A. Pich IFIC, U. València - CSIC

A 111-24

TAE 2018, Centro de Física de Benasque "Pedro Pascual", Benasque, Spain, 2-15 September, 2018

- 1. Quark Mixing
- 2. CKM Structure
- 3. P⁰-P⁰ Mixing & CP Violation
- 4. Searching for New Physics

Quarks		Leptons		Bosons
up	down	electron	neutrino e	photon
charm	strange	muon	neutrino µ	gluon
top	beauty	tau	heutrino τ	Z ⁰ W [±]

Flavour Physics

A. Pich - TAE 2018

~er~ 3

Flavour Structure of the Standard Model

$$\begin{pmatrix} u & v_e \\ d & e^- \end{pmatrix}, \begin{pmatrix} c & v_\mu \\ s & \mu^- \end{pmatrix}, \begin{pmatrix} t & v_\tau \\ b & \tau^- \end{pmatrix}$$
 Why 3?

- Pattern of masses
- Flavour Mixing

Related to SSB Scalar Sector (Higgs)

- Kaon Factories: u,d,s
- τcF : c, τ
- **BF:** b, c, τ

- LHC: t, b, c
- LC: t, b, c

• vF:
$$v_e, v_\mu, v_\tau$$

Universality: Family–Independent Couplings

FERMION MASSES

Scalar – Fermion Couplings allowed by Gauge Symmetry

Fermion Masses are New Free Parameters

$$\begin{bmatrix} m_{q_d}, m_{q_u}, m_l \end{bmatrix} = \begin{bmatrix} c^{(d)}, c^{(u)}, c^{(l)} \end{bmatrix} \frac{V}{\sqrt{2}}$$

Couplings Fixed:
$$g_{Hf\bar{f}} = \frac{m_f}{v}$$

Flavour Physics

FERMION GENERATIONS

 $N_G = 3$ Identical CopiesMasses are the only differenceQ = 0 $\begin{pmatrix} v'_j & u'_j \\ l'_j & d'_j \end{pmatrix}$ Q = +2/3 $(j = 1, \dots, N_G)$ WHY ?

$$\mathcal{L}_{Y} = -\sum_{jk} \left\{ \left(\overline{u}_{j}^{\prime}, \overline{d}_{j}^{\prime} \right)_{L} \left[c_{jk}^{(d)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} d_{kR}^{\prime} + c_{jk}^{(u)} \begin{pmatrix} \phi^{(0)\dagger} \\ -\phi^{(+)\dagger} \end{pmatrix} u_{kR}^{\prime} \right] - \left(\overline{v}_{j}^{\prime}, \overline{l}_{j}^{\prime} \right)_{L} c_{jk}^{(l)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} l_{kR}^{\prime} \right\} + \text{h.c.}$$

$$SSB$$

$$\mathcal{L}_{Y} = -\left(1 + \frac{H}{V} \right) \left\{ \overline{d}_{L}^{\prime} \cdot \mathbf{M}_{d}^{\prime} \cdot d_{R}^{\prime} + \overline{u}_{L}^{\prime} \cdot \mathbf{M}_{u}^{\prime} \cdot u_{R}^{\prime} + \overline{l}_{L}^{\prime} \cdot \mathbf{M}_{l}^{\prime} \cdot l_{R}^{\prime} + \text{h.c.} \right\}$$

Arbitrary Non-Diagonal Complex Mass Matrices $\begin{bmatrix} \mathbf{M}'_{d}, \mathbf{M}'_{u}, \mathbf{M}'_{l} \end{bmatrix}_{jk} = \begin{bmatrix} c_{jk}^{(d)}, c_{jk}^{(u)}, c_{jk}^{(l)} \end{bmatrix} \frac{\mathbf{V}}{\sqrt{2}}$

Flavour Physics

DIAGONALIZATION OF MASS MATRICES

$$\mathbf{M}'_{d} = \mathbf{H}_{d} \cdot \mathbf{U}_{d} = \mathbf{S}_{d}^{\dagger} \cdot \mathcal{M}_{d} \cdot \mathbf{S}_{d} \cdot \mathbf{U}_{d} \qquad \mathbf{H}_{f} = \mathbf{H}_{f}^{\dagger}$$
$$\mathbf{M}'_{u} = \mathbf{H}_{u} \cdot \mathbf{U}_{u} = \mathbf{S}_{u}^{\dagger} \cdot \mathcal{M}_{u} \cdot \mathbf{S}_{u} \cdot \mathbf{U}_{u} \qquad \mathbf{U}_{f} \cdot \mathbf{U}_{f}^{\dagger} = \mathbf{U}_{f}^{\dagger} \cdot \mathbf{U}_{f} = 1$$
$$\mathbf{M}'_{l} = \mathbf{H}_{l} \cdot \mathbf{U}_{l} = \mathbf{S}_{l}^{\dagger} \cdot \mathcal{M}_{l} \cdot \mathbf{S}_{l} \cdot \mathbf{U}_{l} \qquad \mathbf{S}_{f} \cdot \mathbf{S}_{f}^{\dagger} = \mathbf{S}_{f}^{\dagger} \cdot \mathbf{S}_{f} = 1$$

~1

$$\mathcal{L}_{Y} = -\left(1 + \frac{H}{V}\right) \left\{ \overline{\mathbf{d}} \cdot \mathcal{M}_{d} \cdot \mathbf{d} + \overline{\mathbf{u}} \cdot \mathcal{M}_{u} \cdot \mathbf{u} + \overline{l} \cdot \mathcal{M}_{l} \cdot l \right\}$$

$$\mathcal{M}_{u} = \operatorname{diag}(m_{u}, m_{c}, m_{t}) \quad ; \quad \mathcal{M}_{d} = \operatorname{diag}(m_{d}, m_{s}, m_{b}) \quad ; \quad \mathcal{M}_{l} = \operatorname{diag}(m_{e}, m_{\mu}, m_{\tau})$$

$$\overline{\mathbf{f}}'_{L} \mathbf{f}'_{L} = \overline{\mathbf{f}}_{L} \mathbf{f}_{L} \quad ; \quad \overline{\mathbf{f}}'_{R} \mathbf{f}'_{R} = \overline{\mathbf{f}}_{R} \mathbf{f}_{R}$$

$$\overline{\mathbf{u}}'_{L} \mathbf{d}'_{L} = \overline{\mathbf{u}}_{L} \cdot \mathbf{V} \cdot \mathbf{d}_{L} \quad ; \quad \mathbf{V} \equiv \mathbf{S}_{u} \cdot \mathbf{S}^{\dagger}_{d}$$

$$\mathcal{L}'_{\rm CC} \neq \mathcal{L}_{\rm CC}$$

 $\mathcal{L}'_{\rm NC} = \mathcal{L}_{\rm NC}$

QUARK MIXING

Flavour Conserving Neutral Currents (GIM)

$$\mathcal{L}_{\rm NC}^{Z} = -\frac{e}{2\sin\theta_{W}\cos\theta_{W}} Z_{\mu} \sum_{\rm f} \overline{\rm f} \gamma^{\mu} \left[v_{\rm f} - a_{\rm f} \gamma_{\rm 5} \right] {\rm f}$$

 $Br(K_L \to \mu^+ \mu^-) = (6.84 \pm 0.11) \times 10^{-9}$, $Br(K_S \to \mu^+ \mu^-) < 1.0 \times 10^{-9}$ (95% CL)

LHCb, 1706.00758

$$K_L \to \pi^{0*} \to (\gamma \gamma)^* \to \mu^+ \mu^-$$
$$K_S \to (\pi^+ \pi^-)^* \to (\gamma \gamma)^* \to \mu^+ \mu^-$$

Flavour Physics

A. Pich – TAE 2018 10

Flavour Changing Charged Currents

$$\mathcal{L}_{\rm CC} = -\frac{g}{2\sqrt{2}} W^{\dagger}_{\mu} \left[\sum_{ij} \overline{u}_{i} \gamma^{\mu} (1-\gamma_{5}) \mathbf{V}_{ij} d_{j} + \sum_{l} \overline{v}_{l} \gamma^{\mu} (1-\gamma_{5}) l \right] + \text{h.c.}$$

 $\left(\overline{\nu}_{l_j} \equiv \overline{\nu}_i \ \mathbf{V}_{ij}^{(l)}\right)$

Weak Decays

$$T(l \to v_l \ l' \overline{v_{l'}}) \sim \frac{g^2}{M_W^2 - q^2} \qquad \frac{q^2 << M_W^2}{M_W^2} = 4\sqrt{2} \ G_F$$

 au^-

$$r_{EW} = \left[1 + \frac{\alpha(m_{\mu})}{2\pi} \left(\frac{25}{4} - \pi^2\right) + C_2 \frac{\alpha(m_{\mu})^2}{\pi^2}\right] = 0.9958 \qquad ; \qquad f(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \log x$$

LEPTON UNIVERSALITY

CHARGED CURRENT UNIVERSALITY

	$ g_{\mu}/g_{e} $		
$B_{\tau \to \mu} / B_{\tau \to e}$	1.0018 ± 0.0014		
$B_{\pi \to \mu} / B_{\pi \to e}$	1.0021 ± 0.0016		$ g_{\tau}/g_{\mu} $
$B_{K\to\mu}/B_{K\to e}$	0.9978 ± 0.0020	$B_{\tau \to e} \ \tau_{\mu} / \tau_{\tau}$	1.0011 ± 0.0015
$B_{K\to\pi\mu}/B_{K\to\pi e}$	1.0010 ± 0.0025	$\Gamma_{\tau \to \pi} / \Gamma_{\pi \to \mu}$	0.9962 ± 0.0027
$B_{W\to\mu}/B_{W\to e}$	0.996 ± 0.010	$\Gamma_{\tau \to K} / \Gamma_{K \to \mu}$	0.9858 ± 0.0070
		$B_{W\to\tau}/B_{W\to\mu}$	1.034 ± 0.013
	$ g_{\tau}/g_{e} $		
$B_{\tau \to \mu} \tau_{\mu} / \tau_{\tau}$	1.0030 ± 0.0015		
$B_{W\to\tau}/B_{W\to e}$	1.031 ± 0.013		A. Pich, arXiv:1310.7922

Flavour Changing Charged Currents

 $\Gamma(d_{i} \rightarrow u_{i} e^{-} \overline{v}_{e}) \propto |\mathbf{V}_{ij}|^{2}$

We measure decays of hadrons (no free quarks)

Important QCD Uncertainties

Symmetry (CVC): $\partial_{\mu}V_{ij}^{\mu} \equiv \partial_{\mu}(\overline{u}_{i}\gamma^{\mu}d_{j}) \sim m_{u_{i}} - m_{d_{j}} = 0$ $V_{ij}^{\mu}(x) = e^{iP\cdot x} V_{ij}^{\mu}(0) e^{-iP\cdot x}$ $\langle P_{i}'(k') | V_{ij}^{\mu}(x) | P_{j}(k) \rangle = e^{iq\cdot x} C_{PP'}(k+k')^{\mu} f_{+}^{ij}(q^{2})$ $\frac{k}{\sqrt{2}} \sum_{j=1}^{k} \frac{k'}{\sqrt{2}}$

Clebsh-Gordan: $C_{PP'} = 1/\sqrt{2}$ ($P' = \pi^0$), 1 (otherwise)

$$\partial_{\mu}V_{ij}^{\mu} = 0$$
 \longrightarrow $N_{ij} = \int d^{3}x \ V_{ij}^{0}(x) = \int d^{3}x \ u_{i}^{\dagger}(x) \ d_{j}(x)$

$$C_{PP'} \Delta_{\vec{k}\vec{k}'} = \langle P_i'(k') | N_{ij} | P_j(k) \rangle = \langle P_i'(k') | \int d^3 x \, V_{ij}^0(x) | P_j(k) \rangle$$
$$= C_{PP'} (2\pi)^3 \, \delta^3(\vec{q}) \, 2k^0 \, f_+^{ij}(0) = C_{PP'} \, \Delta_{\vec{k}\vec{k}'} \, f_+^{ij}(0)$$

$$\Rightarrow f^{ij}_+(0) = 1$$

 $f_{+}(0) = 1 + O[(m_u - m_d)^2]$

Superallowed Nuclear β Transitions (0⁺ \rightarrow 0⁺)

 $f_{+}(0) = 1 + O[(m_u - m_d)^2]$

Superallowed Nuclear β Transitions (0⁺ \rightarrow 0⁺)

• Neutron Decay:

$$V_{ud} |^2 = \frac{(4908.7 \pm 1.9) \text{ s}}{\tau_n (1 + 3\lambda^2)}$$

(Czarnecki - Marciano - Sirlin)

PDG10: $\tau_n = (885.7 \pm 0.8) \text{ s}$, $\lambda \equiv g_A / g_V = -1.2694 \pm 0.0028$

PDG18: $\tau_n = (879.3 \pm 0.9) \text{ s}$, $\lambda \equiv g_A / g_V = -1.2724 \pm 0.0023$

• Pion Decay: $Br(\pi^+ \to \pi^0 e^+ v_e) = (1.036 \pm 0.006) \times 10^{-8}$ (PIBETA) $|V_{ud}| = 0.9749 \pm 0.0026$

Flavianet, arXiv:1005.2323 [hep-ph] Moulson, arXiv:1411.5252 [hep-ph]

0.216

0.217

0.215 0.216 0.217

 $|\mathbf{f}_+(\mathbf{0}) \mathbf{V}_{\mathbf{US}}| = 0.2165 \pm 0.0004$

 $f_{+}(0) = 0.959 \pm 0.005$ $|\mathbf{V}_{\mathbf{US}}| = 0.2255 \pm 0.0014$ 2012 : **2016:** $f_+(0) = 0.9706 \pm 0.0027$ V_{us} $= 0.2231 \pm 0.0007$

Flavour Physics

 $\Gamma(\mathsf{K}^+ \rightarrow \mu^+ \nu_{\mu}) / \Gamma(\pi^+ \rightarrow \mu^+ \nu_{\mu})$

 $\frac{f_K}{f_\pi} \frac{|V_{us}|}{|V_{ud}|} = 0.2760 \pm 0.0004$

 $\frac{|V_{\rm us}|}{|V_{\rm us}|} = 0.2313 \pm 0.007$ $\mathbf{V}_{\mathbf{ud}}$

 $\left\langle 0 \left| \overline{d}_i \gamma^{\mu} \gamma_5 u_j \right| P(k) \right\rangle = i f_P k^{\mu}$

 $f_K / f_\pi = 1.1933 \pm 0.0029$ (FLAG 2016)

Gámiz-Jamin-Pich-Prades-Schwab

HFAG 2016: $R_{\tau,ud} = 3.4718 \pm 0.0072$; $R_{\tau,S} = 0.1633 \pm 0.0027$ **Vus** = 0.2186 ± 0.0018_{exp} ± 0.0010_{th}

Replacing $\tau \rightarrow \nu K(\pi)$ by $K \rightarrow \nu \mu(\pi)$ data: $|V_{us}| = 0$

$|V_{us}| = 0.2213 \pm 0.0023$

With better data, could give a very precise V_{us} determination

Heavy Quark Symmetry

Atomic Physics: $\mu \equiv m_e M_N / (m_e + M_N) \simeq m_e \ll M_N$, $\overset{\parallel}{S}_N / M_N$

- Flavour Symmetry: Same chemical properties for different isotopes (Z = Z', $M_N \neq M_{N'}$)

- **Spin Symmetry:** Atoms with nuclear spin J are (2J+1) degenerate
- Heavy-Light Mesons Qq: $M_{
 m Q}\gg m_{
 m q}$, Λ ; $\delta P_{
 m Q}\sim \Lambda$; $\delta V_{
 m Q}\sim \Lambda/M_{
 m Q}\ll 1$
 - Q is practically at rest and acts as a static source of gluons $(\lambda_Q \sim 1/M_Q \ll R_{had} \sim 1/\Lambda)$

- The interaction is M_Q and J_Q independent **Flavour and Spin Symmetries** $B \leftrightarrow D$ $B \leftrightarrow B^*$

 $\textbf{B} \rightarrow \textbf{D} \boldsymbol{\ell} \textbf{v} \textbf{:} \quad P_Q^{\mu} \equiv M_Q v^{\mu} + k^{\mu} \quad , \quad v^2 = 1 \quad , \quad k \sim \Lambda \quad , \quad Q(x) \approx e^{-iM_Q v \cdot x} \quad h_v^{(Q)}(x) \quad , \quad \left| M(P) \right\rangle \equiv \sqrt{M_P} \left| \tilde{M}(v) \right\rangle$

 $\left\langle D \left| \overline{c} \gamma^{\mu} b \right| B \right\rangle \qquad \Longrightarrow \qquad \left\langle \tilde{D}(v_D) \left| \overline{h}_{v_D}^{(c)} \gamma^{\mu} h_{v_B}^{(b)} \right| \tilde{B}(v_B) \right\rangle = \xi(v_D \cdot v_B) \left(v_D + v_B \right)^{\mu}$

Nothing changes at zero recoil: $V_D = V_B$ [(q²)_{max} = (M_B-M_D)²]

Inclusive B Decays

(OPE, HQET)

$$\Gamma(\bar{B} \to X_c \ell \bar{\nu}) = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} \left\{ f(\rho) + k(\rho) \frac{\mu_\pi^2}{2m_b^2} + g(\rho) \frac{\mu_G^2}{2m_b^2} \right\}$$

Gambino- Healey-Turczyk, 1606.06174

Higher Power Corrections

$$|\mathbf{V}_{cb}| = (42.00 \pm 0.63) \times 10^{-3}$$

Flavour Physics

 $\mathbf{B} \to \mathbf{D}^* \boldsymbol{\ell} \nu$

QCD Symmetries at $1/M_Q \rightarrow 0$ HQET

Caprini-Lellouch-Neubert parametrization

 $\eta_{\rm EW} \ G(1) \ | \mathbf{V_{cb}} | =$ $(41.57 \pm 1.00) \cdot 10^{-3}$ $\eta_{\rm EW} \ F(1) \ | \mathbf{V_{cb}} | =$

 $(35.61 \pm 0.43) \cdot 10^{-3}$

FNAL / MILC :

 $\eta_{\rm EW} G(1) = 1.061 \pm 0.010 \qquad \Longrightarrow \qquad |\mathbf{V}_{\rm cb}| = (39.18 \pm 0.94_{\rm exp} \pm 0.36_{\rm th}) \cdot 10^{-3}$ $\eta_{\rm EW} F(1) = 0.912 \pm 0.014 \qquad \Longrightarrow \qquad |\mathbf{V}_{\rm cb}| = (39.05 \pm 0.47_{\rm exp} \pm 0.58_{\rm th}) \cdot 10^{-3}$

$$|\mathbf{V_{cb}}|_{\text{excl}} = (39.10 \pm 0.60) \cdot 10^{-3}$$

3.3 $\sigma\,$ discrepancy with inclusive measurement

Parametrization Dependence

Analyticity, Unitarity Crossing Symmetry

- Boyd-Grinstein-Lebed (BGL)
- Caprini-Lellouch-Neubert (CLN) (HQET relations valid within 2%)

• $\mathbf{B} \rightarrow \mathbf{D}^* \ell \mathbf{v}$

Belle data (1702.01521) + Lattice + LCSRs

Bigi-Gambino-Schacht, 1703.06124, 1707.09509

See also Grinstein-Kobach, 1703.08170; Bernlochner-Ligeti-Papucci-Robinson, 1703.05330, 1708.07134

Bigi-Gambino-Schacht, 1606.08030

$$\left| \mathbf{V_{cb}} \right| = (40.49 \pm 0.97) \cdot 10^{-3}$$

- Large backgrounds from $B \rightarrow X_c I_V$
- Strong experimental cuts
- Large theoretical uncertainties

 $4.52 \pm 0.15 + 0.11$ 10^{-3} HFAG 2016: ub |incl

$B \rightarrow \pi \ell \nu$

3.4 σ discrepancy with inclusive measurement

$$|V_{ub}| = (3.98 \pm 0.40) \times 10^{-3}$$

Flavour Physics

Combination exclusive + LHCb: (HFAG 2016)

$$|\mathbf{V_{cb}}| = (39.13 \pm 0.59) \cdot 10^{-3}$$
 , $|\mathbf{V_{ub}}| = (3.50 \pm 0.13) \cdot 10^{-3}$

$|V_{cd}| \& |V_{cs}|$

(*) Global CKM fit (unitarity assumed)

V	CKM entry	Value	Source
' i j	$ \mathbf{V}_{ud} $	0.97420 ± 0.00021	Nuclear β decay
		0.9763 ± 0.0016	$n \rightarrow p e^- \overline{v}_e$
		0.9749 ± 0.0026	$\pi^+ \rightarrow \pi^0 e^+ v_e$
	V _{us}	0.2231 ± 0.0007	$K \to \pi e^- \overline{v}_e$
		0.2253 ± 0.0007	$K/\pi \rightarrow \mu \nu$, Lattice, V _{ud}
		0.2213 ± 0.0023	au decays
	V _{cd}	0.230 ± 0.011	$v d \rightarrow c X$
		$\boldsymbol{0.216\pm0.005}$	$D \rightarrow (\pi) l v$, Lattice
-	V _{cs}	$\boldsymbol{0.997 \pm 0.017}$	$D \rightarrow K l v, D_s \rightarrow l v$, Lattice
	V _{cb}	0.0405 ± 0.0010	$B \rightarrow D^* l \overline{v}_l, D l \overline{v}_l$
		0.0420 ± 0.0006	$b \rightarrow c \ l \ \overline{v_l}$
	V _{ub}	0.00367 ± 0.00015	$B \rightarrow \pi \ l \ \overline{v_l}$
		0.00451 ± 0.00020	$b \rightarrow u \ l \ \overline{v}_l$
		0.00398 ± 0.00040	
	$\left \mathbf{V_{tb}}\right / \sqrt{\sum_{q} \left \mathbf{V_{tq}}\right ^2}$	> 0.975 (95% CL)	$t \to b W / t \to q W$
	$ \mathbf{V_{tb}} $	1.019 ± 0.025	$p\overline{p} \to tb + X$

 $|\mathbf{V}_{ud}|^2 + |\mathbf{V}_{us}|^2 + |\mathbf{V}_{ub}|^2 = 0.9989 \pm 0.0005$ $|\mathbf{V}_{cd}|^2 + |\mathbf{V}_{cs}|^2 + |\mathbf{V}_{cb}|^2 = 1.042 \pm 0.034$

Flavour Physics

 $|\mathbf{V}_{ub}|^{2} + |\mathbf{V}_{cb}|^{2} + |\mathbf{V}_{tb}|^{2} = 1.040 \pm 0.051$ $\sum_{j} \left(|\mathbf{V}_{uj}|^{2} + |\mathbf{V}_{cj}|^{2} \right) = 2.002 \pm 0.027 \quad \text{(LEP)}$ A. Pich – TAE 2018

V	CKM entry	Value	Source
• ij	V _{ud}	0.97366 ± 0.00015	Nuclear β decay
	Seng et al	0.9763 ± 0.0016 0.9749 ± 0.0026	$n \to p e^- \overline{\nu}_e$ $\pi^+ \to \pi^0 e^+ \nu$
—	$ \mathbf{V}_{us} $	0.2231 ± 0.0007	$K \to \pi \ e^- \overline{v_e}$
		$\begin{array}{c} 0.2252 \pm 0.0007 \\ 0.2213 \pm 0.0023 \end{array}$	$K/\pi \rightarrow \mu \nu$, Lattice, V_{ud} τ decays
	V _{cd}	$0.230 \pm 0.011 \\ 0.216 \pm 0.005$	$v d \rightarrow c X$ $D \rightarrow (\pi) l v$, Lattice
-	V _{cs}	0.997 ± 0.017	$D \rightarrow K l v, D_s \rightarrow l v$, Lattice
	V _{cb}	$0.0405 \pm 0.0010 \\ 0.0420 \pm 0.0006$	$B \to D^* l \overline{v}_l , D l \overline{v}_l$ $b \to c l \overline{v}_l$
—	V _{ub}	$\begin{array}{c} 0.00367 \pm 0.00015 \\ 0.00451 \pm 0.00020 \end{array}$	$B \to \pi \ l \ \overline{v}_l$ $b \to u \ l \ \overline{v}_l$
		0.00398 ± 0.00040	L
	$egin{aligned} & \left \mathbf{V_{tb}} \right / \sqrt{\sum_{q} \left \mathbf{V_{tq}} \right ^2} \ & \left \mathbf{V_{tb}} \right \end{aligned}$	> 0.975 (95% CL) 1.019 ± 0.025	$t \to bW/t \to qW$ $p\overline{p} \to tb + X$

 $|\mathbf{V}_{ud}|^2 + |\mathbf{V}_{us}|^2 + |\mathbf{V}_{ub}|^2 = 0.9978 \pm 0.0004$ $|\mathbf{V}_{cd}|^2 + |\mathbf{V}_{cs}|^2 + |\mathbf{V}_{cb}|^2 = 1.042 \pm 0.034$

$$\begin{aligned} \left| \mathbf{V}_{ub} \right|^{2} + \left| \mathbf{V}_{cb} \right|^{2} + \left| \mathbf{V}_{tb} \right|^{2} &= 1.040 \pm 0.051 \\ \sum_{j} \left(\left| \mathbf{V}_{uj} \right|^{2} + \left| \mathbf{V}_{cj} \right|^{2} \right) &= 2.002 \pm 0.027 \quad \text{(LEP)} \\ \text{A. Pich - TAE 2018} \qquad 33 \end{aligned}$$

Hierarchical Structure

 $\mathbf{V} \approx \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix} + \mathcal{O}(\lambda^4)$

 $\lambda \approx \sin \theta_{\rm C} \approx 0.223$; $A \approx 0.84$; $\sqrt{\rho^2 + \eta^2} \approx 0.4$

Flavour Physics

Backup

$$D \rightarrow K \downarrow v : |f_{+}^{DK}(0) V_{CS}| = 0.7226 \pm 0.0022 \pm 0.0026 \quad \text{HFAG 2017}$$

FLAG 2016 (N_r=2+1): $f_{+}^{DK}(0) = 0.747 \pm 0.019 \quad |V_{cS}| = 0.967 \pm 0.005 \pm 0.025$

$$D_{S} \rightarrow \downarrow v : |f_{D_{S}} V_{CS}| = (250.3 \pm 4.5) \text{ MeV} \quad \text{HFAG 2017}$$

FLAG 2016 (N_r=2+1+1): $f_{D_{S}} = (248.83 \pm 1.27) \text{ MeV} \quad |V_{cS}| = 1.006 \pm 0.018 \pm 0.005$

$$D \rightarrow \pi | \mathbf{v} : | f_{+}^{D\pi}(0) V_{cd} | = 0.1426 \pm 0.0017 \pm 0.0008 \quad \text{HFAG 2017}$$

$$FLAG 2016 \quad (N_{r}=2+1): \quad f_{+}^{D\pi}(0) = 0.666 \pm 0.029 \quad (V_{cd}) = 0.2141 \pm 0.0029 \pm 0.0093 \quad (V_{cd}) = 0.2141 \pm 0.0029 \pm 0.0093 \quad (V_{cd}) = 0.2141 \pm 0.0029 \pm 0.0093 \quad (V_{cd}) = 0.2164 \pm 0.0029 \pm 0.0015 \quad (V_{cd}) = 0.2164 \pm 0.0050 \pm 0.0015 \quad (V_{cd}) = 0.0050 \pm 0.0015 \quad (V_{cd}) = 0.0050 \pm 0.0050 \pm 0.0015 \quad (V_{cd}) = 0.0050 \pm 0.0050 \pm 0.0015 \quad (V_{cd}) = 0.0050 \pm 0.0050 \pm 0.0050 \pm 0.0050 \pm 0.0050 \quad (V_{cd}) = 0.0050$$

$$|V_{cs}| = 0.997 \pm 0.017$$
 $|V_{cd}| = 0.216 \pm 0.005$

