2. CKM Structure

OUR PAVSICS

A. Pich IFIC, U. València - CSIC

TAE 2018, Centro de Física de Benasque "Pedro Pascual", Benasque, Spain, 2-15 September, 2018

V	CKM entry	Value	Source
_ ij	$ \mathbf{V}_{ud} $	0.97420 ± 0.00021	Nuclear β decay
		0.9763 ± 0.0016	$n \rightarrow p e^- \overline{v}_e$
		0.9749 ± 0.0026	$\pi^+ \to \pi^0 e^+ \nu_e$
	V _{us}	0.2231 ± 0.0007	$K \to \pi e^- \overline{v}_e$
		0.2253 ± 0.0007	$K/\pi \rightarrow \mu \nu$, Lattice, V _{ud}
		0.2213 ± 0.0023	au decays
	V _{cd}	0.230 ± 0.011	$v d \rightarrow c X$
		$\boldsymbol{0.216\pm0.005}$	$D \rightarrow (\pi) l v$, Lattice
	$ \mathbf{V}_{cs} $	$\boldsymbol{0.997 \pm 0.017}$	$D \rightarrow K l v, D_s \rightarrow l v$, Lattice
	V _{cb}	0.0405 ± 0.0010	$B \rightarrow D^* l \overline{v}_l, D l \overline{v}_l$
	1 001	0.0420 ± 0.0006	$b \rightarrow c l \overline{v_l}$
	$ \mathbf{V_{ub}} $	0.00367 ± 0.00015	$B \rightarrow \pi \ l \ \overline{v}_l$
	1.1.1.1.1	0.00451 ± 0.00020	$b \rightarrow u \ l \ \overline{v_l}$
		0.00398 ± 0.00040	
	$\left \mathbf{V_{tb}} \right / \sqrt{\sum_{q} \left \mathbf{V_{tq}} \right ^2}$	> 0.975 (95% CL)	$t \to b W / t \to q W$
	$ \mathbf{V_{tb}} $	1.019 ± 0.025	$p\overline{p} \to tb + X$

 $|\mathbf{V}_{ud}|^2 + |\mathbf{V}_{us}|^2 + |\mathbf{V}_{ub}|^2 = 0.9989 \pm 0.0005$ $|\mathbf{V}_{cd}|^2 + |\mathbf{V}_{cs}|^2 + |\mathbf{V}_{cb}|^2 = 1.042 \pm 0.034$

Flavour Physics

 $|\mathbf{V}_{ub}|^{2} + |\mathbf{V}_{cb}|^{2} + |\mathbf{V}_{tb}|^{2} = 1.040 \pm 0.051$ $\sum_{j} \left(|\mathbf{V}_{uj}|^{2} + |\mathbf{V}_{cj}|^{2} \right) = 2.002 \pm 0.027 \quad \text{(LEP)}$ A. Pich – TAE 2018

Hierarchical Structure

 $\mathbf{V} \approx \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix} + \mathcal{O}(\lambda^4)$

 $\lambda \approx \sin \theta_{\rm C} \approx 0.223$; $A \approx 0.84$; $\sqrt{\rho^2 + \eta^2} \approx 0.4$

QUARK MIXING MATRIX

• Unitary $N_{\rm G} \times N_{\rm G}$ Matrix: $N_{\rm G}^2$ parameters $\mathbf{V} \cdot \mathbf{V}^{\dagger} = \mathbf{V}^{\dagger} \cdot \mathbf{V} = \mathbf{1}$ $\frac{1}{2}N_{\rm G}(N_{\rm G}-1)$ moduli, $\frac{1}{2}N_{\rm G}(N_{\rm G}+1)$ phases

• $2 N_{\rm G} - 1$ arbitrary phases: $\overline{u}_i V_{ij} d_j$

$$u_{i} \rightarrow e^{i\phi_{i}} u_{i} ; d_{j} \rightarrow e^{i\theta_{j}} d_{j} \longrightarrow V_{ij} \rightarrow e^{i(\theta_{j} - \phi_{i})} V_{ij}$$

$$V_{ij}$$
Physical Parameters: $\frac{1}{2}N_G(N_G-1)$ moduli; $\frac{1}{2}(N_G-1)(N_G-2)$ phases

• $N_f = 2$: 1 angle, 0 phases (Cabibbo)

$$\mathbf{V} = \begin{bmatrix} \cos \theta_{\rm C} & \sin \theta_{\rm C} \\ -\sin \theta_{\rm C} & \cos \theta_{\rm C} \end{bmatrix} \longrightarrow \qquad \mathbf{No} \quad \mathcal{CP}$$

• $N_f = 3$: 3 angles, 1 phase (CKM) $c_{ij} \equiv \cos \theta_{ij}$; $s_{ij} \equiv \sin \theta_{ij}$

$$\mathbf{V} = \begin{bmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta_{13}} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta_{13}} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta_{13}} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta_{13}} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta_{13}} & c_{23} c_{13} \end{bmatrix}$$

$$\approx \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix} + \mathcal{O}(\lambda^4)$$

 $\lambda \approx \sin \theta_{\rm C} \approx 0.223$; $A \approx 0.84$; $\sqrt{\rho^2 + \eta^2} \approx 0.4$

Flavour Physics

A. Pich – TAE 2018

 $\delta_{13} \neq 0 \quad (\eta \neq 0) \quad \blacksquare$

5

PDG parametrization of the CKM matrix

$$\mathbf{V} = \begin{bmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta_{13}} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta_{13}} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta_{13}} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta_{13}} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta_{13}} & c_{23} c_{13} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13} e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta_{13}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Wolfenstein: $s_{12} \equiv \lambda$, $s_{23} \equiv A\lambda^2$, $s_{13}e^{-i\delta_{13}} \equiv A\lambda^3(\rho - i\eta)$

$$\mathbf{V} \approx \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix} + \mathcal{O}(\lambda^4)$$

Flavour Physics

A. Pich – TAE 2018

GIM Mechanism

• Top contribution dominates. Strong suppression: $\mathcal{M} \propto \frac{g^4}{16 \pi^2} \left| \lambda^5 A^2 \frac{m_t^2}{M_{err}^2}, \lambda \frac{m_c^2}{M_{err}^2} \right|$

• CP effects fully governed by top contribution $\left[\operatorname{Im}(V_{cs} V_{cd}^*) = -\operatorname{Im}(V_{ts} V_{td}^*) \right]$

Flavour Physics

7

- \mathcal{C} , \mathcal{P} : Violated maximally in weak interactions
- CP: Symmetry of nearly all observed phenomena
- Slight (~ 0.2 %) CP in K^0 decays (1964)
- Sizeable CP in B^0 decays (2001)

Standard Model $C \not\!\!\!/ P$: 3 fermion families needed

$$\begin{array}{c} \swarrow & \mathbf{H}(M_u^2) \cdot \mathbf{H}(M_d^2) \cdot \mathbf{J} \neq \mathbf{0} \\ \\ \mathbf{H}(M_u^2) \equiv (m_t^2 - m_c^2) \ (m_c^2 - m_u^2) \ (m_t^2 - m_u^2) \\ \\ \mathbf{H}(M_d^2) \equiv (m_b^2 - m_s^2) \ (m_s^2 - m_d^2) \ (m_b^2 - m_d^2) \\ \\ \\ \mathbf{J} = c_{12} c_{13}^2 c_{23} s_{12} s_{13} s_{23} \sin \delta_{13} = \left| A^2 \lambda^6 \eta \right| < 10^{-4} \\ \end{array}$$

- Low-Energy Phenomena
- Small Effects ~ J
- Big Asymmetries \iff Suppressed Decays
- B Decays are an optimal place for \mathcal{OP} signals

$$\mathbf{T}(\mathbf{P} \to \mathbf{f}) = \mathbf{T}_{1} e^{i\phi_{1}} e^{i\delta_{1}} + \mathbf{T}_{2} e^{i\phi_{2}} e^{i\delta_{2}}$$
$$\mathcal{CP}$$
$$\mathbf{T}(\overline{\mathbf{P}} \to \overline{\mathbf{f}}) = \mathbf{T}_{1} e^{-i\phi_{1}} e^{i\delta_{1}} + \mathbf{T}_{2} e^{-i\phi_{2}} e^{i\delta_{2}}$$

$$A_{P \to f}^{CP} \equiv \frac{\Gamma(P \to f) - \Gamma(\overline{P} \to \overline{f})}{\Gamma(P \to f) + \Gamma(\overline{P} \to \overline{f})} = \frac{-2 T_1 T_2 \sin(\phi_2 - \phi_1) \sin(\delta_2 - \delta_1)}{T_1^2 + T_2^2 + 2 T_1 T_2 \cos(\phi_2 - \phi_1) \cos(\delta_2 - \delta_1)}$$

One needs:

- 2 Interfering Amplitudes
- 2 Different Weak Phases
- 2 Different FSI Phases

 $\begin{bmatrix} \sin(\phi_2 - \phi_1) \neq 0 \end{bmatrix}$ $\begin{bmatrix} \sin(\delta_2 - \delta_1) \neq 0 \end{bmatrix}$

11

$$A_{CP}(B \to f) \equiv \frac{\operatorname{Br}(\overline{B} \to \overline{f}) - \operatorname{Br}(B \to f)}{\operatorname{Br}(\overline{B} \to \overline{f}) + \operatorname{Br}(B \to f)}$$

$$A_{CP}(B_d^0 \to \pi^- K^+) = -0.082 \pm 0.006$$
 (13.7 o)

$$A(B_s^0 \to \pi^- K^+) = -0.26 \pm 0.04$$
 (6.5 σ)

$$A_{CP}(B^+ \to K^+ K^- \pi^+) = -0.118 \pm 0.022$$
 (5.4 o)

Large & Interesting Signals

Big challenge: Get reliable SM predictions

Severe hadronic uncertainties

INDIRECT \mathcal{OP} : $\mathbf{K}^{0} - \overline{\mathbf{K}}^{0}$ **MIXING**

$$\left| K_{S,L}^{0} \right\rangle \sim p \left| K^{0} \right\rangle \mp q \left| \overline{K}^{0} \right\rangle$$
$$q/p \equiv \left(1 - \overline{\varepsilon}_{K} \right) / \left(1 + \overline{\varepsilon}_{K} \right)$$

$$\left\langle \overline{K}^{0} \left| \mathbf{H} \right| K^{0} \right\rangle \sim \sum_{ij} \lambda_{i} \lambda_{j} S(r_{i}, r_{j}) \eta_{ij} \left\langle O_{\Delta S=2} \right\rangle$$

$$\left\langle O_{\Delta S=2} \right\rangle = \alpha_{s}(\mu)^{-2/9} \left\langle \overline{K}^{0} \left| \left(\overline{s}_{L} \gamma^{\alpha} d_{L} \right) (\overline{s}_{L} \gamma_{\alpha} d_{L}) \right| K^{0} \right\rangle = \left(\frac{4}{3} M_{K}^{2} f_{K}^{2} \right) \hat{B}_{K}$$

$$\lambda_{i} \equiv V_{id} V_{is}^{*} \qquad ; \qquad r_{i} \equiv m_{i}^{2} / M_{W}^{2} \qquad (i = u, c, t)$$

- GIM Mechanism: $\lambda_u + \lambda_c + \lambda_t = 0$ $(M_{\kappa_t} - M_{\kappa_s})/M_{\kappa^0} = (7.00 \pm 0.01) \cdot 10^{-15}$

- \mathcal{CP} : $\operatorname{Im}\lambda_t = -\operatorname{Im}\lambda_c \simeq \eta\lambda^5 A^2$
- Hard GIM Breaking: $S(r_i, r_i) \sim r_i$ \longrightarrow t quark

Flavour Physics

A. Pich – TAE 2018 13

INDIRECT $C \not P$: $K^0 - \overline{K}^0$ MIXING

$$\left| K_{S,L}^{0} \right\rangle \sim p \left| K^{0} \right\rangle \mp q \left| \overline{K}^{0} \right\rangle$$
 $q/p \equiv (1 - \overline{\varepsilon}_{K})/(1 + \overline{\varepsilon}_{K})$

$$\left\langle \overline{K}^{0} \left| \mathbf{H} \right| K^{0} \right\rangle \sim \sum_{ij} \lambda_{i} \lambda_{j} S(r_{i}, r_{j}) \eta_{ij} \left\langle O_{\Delta S=2} \right\rangle$$

$$\left\langle O_{\Delta S=2} \right\rangle = \alpha_{s}(\mu)^{-2/9} \left\langle \overline{K}^{0} \left| \left(\overline{s}_{L} \gamma^{\alpha} d_{L} \right) \left(\overline{s}_{L} \gamma_{\alpha} d_{L} \right) \right| K^{0} \right\rangle = \left(\frac{4}{3} M_{K}^{2} f_{K}^{2} \right) \hat{B}_{K}$$

$$\lambda_{i} \equiv V_{id} V_{is}^{*} \qquad ; \qquad r_{i} \equiv m_{i}^{2} / M_{W}^{2} \qquad (i = u, c, t)$$

$$\begin{array}{c|c} \mathcal{C} \left| K^{0} \right\rangle = \left| \overline{K}^{0} \right\rangle &, \quad \mathcal{P} \left| K^{0} \right\rangle = - \left| K^{0} \right\rangle &, \quad \mathcal{CP} \left| K^{0} \right\rangle = - \left| \overline{K}^{0} \right\rangle \\ \left| K^{0}_{1,2} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| K^{0} \right\rangle \mp \left| \overline{K}^{0} \right\rangle \right) &, \quad \mathcal{CP} \left| K^{0}_{1,2} \right\rangle = \pm \left| K^{0}_{1,2} \right\rangle \\ \left| K^{0}_{S} \right\rangle \simeq \left| K^{0}_{1} \right\rangle + \overline{\varepsilon}_{K} \left| K^{0}_{2} \right\rangle &, \quad \left| K^{0}_{L} \right\rangle \simeq \left| K^{0}_{2} \right\rangle + \overline{\varepsilon}_{K} \left| K^{0}_{1} \right\rangle \end{array}$$

Flavour Physics

A. Pich – TAE 2018 14

INDIRECT \mathcal{OP} : $\mathbf{K}^{0} - \overline{\mathbf{K}}^{0}$ **MIXING**

$$\left| K_{S,L}^{0} \right\rangle \sim p \left| K^{0} \right\rangle \mp q \left| \overline{K}^{0} \right\rangle$$
 $q/p \equiv (1 - \overline{\varepsilon}_{K})/(1 + \overline{\varepsilon}_{K})$

$$K^{0} \to \pi^{-}l^{+}v_{l} \quad (\overline{s} \to \overline{u}) \quad ; \quad \overline{K}^{0} \to \pi^{+}l^{-}\overline{v}_{l} \quad (s \to u)$$

$$\frac{\Gamma\left(K_{L}^{0} \to \pi^{-}l^{+}v_{l}\right) - \Gamma\left(K_{L}^{0} \to \pi^{+}l^{-}\overline{v}_{l}\right)}{\Gamma\left(K_{L}^{0} \to \pi^{-}l^{+}v_{l}\right) + \Gamma\left(K_{L}^{0} \to \pi^{+}l^{-}\overline{v}_{l}\right)} = \frac{|p|^{2} - |q|^{2}}{|p|^{2} + |q|^{2}} = \frac{2 \operatorname{Re}(\overline{\varepsilon}_{K})}{1 + |\overline{\varepsilon}_{K}|^{2}} = (0.332 \pm 0.006)\%$$

$$\Longrightarrow \qquad \operatorname{Re}(\overline{\varepsilon}_{K}) = (1.66 \pm 0.03) \cdot 10^{-3}$$

$$\eta_{+-} \equiv \frac{T(K_L \to \pi^+ \pi^-)}{T(K_S \to \pi^+ \pi^-)} \approx \varepsilon_K$$

$$\varepsilon_K = (2.228 \pm 0.011) \cdot 10^{-3} e^{i\phi_{\varepsilon}}$$

 $\phi_{\varepsilon} = (43.52 \pm 0.05)^{\circ}$

Buras et al

$$\eta_{00} \equiv \frac{T(K_L \to \pi^0 \pi^0)}{T(K_S \to \pi^0 \pi^0)} \approx \varepsilon_K$$

$$\eta \left[(1-\rho) A^2 + 0.22 \right] A^2 \hat{B}_K = 0.143$$

Lattice Results for B_k

 $B_{K}^{\overline{\text{MS}}}(2\,\text{GeV}) = 0.557 \pm 0.007$, $\hat{B}_{K} = 0.763 \pm 0.010$

 $(N_f = 2 + 1)$

Flavianet Lattice Averaging Group

DIRECT CP in $K \rightarrow \pi \pi$

$$\eta_{+-} \equiv \frac{T(K_L \to \pi^+ \pi^-)}{T(K_S \to \pi^+ \pi^-)} \approx \varepsilon_K + \varepsilon'_K \qquad \qquad \eta_{00} \equiv \frac{T(K_L \to \pi^0 \pi^0)}{T(K_S \to \pi^0 \pi^0)} \approx \varepsilon_K - 2\varepsilon'_K$$

$$\operatorname{Re}\left(\varepsilon_{K}' / \varepsilon_{K}\right) \approx \frac{1}{6} \left\{ 1 - \left| \frac{\eta_{00}}{\eta_{+-}} \right|^{2} \right\} = (16.8 \pm 1.4) \cdot 10^{-4}$$
 NA48, NA31
KTeV, E731

