Neutrino Physics (II)

Mariam Tórtola

IFIC, Universitat de València/CSIC

International Summer Workshop on High Energy Physics 2018 TAE 2018 – Benasque (Spain), Sep 02 – Sep 15

Outline

- Historical introduction to neutrino physics
- Neutrinos in the Standard Model
- Neutrino masses beyond the Standard Model
- Neutrino oscillations in vacuum and matter
- Three-flavour neutrino oscillations
- O Beyond three-neutrino flavours: sterile neutrinos
- The absolute scale of neutrino mass
- Future prospects in neutrino oscillations
- Neutrino physics beyond the Standard Model

Three-flavour neutrino oscillations

all data samples are connected \rightarrow a global 3v analysis is required.

Neutrino oscillation analysis methodology

Experimental data

Methodology

- solar: Homestake, Gallex/GNO, SAGE, Borexino, SNO, Super-K
- reactor: KamLAND, Double Chooz, RENO, Daya Bay
- atmospheric: Super-K, IceCube, ANTARES
- LBL: K2K, MINOS, T2K, NovA

Parameter sensitivity

The solar neutrino sector

Solar neutrinos

Radiochemical solar experiments

Homestake (Cl) experiment: 1967-2002

- gold mine in Homestake (South Dakota)
- ▶ 615 tons of perchloro-ethylene (C₂Cl₄)
- detection process (radiochemical)

$$v_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^- E_{th} = 0.814 \text{ MeV}$$

only 1/3 of SSM prediction detected:

 $\mathsf{R}^{\mathrm{SSM}}_{\mathit{Cl}}$ = 8.12 \pm 1.25 SNU

R_{Cl} = 2.56 \pm 0.16 (stat.) \pm 0.16 (syst.) SNU

Gallium radiochemical experiments:

R_{SAGE} = 66.9 ± 3.9 (stat.) ± 3.6 (syst.) SNU

 $R_{GALLEX/GNO}$ = 69.3 \pm 4.1 (stat.) \pm 3.6 (syst.) SNU

 $\mathsf{R}_{Ga}^{\mathrm{SSM}}$ = 126.2 \pm 8.5 SNU

→ 50% deficit

Solar neutrinos in Super-Kamiokande

Super-Kamiokade detector

water cherenkov detector

sensitive to all neutrino flavors: $v_x e^- \rightarrow v_x e^-$

1 1 1

- threshold energy ~ 4-5 MeV
- real-time detector: (E, t)

The solar neutrino problem

All the experiments detect less neutrinos than expected (30-50%) Why the deficit observed is different? Ifferent type of neutrinos observed \rightarrow radiochemical: v_e while Super-K: v_{α} Ifferent E-range sensitivity: \rightarrow Cl: E > 0.814 MeV Tutorials \rightarrow Ga: E > 0.233 MeV

 \rightarrow Super-K: E > 5 MeV

The Sudbury Neutrino Observatory, SNO

The Sudbury Neutrino Observatory

SNO is sensitive to all ν flavors:

ve flux (CC):

only 30% of the produced solar neutrinos are detected as ν_{e}

total v flux (NC):

$$\phi_{\rm NC}^{\rm SNO} = 5.54^{+0.33}_{-0.31}(\text{stat})^{+0.36}_{-0.34}(\text{syst})$$

100% !!

The solar neutrino problem

The Sun produces v_e that arrive to the Earth as 1/3 v_e + 1/3 v_{μ} + 1/3 v_{τ}

→ flavor conversion: $v_e \rightarrow v_x$

Conversion mechanism ? Neutrino oscillations ??

The KamLAND reactor experiment

Kamioka Liquid scinitillator Anti-Neutrino Detector

reactor experiment:

 $\overline{\nu}_e + p \to n + e^+$

* 55 commercial power reactors

A average distance ~ 180 km
 → E_v/L sensitivity range: Δm² ~ 10⁻⁵ eV²
 → correct order of magnitude to test solar neutrino oscillations in LMA region

* CPT invariance: same oscillation channel as solar v_e (Δm^2_{21} , θ_{12})

Combined analysis solar + KamLAND

KamLAND confirms solar neutrino oscillations.

* Best fit point: $sin^{2}\theta_{12} = 0.321 + 0.018$ -0.016 $\Delta m^{2}_{21} = 7.56 \pm 0.19 \times 10^{-5} \text{ eV}^{2}$

* max. mixing excluded at more than 7σ

de Salas et al, PLB 782 (2018) 633

Bound on θ₁₂ dominated by solar data.
 Bound on Δm²₂₁ dominated by KamLAND.
 mismatch between Δm²₂₁ from solar and KamLAND

The atmospheric neutrino sector

Atmospheric neutrinos

Super-K Coll, PRL93, 101801 (2004)

$$P_{\mu\mu} = 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2}{4} \frac{L}{E_{\nu}}\right)$$

Super-K Coll., PRL 8 (1998) 1562.

Neutrino telescopes

70 m

ANTARES E_{ν} > 20 GeV

IceCube-DeepCore, $E_{v} \in [6-56 \text{ GeV}]$

Running since 2007

40 km to

shar

885 10" PMTs

 25 storeys/line 3 PMTs / storey

12 lines

450 m

Atmospheric neutrino experiments

• Super-Kamiokande (phases I to IV) • IceCube-DeepCore (3 years of data) Aartsen et al, arXiv:1410.7227 • ANTARES (863 days of data)

Wendell et al, PRD81 (2010) Adrián-Martínez et al, PLB 2012

de Salas et al, PLB 782 (2018) 633

LBL accelerator neutrino experiments

GOAL: observation of ν_{μ} disappearance, ν_{e} appearance and spectral distortions expected in the case of neutrino oscillations

- consistent with atmospheric data

 \rightarrow atm ν oscillations confirmed by laboratory exps

Accelerator LBL experiments

MINOS + T2K (neutrino + antineutrino)
NOvA (only neutrino data)

all experiments prefer mixing angle close to maximal

Atmospheric parameters

Combined analysis atmospheric + LBL data

atmospheric parameters are mostly constrained by LBL data

de Salas et al, PLB 782 (2018) 633

The reactor mixing angle θ_{13}

Three on-going reactor experiments

Experiment	Power (GW)	Baseline(m) Near/Far	Detector(t) Near/Far	Overburden (MWE) Near/Far	Designed Sensitivity (90%CL)
Daya Bay	17.4	470/576/1650	40//40/80	250/265/860	~ 0.008
Double Chooz	8.5	400/1050	8.2/8.2	120/300	~ 0.03
Reno	16.5	409/1444	16/16	120/450	~ 0.02

Daya Bay

Double Chooz

Reno

6 cores + 4 ND + 4FD

2 cores + 1 ND + 1 FD

6 cores + 1 ND + 1 FD

Reactor sector

Daya Bay + RENO + Double Chooz

de Salas et al, PLB 782 (2018) 633

Precision dominated by Daya Bay

Updated global fit summary

• preference for Normal Ordering with $\Delta \chi^2$ (IO-NO) ≈ 11.7 \Rightarrow Inverted Ordering disfavoured at 3.4 σ

Updated global fit summary

parameter	best fit $\pm 1\sigma$	3σ range	relative 1c
$\Delta m_{21}^2 [10^{-5} \text{eV}^2]$	$7.55\substack{+0.20 \\ -0.16}$	7.05-8.14	2.4%
$\frac{ \Delta m_{31}^2 }{ \Delta m_{31}^2 } \begin{bmatrix} 10^{-3} \text{eV}^2 \end{bmatrix} \text{(NO)} \\ \frac{ \Delta m_{31}^2 }{ \Delta m_{31}^2 } \begin{bmatrix} 10^{-3} \text{eV}^2 \end{bmatrix} \text{(IO)}$	$2.50{\pm}0.03\\2.42{}^{+0.03}_{-0.04}$	2.41 – 2.60 2.31 – 2.51	1.3%
$\sin^2 \frac{\theta_{12}}{10^{-1}}$	$3.20\substack{+0.20\\-0.16}$	2.73 - 3.79	5.5%
$\frac{\sin^2 \theta_{23}}{10^{-1}} (\text{NO}) \\ \frac{\sin^2 \theta_{23}}{10^{-1}} (\text{IO})$	$5.47\substack{+0.20\\-0.30}\\5.51\substack{+0.18\\-0.30}$	4.45 - 5.99 4.53 - 5.98	4.7% 4.4%
$\frac{\sin^2 \theta_{13}}{10^{-2}} (\text{NO}) \\ \frac{\sin^2 \theta_{13}}{10^{-2}} (\text{IO})$	$2.160\substack{+0.083\\-0.069}\\2.220\substack{+0.074\\-0.076}$	1.96 – 2.41 1.99 – 2.44	3.5%
$\frac{\delta}{\pi}$ (NO) $\frac{\delta}{\pi}$ (IO)	${\begin{array}{c} 1.32\substack{+0.21\\-0.15}\\ 1.56\substack{+0.13\\-0.15} \end{array}}$	0.87 - 1.94 1.12 - 1.94	10% 9%

Beyond three-neutrino flavours: sterile neutrinos

How many neutrinos?

► according to LEP measurements of invisible Z decay width: $\rightarrow N_{\nu} = 2.984 \pm 0.008$ (light, active neutrinos)

Experimental hints for a 4th sterile neutrino:

- ▶ LSND signal for $\overline{
 u}_{\mu}
 ightarrow \overline{
 u}_{e}$ oscillations with E/L ~ 1 eV²
- MiniBooNE searches for $\overline{
 u}_\mu o \overline{
 u}_e$ and $u_\mu o
 u_e$ at similar E/L

• Reactor antineutrino anomaly: very short baseline ν_e disappearance indicated by the reevaluated reactor neutrino fluxes

▶ Gallium anomaly: ν_e disappearance during calibration of Gallium solar experiments with radioactive sources (L ~ 1 m)

What is a sterile neutrino?

sterile neutrino = singlet fermion of the Standard Model

 \rightarrow it has no interactions (exceptions: Higgs, mixing and physics BSM)

Motivations: sterile neutrinos can explain...

neutrino oscillation anomalies (m ~ eV)

▶ small neutrino masses (seesaw mechanism, m > TeV-M_{pl})

baryon asymmetry of the universe (leptogenesis, m>> 1 GeV)

(part of) the dark matter of the universe (m ~ keV)

Hints for $v_{\mu} \rightarrow v_{e}$ appearance

The LSND anomaly

• Evidence for $\ \overline{
u}_{\mu}
ightarrow \overline{
u_{e}}$ oscillations

Excess of ν_e events:
 87.9 ± 22.4 ± 6.0 (3.8σ)

L ~ 30m, E ~ 20-75 MeV LSND Collab., PRD 64 (2001) 112007

The LSND anomaly

• Evidence for $\ \overline{
u}_{\mu}
ightarrow \overline{
u_{e}}$ oscillations

Excess of ν_e events:
 87.9 ± 22.4 ± 6.0 (3.8σ)

 Part of the allowed region excluded by other experiments.

• $\Delta m^2_{LSND} \sim 0.2-10 \text{ eV}^2$

L ~ 30m, E ~ 20–75 MeV LSND Collab., PRD 64 (2001) 112007

The LSND anomaly

• Evidence for $\ \overline{
u}_{\mu}
ightarrow \overline{
u}_{e}$ oscillations

Excess of ν_e events:
 87.9 ± 22.4 ± 6.0 (3.8σ)

 Part of the allowed region excluded by other experiments.

$$\begin{split} & \Delta m^2_{\text{LSND}} \sim 0.2 \text{--}10 \text{ eV}^2 \\ & \rightarrow \Delta m^2_{\text{LSND}} \neq \Delta m^2_{\text{SOL}}, \ \Delta m^2_{\text{ATM}} \\ & \rightarrow \Delta m^2_{\text{LSND}} \neq \Delta m^2_{\text{SOL}} + \Delta m^2_{\text{ATM}} \end{split}$$

 \Rightarrow 4th sterile neutrino required !!

L ~ 30m, E ~ 20–75 MeV LSND Collab., PRD 64 (2001) 112007

The MiniBooNE experiment

- Designed to test the LSND signal (similar L/E ratio)
- Runs in neutrino and antineutrino mode
- The neutrino channel results have been changing with time:

- is \mathbf{v} signal compatible with $2\mathbf{v}$ oscillations?
- 2007: $P_{\text{osc}} \simeq 1\% \Rightarrow \text{no it isn't [25]};$ 2012: $P_{\text{osc}} \simeq 6\% \Rightarrow \text{maybe it is [26]};$ 2018: $P_{\text{osc}} \simeq 15\% \Rightarrow \text{yes it is [27]};$
- do MB-ν rule out LSND-ν̄ signal? 2007: yes [25]; 2012: not really [26]; 2018: no [27].

Michele Maltoni, Neutrino-2018

Hints for ve disappearance

\bar{v}_e disappearance in reactor experiments

- Historically, very-short-baseline reactor experiments (10-100 m) have not observed any disappearance of reactor neutrinos.
- 2011: improved calculations of antineutrino fluxes report 3% increase of the neutrino flux
 Mueller et al, arXiv:1101.2663, Huber, arXiv 1106.0687

Gariazzo et al, JHEP 2017

⇒ SBL reactor experiments show a deficit in the number of neutrinos detected: $R = 0.927 \pm 0.023$ (3 σ effect)

The Gallium anomaly

• Calibration of Gallium solar experiments GALLEX and SAGE with intense radioactive v_e sources ⁵¹Cr and ³⁷Ar in the process:

 $\nu_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$

→ a reduction in the number of v_e is observed → averaged deficit of $v_{e:}$ R = 0.84 ± 0.05 (2.9 σ)

L ~ 1−2 m, E ~ 0.4−0.8 MeV
 ⇒ L/E similar to reactor anomaly

▶ oscillations with $\Delta m^2 \sim 1 \text{ eV}^2$ can lead to reduction of the v_e flux in the detector volume

Recent indications: NEOS and DANNS

Observation of ratios of reactor antineutrino spectra at two baselines

Gariazzo et al, arxiv:1801.06467

 \Rightarrow 3 σ evidence of SBL ν_e oscillations based on comparisons of measured spectra at different baselines, independent of flux predictions.

Interpretation of the anomalies

 $\Delta m^2_{sol} \sim 8 \times 10^{-5} \text{ eV}^2$

 $\Delta m^2_{atm} \sim 2 \times 10^{-3} eV^2$ $\Delta m^2_{LSND} \sim 1 eV^2$

2+2 neutrino scheme

This scheme requires the presence of sterile neutrinos either in solar or atmospheric neutrinos

However, solar and atmospheric data show a strong preference for active oscillations

excluded by solar and atmospheric data

Maltoni et al, NPB643 (2003), NJP06 (2004)

Global fit in 3+1 neutrino scheme

3+1 spectra include the 3 active-neutrino scenario as limiting case.
solar & atmos oscillations: mainly active v + small sterile component

strong tension between app (LSND/MB) and disapp exp. (CDHS, SK, IceCube, MINOS/+) Disagreement between ν_e and ν_μ data

Dentler et al, arXiv:1803.10661

eV-sterile neutrino in Cosmology

In Cosmology, sterile neutrinos with eV masses would contribute to: Σm_{ν} = sum of neutrino masses

 N_{eff} = relativistic degrees of freedom.

If the mixing active-sterile neutrino is small, one can relax limits from cosmology

• However, for mass & mixing parameters required to explain the anomalies, v_s is fully thermalized in the early universe.

$$\rightarrow \sum m_{\nu} \gtrsim 0.05 \text{eV} + \sqrt{\Delta m_{41}^2} > 1 \text{ eV}$$

 $\rightarrow N_{eff} \approx 4$

Hannestad et al, 1204.5861

Bounds from Cosmology

recent limits on the sum of neutrino masses:

Σm_v < 0.13 – 0.72 eV < 1 eV !!!! Lattanzi & Gerbino, arxiv:1712.07109

recent limits on the effective number of relativistic dof:

PLANCK: N_{eff} = 3.15 ± 0.23
 PLANCK + LSS: N_{eff} = 3.03 ± 0.18
 Lattanzi & Gerbino, arxiv:1712.07109

constraints can be avoided by preventing vs thermalization in the early universe, but it requires large modifications of cosmological model.
 Example: new interactions in the sterile neutrino sector that suppress their thermalization in the early Universe
 Dasgupta and Kopp, PRL112 (2014) 031803
 However: these interactions also affect CMB!! Not easy to solve
 Forastieri et al, JCAP 1707 (2017) 038

The absolute scale of neutrino mass

Constraints on neutrino masses

Technique	Type of Experiment	Sensitivity
Neutrino Oscillations	Laboratory-based (model indep)	$\Delta m_{ij}^2 = m_i^2 - m_j^2$
Cosmological modeling of Astrophysical Observations	Observational (cosmology dep)	$\sum m_i + light dof$
Neutrinoless-Double- Beta Decay (0vββ)	Laboratory-based (model dep)	$\left \sum \left U_{ei}\right ^2 e^{i\alpha(i)}m_i\right ^2$
Beta Decay Kinematics	Laboratory-based (model indep)	$\sum U_{ei} ^2 m_i^2$

From oscillations:

$$m_{\nu} \ge \sqrt{\Delta m_{31}^2 + \Delta m_{21}^2} \gtrsim 0.05 \,\mathrm{eV}$$

Bounds from cosmology

neutrino masses may affect cosmological observables:

- \rightarrow anisotropies in the CMB spectrum
- \rightarrow Large Scale Structure formation
- \rightarrow weak gravitational lensing

▶ Fit ACDM model + experimental data (WMAP, PLANCK, HST, LSS,...)

 Σ m_{vi} < 0.13- 0.72 eV

Lattanzi & Gerbino, arxiv:1712.07109

Tritium beta decay experiments

• β -decay spectrum close to the endpoint is very sensitive to neutrino mass:

$$K(T) = \left[(Q_{\beta} - T) \sum_{i=1}^{N} |U_{ei}|^2 \sqrt{(Q_{\beta} - T)^2 - m_i^2} \Theta(Q_{\beta} - T - m_i) \right]^{1/2}$$

effective neutrino mass:

$$m(\nu_e)^2 = \sum_i |U_{ei}|^2 m(\nu_i)^2$$

Mainz and Troitsk Experiments

 $m_{\nu} < 2.2 \,\mathrm{eV} \,(95\% \,\mathrm{C.L.})$

The KATRIN experiment

(KArlsruhe TRItium Neutrino experiment)

sensitivity (90%CL) mv < 0.2 eV discovery potential $m_{\nu} = 0.35 \text{ eV} (5\sigma)$

Inauguration 11 June 2018

Neutrinoless double beta decay

> $2\nu\beta\beta$: rare process in the SM with $t_{1/2}$ ~ 10^{21} years

• $O_{\nu\beta\beta}$: possible for massive Majorana neutrinos.

 $(A,Z) \rightarrow (A,Z+2) + e^- + e^-$ test v nature

 \rightarrow not observed yet

 \rightarrow t_{1/2}~ 10²⁶-10²⁷years

 \rightarrow violates Lepton Number

 \rightarrow rate depends on m_{ν} , unknown phases and nuclear mass matrix elements

$$\Gamma_{0\nu\beta\beta} = G^{0\nu} |M^{0\nu}|^2 < m_{\beta\beta} >^2$$

$$< m_{\beta\beta} > = |\sum_{i} U_{ei}^2 m_i|$$

→ good separation $2\nu\beta\beta$ from $0\nu\beta\beta$ → low bg $0\nu\beta\beta$ peak region

Bounds from Ovßß decay experiments

⁷⁶Ge (GERDA, Majorana)
 ⁸²Se (Super NEMO)
 ¹³⁰Te (CUORE, SNO+)
 ¹³⁶Xe (EXO, KamLAND-Zen, NEXT)

m_{light}[eV]

 $< m_{\beta\beta} > = |\sum U_{ei}^2 m_i|$

At 90% CL: m_{ββ} < 140-400 meV CUORE m_{ββ} < 147-398 meV EXO-200 $m_{\beta\beta}$ < 120-270 meV GERDA II $m_{\beta\beta}$ < 61–165 meV KL-Zen \rightarrow degenerate region explored \rightarrow next generation: full IH region 3σ discovery sensitivity 20 meV Lattanzi & Gerbino, arxiv:1712.07109

Future prospects in neutrino oscillations

Prospects for precision

JUNO

0.30

10

 $\Delta \chi^2 (sin^2 \theta_{12})$

Abe et al, 1609.04111

~1% precision on Δm^2_{32} ~1–3% precision on $sin^2\theta_{23}$

0.31

 $\sin^2 \theta_{12}$

(6 years) An et al, 1507.05613

~0.7% precision on $sin^2\theta_{12}$ ~0.6% precision on Δm^2_{21}

Prospects for CP violation

T2K-II

▶ by 2024:

> 2σ sensitivity on CP violation at max CP violation

by 2026 (20×10²¹ POT):
 > 3σ sensitivity on CP violation

Prospects for CP violation

• for sensitivities above 3σ from a single experiment: DUNE, Hyper-K

 \rightarrow > 5 σ sensitivity for some fraction of δ_{CP}

Prospects for mass ordering

 by 2023: 3σ determination of MO (similar results for PINGU) • by 2020: 3σ sensitivity (NO and $\delta=3\pi/2$) • by 2024: 3σ sensitivity for 30/50% of δ

JUNO

Reactor experiment with L=50 km

 \Rightarrow 3 σ sensitivity on mass ordering after 6 years

Neutrino physics beyond the Standard Model

Non-standard neutrino interactions

Non-unitary neutrino mixing

Non-Standard Interactions (NSI)

NSI appear in models of neutrino masses

NSI may affect oscillation parameters,

- \Rightarrow precision measurements at current experiments
- \Rightarrow sensitivity reach of upcoming experiments (degeneracies and ambiguities)
- Information about the size of NSI could be very useful for neutrino model building

NSI: Notation

$$\mathcal{L}_{\rm CC-NSI} = -2\sqrt{2}G_F \,\epsilon_{\alpha\beta}^{ff'X} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\ell_{\beta}\right) \left(\bar{f}'\gamma_{\mu}P_Xf\right)$$

 \Rightarrow may affect neutrino production and detection

$$\mathcal{L}_{\rm NC-NSI} = -2\sqrt{2}G_F \,\epsilon_{\alpha\beta}^{fX} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right)$$

 $\epsilon_{\alpha\beta} \neq 0 \longrightarrow NSI$ violate lepton flavor (FC-NSI)

 $\epsilon_{\alpha\alpha} - \epsilon_{\beta\beta} \neq 0 \quad \rightarrow \text{NSI violate LF universality (NU-NSI)}$ \Rightarrow mainly affecting neutrino propagation in matter: $\epsilon_{\alpha\beta}^m$ (but also detection, e.g., Super-K and Borexino)

NSI in the solar sector

with $\theta_{12} > \pi/4$

NSI at future LBL experiments

$(\theta_{23}-\epsilon_{\tau\tau})$ degeneracy in DUNE

Gouvea and Kelly, NPB 2016

Coloma, JHEP 2016

Non-unitary light neutrino mixing

Most models of neutrino masses -> extra heavy states
 Ex: type I seesaw, inverse seesaw

 $\left(\begin{array}{ccc} 0 & M_D \\ M_D^T & M_R \end{array}\right)$

 $\left(\begin{array}{cccc}
0 & M_D & 0 \\
M_D^T & 0 & M \\
0 & M^T & \mu
\end{array}\right)$

• NxN mixing matrix with:

N(N-1)/2 mixing angles and (N-1)(N-2)/2 Dirac CP phases

 \rightarrow (3x3) light neutrino mixing matrix U is non-unitary in general

→ if U is non-unitary: 9 more parameters are needed to describe mixing: 6 new moduli + 3 new phases.

NU neutrino oscillations in DUNE

The new phases will modify the standard oscillation picture in LBL experiments, such as DUNE

 \rightarrow (δ , ϕ) degeneracies in $P_{\mu e}$ for E \gtrsim 3 GeV spoil sensitivity to δ

Escrihuela et al, NJP 2017

CP violation searches in DUNE

> 5σ sensitivity for some fraction of δ_{CP}

E. Worcester, DUNE Collaboration

DUNE CP sensitivity with NU

Escrihuela et al, NJP 2017

The sensitivity to CP violation might be significantly spoiled in the presence of NU

Summary (I)

Neutrinos play an important role in many physical and astrophysical scenarios

Important discoveries on neutrino physics along last century have provided the first evidence for physics beyond the Standard Model

Extensions of the SM can explain the smallness of neutrino mass, although the flavor structure is not well understood yet

Neutrino oscillations are well stablished with observations in several experiments, with natural and artificial sources.

• Oscillation parameters are measured quite accurately (\leq 6%) by the combination of different experiments.

First indications for normal mass ordering and maximal CP violation.

Summary (II)

there are several indications for sterile neutrinos at eV scale.

▶ signal from v_e disappearance at reactor and Gallium experiments are consistent, and not in disagreement with other data samples

• hint from $\nu_{\mu} \rightarrow \nu_{e}$ appearance in LSND and MiniBooNE are in disagreement with negative signals in ν_{μ} disappearance experiments.

consistent picture of eV-sterile neutrinos in tension with cosmology

the absolute scale of neutrino mass is bounded from cosmological and laboratory measurements, below 1 eV.

new physics beyond the SM may affect significantly the standard picture of neutrino oscillations.