J,VAaAﬁ)

8
+3AHAVA(¥AB>




Anomalies: Properties

o The above expression gives the full nonabelian anomaly. It is in terms of Fy, and
F 4, sometimes referred to as the Bardeen form of the anomaly.

o We can express the anomaly as a nonzero change of the effective action under
the symmetry transformation as

5T = G(e)

o If we only have left-handed gauge fields and left-chiral fermions, the Bardeen
expression reduces to

1

5§F = G(g) = —m

d*z & Pstr [0,6 (LudaLp + %LVLaLﬁ)}
o Under an infinitesimal gauge transformation with parameters ¢4,

Lt = L + (D) = L + 8,64 + fABOLEC



Anomalies: Properties (contd.)

o This corresponds to the functional transformation

b = / d*z (D" (z)

5L (@)
e These obey the identity
5£ 5&'/ - 65/ 65 - 65)(&'/ :0
which is just the expression of the group composition law.

o This implies that G(¢) should obey the integrability or (Wess-Zumino)
consistency conditions

5eG(€) — 0 G(€) — G(E x &) =0
e The expression we have, namely,

G(E) = ~55

satisfies these conditions.

d*z ¢ PStr (06 (LudaLp + %LyLaLﬁ)}



Anomalies: Properties (contd.)

o Can we get rid of the anomaly by redefining I'?
A true anomaly is one for which

5:G(E) — 6 G(E) —G(¢E x &) =0, G(&) # 6e¢W

The anomaly we found cannot be eliminated. Its form can be modified to some
extent by adding counterterms.

e Can we live with an anomaly?

* If there is an anomaly in a gauge symmetry, the theory loses unitarity; so we
must eliminate it by choice of representations for matter fields.

* If there is an anomaly in a global (non-gauge) symmetry, there is no
inconsistency; but there are physical consequences.



Anomalies: Properties (contd.)

e To see how to cancel out anomalies, we need the group structure. Since
Ly = —iTALA, € = —iT4€¢4, we get

i ) 1
0l = — 5y d*PC / diz e [awg*“ (LfaaLg +3 fCRSLVBLSLg)}

where d4BC = Str(TATETY). d4BC is the symmetric rank 3 invariant of the

algebra of the generators of the transformation.

o This is zero for all groups and all representations except for the U (1) and SU(N)
groups with N > 3.

e The anomaly has opposite signs for the left and right handed fields, since
R, =V, — A, asopposedto L, =V}, + A, and we have an odd number of A’s
in the diagrams.

e Anomaly is in the imaginary part of the action. I" is usually real in our Euclidean
calculation, but with anomaly, 6. I" is imaginary.



Physics from Anomalies

Physics Implication I:
Anomaly constrains the gauge groups and representations for a consistent theory

o b3-type terms

o b2 c-type terms
In this case we need d¥ ** = 1Str(v77%) = L670Tr(Y)

11
T)=(D+() + | 5 + 3 [x3=0
vr, er, ~~ =~



Physics from Anomalies (cont4d.)

o c-type terms
The ¢ anomaly is given by Tr(Y'3) and for this, both left and right fermions can
contribute. We get

1 1 64 8
(1)+(1)+< + ) ><3:||:8 +< = ) ><3:|
2 2
~—~ N~ 7 7 \e: 27 27

e 22 ur dr, UR dr
16 16
=] —_— — | —— =X())
( 9 )L ( 9 )R

In this case, the cancellation involves quarks and leptons and both chiralities.

Tr(Y?) =

e Among the global symmetries with anomalies are the baryon and lepton numbers.



Physics from Anomalies (cont4d.)

o Lepton number is defined by the transformation

v 3 v 3
< ) — '@ < ) , er — e'“eR, U — u, d—d
e e
L L

Leptons v, e have lepton number equal to 1, quarks have no lepton number.

e Baryon number corresponds to the transformation

VU, o e—e, (u) s iP/3 <u> , (uR,dR)—>ei6/3 (ur,dR)
d d
L L

e These are both anomalous symmetries with

agl = =i [ d's (o) +5(=) (Cz[b] f2c2[c}>

1
] = 55" Tr Fu(b)Fas(bh) =
1

eald = g5 fufap

vaf ~a a
“a2®  CiwCas



Physics from Anomalies (cont4d.)

o The field strengths in the previous expression are
G, = bl — Db + *P°bhbE, S = Gluzn — By

o The axial U(1) transformation is another global symmetry with anomalies in QCD.
This corresponds to

’ iA ’ —iA ’ iAvy®
QLZGZQLv QR:eLQR, Q:ez’yQ

e The anomaly is given by

53

>
=]
Il

: 1 :
—i 2N} /d4m Aoz B Ty (Fuy Fap) =i 2Nf/d4:r A plA]

1 v
A = =gy T (FiuFup)



Physics from Anomalies (cont4d.)

Physics Implication II:

Anomaly in global symmetries have observable consequences, e.g. 7° — 2~

o Consider the transformation
u . u
u — exp(ivsp) u,  d— exp(—iysyp) d, ( ) T ( >
d d

o Interms of the Goldstone fields (meson fields) U, we have
U%U’:gLUg};, Un~emms/in — 70 4,0 + 2 frep

o The up and down quarks have electrical charges 2 Zeand — 36, respectively, and

there are three colors of each.
2

e2 2 12 4 om0
O0pl' = —1i 3.2 d* zp FuyFuy (5) = (g) ><3——z% d fo FuvFpu

. 4 0 » .« 4 7 . 0
= d FuwkFuyw=—i— [ dzE-B
Z47Tf7'r/ xm FuyFuy Zﬁfﬁ/ 4 T

=



Physics from Anomalies (cont4d.)

Physics Implication IlI:
Anomaly can solve the axial T/ (1) problem in QCD related to the mass of the n’

e Even though pseudoscalar mesons are only pseudo-Goldstone bosons, the mass
n' (~ 958 MeV) is abnormally high and violates the bound m,, < v/3 m.

e The U, (1) axial anomaly can be represented in terms of the meson fields by

V2N
fr

Seff = % (logdetU — log det UT) (#T‘r F,WFW,) = n' plA, x]

o If the two-point function for p has the expansion
(p(@)p()) = m§ M (@ —y) + 0(), Mo #£0
then this effective action gives a mass for the 7/,

g _1 |:2me3]
n’ mass 2 fg




Ua(1) problem: Why do we need instantons?

e However, this needs instantons.

1w
Oulf = 2Nigo e Tr FuyFop = 2Nt 0, K"
L 1 " 2 2
KM = _8?6/ voaBy (AyaaAB + EAHAO‘AB)

e There is a conserved current J/; + 2 Ny K*, but K* is not gauge-invariant.

Is [d®z K° = [ d3z w3(A) gauge-invariant ?

1 y _
[ ls%) —na)] == & [ éamg 010 A1)
1 ijk =il =il =il
= 2471'2/6U Tr(g  0igg™ 0j99  Okg)

e The last term is nonzero if we have instantons.

o K" = ws(A) is the Chern-Simons 3-form.



Differential forms

o We combine the gauge fields with dz* to write it as 1-form,
A= (—iT") A, dzt = Ay da

e Advantage: Change in components A, = A, (92" /9z'*) under coordinate
transformation is cancelled by the transformation of da'* = da®(0x'* /0x®).
The 1-form is coordinate invariant.

o When we take derivatives, we must antisymmetrize indices to keep this property,

0 m v_ 1 0A, 0AyL
dA = Bwl‘AV dx" Ndx” = 5 <8x“ P

) dz? A dx¥

o The field strength tensor for the nonabelian gauge field is

0Ay 04,
oxh oxv

F = dA—l—A/\A:%( +AMAV—A,,A,L>da:“/\dw”

(OuAv — O AL + [Au, Av]) dz" A dz” = %Fl“, dxt A dz”

N | =



Differential forms (contc.)

o If we are in four dimensions, we can write
FF=FAF= iFWFa/_g da da” dz®da” = %W"‘ﬁFWFaﬁ d'z

e Some other important properties:

* For the product of a p-form o and a ¢-form g3,
aAB=(-1DP"8Aa

* Further, since antisymmetrized derivatives vanish,

62

o vo_ 2 _
e @ de Nda =0 = d® =0

* Using this, we find that £ should obey the Bianchi identity

dF =FA—-AF



Differential forms (contc.)

Gravitational fields are treated in a similar way, with

A — ) = spin connection, F' — R = Riemann curvature

¥,.5 generate Lorentz transformations, so we have

Q = (=i%qp) QL dz

The curvature is given by

R

dQ+QQ = % (0uQ — 0 + [, Q) da” da”

1 v
(~iZab) 5 R, dat dx

o Because the forms do not involve metric and are invariant under coordinate
transformations, many topological properties are expressed as integrals of
combinations of forms known as characteristic classes.



Characteristic Classes

e Chern classes are defined by
o(F) = det (1+i§) =14 ci(F) + ca(F) +---

cy is callled the first Chern class; ¢ is the second Chern class and so on.

o Explicitly
cl(F) = %TrF
ca(F) = #[Tr(F/\F)—(TrF)/\(TTF)]

e Chern character Ch(F) is another characteristic class defined by

Ch(F) = 'Trexp (z%) =1+ Chi(F) + Cho(F) +---
7 1



Characteristic Classes (contd.)

o The A-genus is anothe characteristic class defined in terms of the Riemann

curvature two-form R by
(R = TJT-—%i/2  _ 12
AR) = H sinh(z;/2) 1;[ (1 24" * )

7
_ 1,i2m2+...
24 £t
7

1 1

= 1+

e The z;'s are defined by

R 0 0 0
o T2




The Index Theorem

e For us, characteristic classes are important because they are related to the index
theorem and to anomalies.

e Let M = 2n-dimensional spin manifold. We have the Dirac algebra

VoY + W = 26wl

These matrices can be represented explicitly as (2" x 2™)-matrices.

The chirality matrix is given by
n
Y2n+4+1 =T Y172 V2n
o We can define the chiral projections of a Dirac spinor by
1
Y = 51 E72041) ¥, Yont+1 P+ = £+

For any gauge field or gravitational background, let

ngy = Number of zero modes of 7 - D of positive chirality

Number of zero modes of v - D of negative chirality

3
I
Il



The Index Theorem (cont'd.)

e The Atiyah-Singer index theorem gives the result
ny — n_ :/ A(R) A Ch(F)
M

This is essentially the trace of v9,,41. The rule is to expand the right side and pick
the term with 2n dz's.

e The axial U(1) transformation is given by

Y — exp(—ivany10) ¥

o Since the anomaly for this transformation involves the trace of 2,11, we can
write it generally as

2 Tr(12n116) = 2 /M 6 A(R) A Ch(F)

Index density <= Anomaly for the axial U (1) symmetry for a Dirac spinor



The Index Theorem & the Nonabelian Anomaly

e One can get nonabelian anomaly also from the index density.

Index density in 2n + 2 } d {Chern — Simons form in 2n + 1

dimensions dimensions

Gauge, Lorentz variation of 1
d |:(.U2ni|

C.S.2n+1

o The nonabelian anomaly for a chiral Dirac fermion in 2n dimensions is

o= / W%n
M

For 4 dim. we start with the index density in 6 dimensions,

i 5 i
T = T F
6 * 33

2
T T TrF TrR

3

}



The Index Theorem & the Nonabelian Anomaly (cont’d.)

o Consider F3 term first.

4871'3 dws

i 3 3
ws(4) = - 5T (AdAdA +SA%A + 5A5)

1 =il

e The gauge transformationis A -+ A9 =gAg " —dgg

e The CS form changes as

ws(AY) — ws(A) = dag + Tr(dg g H)® (WZ term)

480 18073
__ i -1 (1 1 1 3)
ag = 48 Tr[ dg (2AdA+ SdAA+ S A

1, _ B 1, _
+Z(g Ydg A g~ dg A) —5(9 1d9)3A}

Q

48%Tr [d@ (AdA + %A3)] + total derivative
e This agrees with the anomaly calculated earlier.



The Index Theorem & the Nonabelian Anomaly (cont’d.)

e How do we integrate the last term in w5 (AY) — w5(A)? We need to extend the
matrix g into a fifth dimension, g — U.

e The version of anomaly for finite transformation is

det(y - DY) = det(y - D) exp<—27ri /D[wg,(AU) — w5(A)}>

AT = 2mi /D [ws(AY) — ws(A4)]

o The 5-form term in ws(AY) — w5 (A) is
i

"~ 480m3
Tr [amUU*1 Oz (B UU ™) aM(aMUU*l)} Az A - A dzhs

0® = L _m@uut)® Tr(dUU~ d(dUU ™) d(duU 1))

48073

. 1
T 48073



The Index Theorem & the Nonabelian Anomaly (cont’d.)

e The curl (or d) of the integrand in Q(®) vanishes, but it cannot be written as a total
derivative.

o Consider two different extensions Uy, Us. The difference in the finite anomaly is
given by

AT(U3) — AT(U) = 7{5 2O ) 1)

where U = U; for the upper hemisphere and U = Us for the lower hemisphere.
On the equator (which is spacetime M) Uy = U, = g, so there is no difficulty of
continuity of the functions on S°.

o The integral in (1) gives the winding number of the map U : S® — G considered
as an element of 115(G).

o This is an integer and so the ambiguity of different extensions will not affect
equation e~ or the transformation law for det ~ - D.



Flavor Anomalies of QCD

o Should we reproduce flavor anomalies of QCD in the effective action for low

energies?
Quarks Confinement Mesons
Baryons
Anomaly Wess-Zumino
Cancellation Action I'yy »

Spectators ~——————  Spectators

o We must match anomalies between different phases of a theory because
* Anomalies are topological in nature, not affected by energy scales.
* They can also be obtained in low energy physics from unitarity and cross
sections



Flavor Anomalies of QCD (contd.)

Physics Implication IV:
The Wess-Zumino term can be used to represent flavor anomalies of QCD

e QCD has a chiral flavor symmetry for the , d, s quarks, if we neglect weak
interaction effects (including quark masses).

e This approximate symmetry SU,(3) x SUR(3) is spontaneously broken by
strong forces to the diagonal SUy(3).

o The corresponding Goldstone bosons (identified with the pseudoscalar mesons)
can be represented by the group element U € SU(3), U = exp ( fM)
%WO + L 7rjL KT
1

K~ f(o —\[n



Flavor Anomalies of QCD (contd.)

o The effective low energy (< 1 GeV) action is given by

2
Sus = ij/cflx Tr (aﬂUT O“U) + Twz
. N —1\5 -1
Twz = —l— (Tr(dU U™ )° + 27rN[a4(U JAL) — ay (U, AR)] + Tcount
24072/,

e This contains the 7° — 2~ we discussed, and many other processes such as

KtK™ - nta 0.

e But more importantly, it leads to a picture of baryons as solitons made of mesons.

The Wess-Zumino term can change and spin and statistics for solitons.



Baryons as Solitons

The Feynman diagrams generated by an SU (V) gauge theory can be classified by
1 o

VN’

the power of NV, by taking the coupling constant g ~ color traces generate a

factor of V.

For this we use a double line representation

(Apij(0)Aum (y)) = — F

~
—~

These are of order N°

O - O @ A

This is of order N2
L



Baryons as Solitons (contd.)
e So we can write the effective action for a gauge theory as
D=N’Tg+N°T + N Ty +---=> N?72'1y,
h
1/N plays the role of a "coupling constant".
e The large IV term seems to capture many nonperturbative features of the theory.

o In this expansion, baryon masses ~ N, since there are N quarks in it, allowing

N(N — 1)/2 pair-interactions which go like g* ~ 4.

o This is typical of nonperturbative particle-like solutions, or solitons.
e But the low energy limit is known, it is the theory of mesons based on U.

o So this leads to the idea:

At low energies, baryons can be viewed as solitons made of the meson fields



Baryons as Solitons (contd.)

e Thisidea is due to Skyrme, hence the name skyrmions for these solitons.
But there are difficulties:
* Are there stable solitons we can make of meson fields?
* Baryons are fermions. How can we make a fermion from composites of
bosons?
* Baryons have spin-3, spin-3, etc. How can we get half-integral spin from
composing integral spins?

o The effective low energy action for meson fields is given by

([0, UU Y, 8,00 11?)

1 .2 4 1
S = ZJf7r/d 2 Tr(0,U10"U) +

_
o The energy of a configuration U (&) is given by

(Tr(dU U™1)®

: 1 1 _ _
&= /d% [for Te(8;,U0;UT) — 3302 Tr(0:UT Lo;uu 1]2)}



Baryons as Solitons (contd.)

e Here U(&) is amap: R® — SU(3), with U — 1 at spatial infinity. These are

equivalent to maps S3 — SU(3).

o Consider a 3-sphere with the standard embedding coordinates y,, with
vi+us+y3+ui=1

o We can find Z such that (stereographic map)
R? —|&? 2Rx;
WERTRE YT R aER
o If we take a map U (y) from S to SU(3), we can substitute these values and get
amap R® — SU(3), with spatial infinity corresponding to the south pole of 52.

e These maps can be classified, all members within a class being continuously
deformable to each other. These are called homotopy classes, in this case labeled
by an integer, the winding number.



Baryons as Solitons (contd.)

e The winding number is given by

QU= -5

It is easy to check that

&z TP (U o, UU T 0, UU T 6,U)

QU1Uz] = Q[U1] + Q[U-]

e This proves many things.
* IfUs =1+ 6,Q[UUz] = QU] = Q[U] is invariant under small
continuous deformations.
* Q[U] does not depend on the metric of space, being the integral of a
differential form. These two properties = Q[U] is a topological invariant.
UMW has@ =1, UM)2hasQ =2, (UM)" has Q = n.

The space of U's has disconnected sectors, each connected piece labeled by an
integer.

e Minimize the energy for, say, Q = 1; that is a static soliton.



Baryons as Solitons (contd.)

o An example for SU(2) is
U(z) =Ug(z) = exp (10(r)T - &) = cos O(r) + i - Esin O(r)

This has

b

[6(0) — 6(c0)] E=af’R + =5

Q=

=

e In SU(3) we write

e This has "rotation symmetry",

a)r) = z) G =
Us(R(a)z) = GUs(x)G', G < 0 )

exp(iT - ) 0)

We can use

Uz, t) = A(t) Us AT (t), At =V A1), A)y=A@1) G



Baryons as Solitons (contd.)

o Using this ansatz in the action

QN

S= /dt [—%{Tr(tiATatA)}z - g{Tr(tkATatA)}Q 7%%@8/1*0#1)}

o We have the property

S(Ae*N) =S + N—\/QA = U(Ae'™) = U(A) exp (z% /\)

e The wave functions can be generally written as
V(A) = Cr D (A) 1 1, v 1y =Cr (I I3, Y A|I' I3, Y')
o We must choose Y’ = 1 for Q = 1. Lowest dim. reps are 8 and 10.

'8:>I’=2_

* 10 = I’ = 3 = J; gives SU(3) decuplet of spin-3 baryons.

J; gives SU (3) octet of spin-2 baryons

* Further, @ = baryon number.



Coadjoint Orbits and Fluids

e The contribution of the WZ term for skyrmions is part of a more general set of
actions called coadjoint orbit actions

—szg /dtTr hs g™ g)

g = some matrix, an element of some group G
hs =diagonal generators of the Lie algebra, Tr(hs hg) = 544

ws = a set of numbers

Theorem
Quantization of this action gives a Hilbert space corresponding to one unitary
irreducible representation of G with the highest weight (w1, ws, - - -, wy).

o Useful for point-particles with nonabelian charges.



Coadjoint Orbits and Fluids (contd.)

e We have the correspondence

Point-particle with mass and spin +— UIR of Poincaré group

Point-particles with color charge <— Extra UIR of color group

o For example for a particle with SU(2) color charge, the action is

S= /dt[ mi? — AQ" ml—z2Tr(039 g)}

o We will consider a fluid version soon, but first consider quantizing the action for g.



Coadjoint Orbits and Fluids (contd.)

Start with the action

S= z% /dt Tr(os g~ 1g)
g= (2 x 2)-matrix € SU(2), g = exp(i (0;/2)6;).
e Underg — g h, h = exp(iosp/2),

_® s_g_ ¥
S—S 2/ﬁ¢ §=2

The dynamics is actually restricted to SU(2),/U (1) which is a two-sphere S2.

Parametrizing g as

1 1 =z ei#/? 0 n 2Z— 2%
= — ) — S=1i— [ dt
g V1+zz <_5 1) { 0 e—ie/2 2_/ 1+ 2z




Coadjoint Orbits and Fluids (contd.)

o Strategy for quantizing: Take wave functions as functions of g and impose
restrictions.

v=3"3" WD) =33 ¢ (aleiO% p)

J ab J ab

where .J; = angular momentum or SU(2) generator in an arbitrary representation.
o From behavior of S under g — g h, h = exp(ioszp/2).
U (g eijLw) = U(g) exp (—i%ap)
= |b) =14, —%)-

o The action has only one power of z or z. = 2, z are phase space variables. ¥
can depend only on half of the phase space directions.



Coadjoint Orbits and Fluids (contd.)

o Define right action on g by
g
Rig=g~

e The combinations R+ = Ry & iR, are complex and conjugate to each other,
these are the two derivatives on phase space.

e So we can set Ry to zero to ensure dependence on only "half" of phase space
coordinates,

R_W=R_ ZZ D (aletT 0 by = 55 €9 (ale i F_ by = 0
J

Jjab

o This means that |b) must also be the lowest weight state, so [b) = |5, —5).

e There is only one representation,

v=>"c¥, p¥, ()



Coadjoint Orbits and Fluids (contd.)

e The action for many particles, labeled by ), is
S = fi/dtZwA Tr (039;1%)
A
o Take a limit to a continuous index A by A — x, 3\ — [ d*x/v, wy/v — p3(x)
s 4 =ilg
S= —Z/d z p3Tr(osg™ " g)
e Taking this as the crucial and leading term,
S = —i/d4xj§ Tr (o’gg_lDug) — /F(ng) + Sy m
This describes dynamics of nonabelian charge transport in a fluid, n3 = 58 T

e With mass transport included, we get nonabelian magnetohydrodynamics given by

S= /d4x [ (040 + c0uB) — iy jhTr (hsgleug) — F(n,ns,---)]



Anomalies and Fluids

o Should we have an anomaly term?

Confinement
Fluid —_— Quarks — 3+ Mesons
Baryons

r? Anomaly Wess-Zumino
: Cancellation Action Ty 7

o Yes, and we can use I'yyr with a reinterpretation. The action for the fluid phase
of the standard model is

s = [[#" @u0+aaus) —idf (tagr Duov) i Tr (ts0z " Duov)

+jl0u05 — i KTy (tggglpﬂgR) — iR (tggglpugR)

—F(n,n3,ng, ms, mg, - - - )} + Twz (AL, AR, gr.9%) + Sy ar(A)



Chiral Magnetic Effect

Physics Implication V:
The Wess-Zumino term can lead to the chiral magnetic effect

o Focus just on the electromagnetic field and axial angle 6,

62

2
e /LuaﬂAuayAa 8B9 — J“’ = —%e/lyaﬂayAa 8,@9

P'wz=—-—¢
™
o In a statistical distribution, § — 1, the chemical potential, so

2 2

i € 38 € i
J' = 5319: E(ML — puR) B

o With axial asymmetry a current is created in the direction of the magnetic field.



Chiral Magnetic Effect (contd.)

y4 o
Reaction /
plane

Positive Charges

Negative Charges

»
L

X (defines ¥g)



THANK You



