
Lectures on Machine Learning

Lecture 2: from parameter learning to non-linear models

Stefano Carrazza

TAE2018, 2-15 September 2018

European Organization for Nuclear Research (CERN)

Acknowledgement: This project has received funding from HICCUP ERC Consolidator
grant (614577) and by the European Unions Horizon 2020 research and innovation
programme under grant agreement no. 740006.

PDFN 3
Machine Learning • PDFs • QCD

Outline

Lecture 1 (yesterday)

• Artificial intelligence

• Machine learning

• Model representation

• Metrics

Lecture 2 (today)

• Parameter learning

• Non-linear models

• Beyond neural networks

• Clustering

1

Parameter learning

Parameter learning

Model

Optimizer

Cost function Best modelCross-validationTraining

Data

2

Cost function minimization

Optimization algorithms minimize an objective

function, J(w), that depends on the model

internal learnable parameters w.

arg min
w

J(w)

w

J(w)

The most popular techniques are:

• normal equations (least squares)

• derivative based optimization

• evolutionary algorithms

The choice of a technique depends on the model and problem employed.

3

Cost function minimization

Optimization algorithms minimize an objective

function, J(w), that depends on the model

internal learnable parameters w.

arg min
w

J(w)

w

J(w)

The most popular techniques are:

• normal equations (least squares)

• derivative based optimization

• evolutionary algorithms

The choice of a technique depends on the model and problem employed.

3

Normal equations

The normal equation is a method to solve for w analytically.

• it is employed in linear and non-linear least squares optimization.

• it is fast for small models with few features, otherwise it can be

computationally intensive and slow.

4

Normal equations example

Example: multivariate linear regression.

Suppose we have m training examples and n features in a matrix X, size

(m,n), and the observed values y we have to solve the system:

Xw = y

How to solve it when the system if overdetermined?

1. Define the cost function for the problem:

J(w) = ||y −Xw||2

2. Compute and impose:
∂J(w)

∂w
= 0

3. We obtain the solution:

w = (XTX)−1XTy = X+y

with X+ is the pseudoinverse of X.

5

Normal equations example

Example: multivariate linear regression.

Suppose we have m training examples and n features in a matrix X, size

(m,n), and the observed values y we have to solve the system:

Xw = y

How to solve it when the system if overdetermined?

1. Define the cost function for the problem:

J(w) = ||y −Xw||2

2. Compute and impose:
∂J(w)

∂w
= 0

3. We obtain the solution:

w = (XTX)−1XTy = X+y

with X+ is the pseudoinverse of X.

5

Normal equations example

Example: multivariate linear regression.

Suppose we have m training examples and n features in a matrix X, size

(m,n), and the observed values y we have to solve the system:

Xw = y

How to solve it when the system if overdetermined?

1. Define the cost function for the problem:

J(w) = ||y −Xw||2

2. Compute and impose:
∂J(w)

∂w
= 0

3. We obtain the solution:

w = (XTX)−1XTy = X+y

with X+ is the pseudoinverse of X.

5

Normal equations example

Example: multivariate linear regression.

Suppose we have m training examples and n features in a matrix X, size

(m,n), and the observed values y we have to solve the system:

Xw = y

How to solve it when the system if overdetermined?

1. Define the cost function for the problem:

J(w) = ||y −Xw||2

2. Compute and impose:
∂J(w)

∂w
= 0

3. We obtain the solution:

w = (XTX)−1XTy = X+y

with X+ is the pseudoinverse of X.

5

Derivative based optimization

More general optimization algorithms based on derivatives:

• First order optimization algorithms: uses the gradient of the cost

function with respect to the parameters in a iteractive procedure.

→ gradient descent algorithms.

• Second order optimization algorithms: uses the Hessian of the

cost function and takes care of the curvature of surface.

→ if the Hessian is known it may be faster than gradient descent,

→ otherwise slow due to the Hessian evaluation.

In practice Gradient Descent is the most popular technique in ML.

6

Derivative based optimization

More general optimization algorithms based on derivatives:

• First order optimization algorithms: uses the gradient of the cost

function with respect to the parameters in a iteractive procedure.

→ gradient descent algorithms.

• Second order optimization algorithms: uses the Hessian of the

cost function and takes care of the curvature of surface.

→ if the Hessian is known it may be faster than gradient descent,

→ otherwise slow due to the Hessian evaluation.

In practice Gradient Descent is the most popular technique in ML.

6

Derivative based optimization

More general optimization algorithms based on derivatives:

• First order optimization algorithms: uses the gradient of the cost

function with respect to the parameters in a iteractive procedure.

→ gradient descent algorithms.

• Second order optimization algorithms: uses the Hessian of the

cost function and takes care of the curvature of surface.

→ if the Hessian is known it may be faster than gradient descent,

→ otherwise slow due to the Hessian evaluation.

In practice Gradient Descent is the most popular technique in ML.

6

Which method?

Q: normal equation or derivative based?

Suppose we have m training examples and n features.

Normal equation

3 no parameters to tune

3 no iterations

7 slow if n is large

7 requires (XTX)−1,O(n3)

Gradient descent

3 efficient when n is large

3 easy to implement/use

7 requires iterations

7 requires parameter tune

7

Which method?

Q: normal equation or derivative based?

Suppose we have m training examples and n features.

Normal equation

3 no parameters to tune

3 no iterations

7 slow if n is large

7 requires (XTX)−1,O(n3)

Gradient descent

3 efficient when n is large

3 easy to implement/use

7 requires iterations

7 requires parameter tune

7

Gradient descent idea

Basic idea:

Assuming we want to minimize J(w) where w is a vector of parameters:

• select a initial solution vector w,

• change the w to reduce J(w)

Repeat until a minimum of J(w) is reached.

w1

30 20 10 0 10 20 30

w2

30
20
10
0
10
20
30

20
40
60
80
100
120
140
160

J(w1,w2)

30 20 10 0 10 20
w1

30

20

10

0

10

20

w
2

J(w1,w2) projection

0

18

36

54

72

90

108

126

144

162

8

Gradient descent idea

Basic idea:

Assuming we want to minimize J(w) where w is a vector of parameters:

• select a initial solution vector w,

• change the w to reduce J(w)

Repeat until a minimum of J(w) is reached.

w1

30 20 10 0 10 20 30

w2

30
20
10
0
10
20
30

20
40
60
80
100
120
140
160

J(w1,w2)

30 20 10 0 10 20
w1

30

20

10

0

10

20

w
2

J(w1,w2) projection

0

18

36

54

72

90

108

126

144

162

8

Gradient descent algorithm

Simultaneously for each parameter in w repeat until convergence:

wi := wi − η
∂

∂wi
J(w)

where

• η is the learning rate.

• η ≥ 0, it can be a fixed number, because the gradient term will

automatically compensate with smaller steps: ∇wJ |w→wbest
→ 0.

Why the negative sign in term −η? (example in 1D)

w

J(w)

Positive slope

w

Negative
slope

• if ∇wJ(w) > 0 then

w decreases

• if ∇wJ(w) < 0 then

w increases

9

Gradient descent algorithm

Simultaneously for each parameter in w repeat until convergence:

wi := wi − η
∂

∂wi
J(w)

where

• η is the learning rate.

• η ≥ 0, it can be a fixed number, because the gradient term will

automatically compensate with smaller steps: ∇wJ |w→wbest
→ 0.

Why the negative sign in term −η? (example in 1D)

w

J(w)

Positive slope

w

Negative
slope

• if ∇wJ(w) > 0 then

w decreases

• if ∇wJ(w) < 0 then

w increases

9

Gradient descent algorithm

Simultaneously for each parameter in w repeat until convergence:

wi := wi − η
∂

∂wi
J(w)

where

• η is the learning rate.

• η ≥ 0, it can be a fixed number, because the gradient term will

automatically compensate with smaller steps: ∇wJ |w→wbest
→ 0.

Why the negative sign in term −η? (example in 1D)

w

J(w)

Positive slope

w

Negative
slope

• if ∇wJ(w) > 0 then

w decreases

• if ∇wJ(w) < 0 then

w increases

9

Gradient descent and learning rate

The η is another example of hyperparameter which requires tune.

• if η is too small, gradient descent can be slow.

Iteration

J(w)

w

• if η is too large, gradient descent may fail to converge or diverge.

Iteration

J(w)

w

• Practical hint, start with small η values and then increase slowly.

10

Gradient descent and learning rate

The η is another example of hyperparameter which requires tune.

• if η is too small, gradient descent can be slow.

Iteration

J(w)

w

• if η is too large, gradient descent may fail to converge or diverge.

Iteration

J(w)

w

• Practical hint, start with small η values and then increase slowly.

10

Gradient descent and learning rate

The η is another example of hyperparameter which requires tune.

• if η is too small, gradient descent can be slow.

Iteration

J(w)

w

• if η is too large, gradient descent may fail to converge or diverge.

Iteration

J(w)

w

• Practical hint, start with small η values and then increase slowly. 10

Gradient descent and feature scaling

Another practical hint: feature scaling.

Make sure the input features xi are in a similar scale, e.g. standardization:

xi :=
xi − µxi

σxi

where µxi and σxi are the mean and standard deviation respectively.

w1

J(w)

w1

w2w2

Standardized

11

Gradient descent variants

When performing gradient descent the cost function J(w) is evaluated

over the training data, e.g. for the MSE cost function:

∂

∂w
J(w) =

∂

∂w

(
1

n

n∑
i=1

(yi − ŷw(xi))
2

)
.

If the training data set is too large, there are gradient descent variations

that may improve convergence in terms of speed and quality:

• Batch Gradient Descent: all training data points are evaluated in the

cost function gradient at each iteration.

12

Gradient descent variants

• Stochastic Gradient Descent (SGD):

1. randomly shuffle training examples,

2. use 1 example at each iteration.

Features:

• parameters updates have high variance and cost function fluctuates.

• helps to discover new and possibly better minima.

• requires to slowly decrease the learning rate η to reduce fluctuations.

30 20 10 0 10 20
w1

30

20

10

0

10

20

w
2

J(w1,w2) projection

0

18

36

54

72

90

108

126

144

162Batch GD
Stochastic GD

13

Gradient descent variants

• Mini Batch Gradient Descent:

1. use a subset of size b (batch size) of examples in each iteration,

2. use the batch set example at each iteration.

Features:

• takes the best from both previous methods,

• reduces the variance in the parameter updates (stable convergence),

• good for data parallelism, efficient for matrix operations

30 20 10 0 10 20
w1

30

20

10

0

10

20

w
2

J(w1,w2) projection

0

18

36

54

72

90

108

126

144

162Batch GD
Stochastic GD
Mini batch GD

14

Gradient descent schemes

SGD has many improvements and extensions, for example:

• Momentum: it stores the update ∆w at each iteration and update

parameters following:

w := w − η∇wJ(w) + α∆w

• Root Mean Square Propagation (RMSProp): it introduces an

adaptive learning rate for each parameter:

w := w − η√
v(w, ite)

∇wJ(w)

• Others: Averaging, AdaGrad, Adam, etc...

All these schemes and respective parameters can be considered as extra

hyperparameters to tune.

15

Gradient descent schemes

SGD has many improvements and extensions, for example:

• Momentum: it stores the update ∆w at each iteration and update

parameters following:

w := w − η∇wJ(w) + α∆w

• Root Mean Square Propagation (RMSProp): it introduces an

adaptive learning rate for each parameter:

w := w − η√
v(w, ite)

∇wJ(w)

• Others: Averaging, AdaGrad, Adam, etc...

All these schemes and respective parameters can be considered as extra

hyperparameters to tune.

15

Gradient descent schemes

SGD has many improvements and extensions, for example:

• Momentum: it stores the update ∆w at each iteration and update

parameters following:

w := w − η∇wJ(w) + α∆w

• Root Mean Square Propagation (RMSProp): it introduces an

adaptive learning rate for each parameter:

w := w − η√
v(w, ite)

∇wJ(w)

• Others: Averaging, AdaGrad, Adam, etc...

All these schemes and respective parameters can be considered as extra

hyperparameters to tune.

15

Gradient descent schemes

SGD has many improvements and extensions, for example:

• Momentum: it stores the update ∆w at each iteration and update

parameters following:

w := w − η∇wJ(w) + α∆w

• Root Mean Square Propagation (RMSProp): it introduces an

adaptive learning rate for each parameter:

w := w − η√
v(w, ite)

∇wJ(w)

• Others: Averaging, AdaGrad, Adam, etc...

All these schemes and respective parameters can be considered as extra

hyperparameters to tune.

15

Examples of second order optimization

Popular examples of second order optimization algorithms:

• Newton’s method: an iterative method based on Taylor expansion.

Example in 1D: consider the Taylor expansion

JT (w) = JT (wn + ∆w) ≈ J(wn) + J ′(wn)∆w +
1

2
J ′′(wn)∆w2

We aim to find ∆w which satisfies:

∇∆wJT (wn + ∆w) = J ′(wn) + J ′′(wn)∆w = 0

wn+1 = wn + ∆w = wn −
J ′(wn)

J ′′(wn)

w1, w2, . . . will converge to a stationary point w∗ where J ′(w∗) = 0.

Generalization in N dimensions:

(HJ(wn))∆w = −∇J(wn)

where H is the Hessian matrix.

16

Examples of second order optimization

Popular examples of second order optimization algorithms:

• Newton’s method: an iterative method based on Taylor expansion.

Example in 1D: consider the Taylor expansion

JT (w) = JT (wn + ∆w) ≈ J(wn) + J ′(wn)∆w +
1

2
J ′′(wn)∆w2

We aim to find ∆w which satisfies:

∇∆wJT (wn + ∆w) = J ′(wn) + J ′′(wn)∆w = 0

wn+1 = wn + ∆w = wn −
J ′(wn)

J ′′(wn)

w1, w2, . . . will converge to a stationary point w∗ where J ′(w∗) = 0.

Generalization in N dimensions:

(HJ(wn))∆w = −∇J(wn)

where H is the Hessian matrix.

16

Examples of second order optimization

Popular examples of second order optimization algorithms:

• Quasi-newton methods: i.e. methods which optimizes even if the

Hessian matrix is expensive or not available. The Taylor’s series is:

J(wn + ∆w) ≈ J(wn) +∇wJ(wn)T ∆w +
1

2
∆wTB∆w,

where B is an approximation to the Hessian matrix and

∇wJ(wn + ∆w) ≈ ∇wJ(wn) +B∆w,

which produces the Newton step:

∆w = −B−1∇wJ(wn).

Some methods: BFGS, L-BFGS, DFP, Broyden.

• differ by the choice of the solution to update B.

Popular in ML since the beginning of the deep learning era.

17

Evolutionary algorithms

Evolutionary algorithms (EA), inspired by biological evolution, is a

generic population-based metaheuristic optimization algorithm.

Techniques in EA use mechanisms such as: reproduction, mutation,

recombination, and selection.

Genetic algorithm is the most popular technique of EA.

Converged?

Best solution

Initialization
Reproduction

Mutation

Recombination

Selection

No

Yes

EA/GA algorithm

18

Genetic algorithm

Genetic algorithm is well suited when:

• gradients are not available,

• non parametric function,

• non homogeneous cost function along all training set points.

Example:

Converged?

Best solution

Initialization

Selection

No

Yes

Parent gene

Mutations/
Crossover

Best candidate

19

Artificial neural networks

Limitations of linear models

Why not linear models everywhere?

Example: consider 1 image from the MNIST database:

Each image has 28x28 pixels = 785 features (x3 if including RGB colors).

If consider quadratic function O(n2) so linear models are impractical.

Solution: use non-linear models.

20

Limitations of linear models

Why not linear models everywhere?

Example: consider 1 image from the MNIST database:

Each image has 28x28 pixels = 785 features (x3 if including RGB colors).

If consider quadratic function O(n2) so linear models are impractical.

Solution: use non-linear models.

20

Limitations of linear models

Why not linear models everywhere?

Example: consider 1 image from the MNIST database:

Each image has 28x28 pixels = 785 features (x3 if including RGB colors).

If consider quadratic function O(n2) so linear models are impractical.

Solution: use non-linear models.

20

Non-linear models timeline

1943
Neural Nets

1958
Perceptron

1980
Neocogitron
SOMs

1974
Backpropagation

1940 1950 1960 1970 1980 1990 2000 2010

1982
Hopfield
Networks

1985
Boltzmann
Machine

1986
Multilayer Perceptron
Restricted BMs, RNNs

1990
LeNet

1997
LSTMs
BRNNs

2006
Deep BMs
Deep Belief NNs

2014
GANs

2012
Dropout

2017
RTBMs

2020

21

Neural networks

Artificial neural networks are computer systems inspired by the biological

neural networks in the brain.

Currently the state-of-the-art technique for several ML applications. 22

Neuron model

We can imagine the following data communication pattern:

Dendrite

Soma

Nucleus

Axon

Myelin sheath

Node of
Ranvier

Axion
terminal

Schwann cell

Input Output

Logical Unit

23

Neuron model

Schematically:

where

• each node has an associate weights and bias w and inputs x,

• the output is modulated by an activation function, g.

Some examples of activation functions: sigmoid, tanh, linear, ...

gw(x) =
1

1 + e−wT x
, tanh(wTx), x.

24

Neural networks

In practice, we simplify the bias term with x0 = 1.

Neural network → connecting multiple units together.

where

• a(l)
i is the activation of unit i in layer l,

• w(l)
ij is the weight between nodes i, j from layers l, l + 1 respectively.

25

Neural networks

• a(2)
1 = g(w

(1)
10 + w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3)

• a(2)
2 = g(w

(1)
20 + w

(1)
21 x1 + w

(1)
22 x2 + w

(1)
23 x3)

• a(2)
3 = g(w

(1)
30 + w

(1)
31 x1 + w

(1)
32 x2 + w

(1)
33 x3)

• Output → a
(3)
1 = g(w

(2)
10 + w

(2)
11 a

(2)
1 + w

(2)
12 a

(2)
2 + w

(2)
13 a

(2)
3)

26

Neural networks

Some useful names:

• Feedforward neural network: no cyclic connections between nodes

from the same layer (previous example).

• Multilayer perceptron (MLP): is a feedforward neural network with

at least 3 layers.

• Deep neural networks: term referring to neural networks with more

than one hidden layer.

27

Training neural networks

The training NNs is usually performed with gradient descent methods.

Following the previous section, we have to compute the cost function

gradient with respect to parameters w
(l)
ij :

w
(l)
ij := w

(l)
ij − η∇

(l)
ij J → ∇(l)

ij J =
∂

∂w
(l)
ij

J(w)

Use the backpropagation algorithm to compute the gradient of a NN.

• can be used with any gradient-based optimizer, including

quasi-Newton methods.

• reduces the large amount of computations thanks to chain rule

• requires the derivative of the cost function with respect to the

output layer w
(l)
ij with l = output.

28

Training neural networks

The training NNs is usually performed with gradient descent methods.

Following the previous section, we have to compute the cost function

gradient with respect to parameters w
(l)
ij :

w
(l)
ij := w

(l)
ij − η∇

(l)
ij J → ∇(l)

ij J =
∂

∂w
(l)
ij

J(w)

Use the backpropagation algorithm to compute the gradient of a NN.

• can be used with any gradient-based optimizer, including

quasi-Newton methods.

• reduces the large amount of computations thanks to chain rule

• requires the derivative of the cost function with respect to the

output layer w
(l)
ij with l = output.

28

Backpropagation algorithm

The backpropagation steps:

1: perform a forward propagation (calculate a
(l)
i)

2: perform a backward propagation: evaluate for each node a

“prediction error”:

δ
(l)
j = “error” of node j in layer l.

3: calculate ∇(l)
ij J using erros δ

(l)
i and a

(l)
i .

4: perform weight updates, ∆w
(l)
ij , via gradient descent using ∇(l)

ij J .

29

Backpropagation algorithm

The backpropagation steps:

1: perform a forward propagation (calculate a
(l)
i)

2: perform a backward propagation: evaluate for each node a

“prediction error”:

δ
(l)
j = “error” of node j in layer l.

3: calculate ∇(l)
ij J using erros δ

(l)
i and a

(l)
i .

4: perform weight updates, ∆w
(l)
ij , via gradient descent using ∇(l)

ij J .

29

Backpropagation algorithm

The backpropagation steps:

1: perform a forward propagation (calculate a
(l)
i)

2: perform a backward propagation: evaluate for each node a

“prediction error”:

δ
(l)
j = “error” of node j in layer l.

3: calculate ∇(l)
ij J using erros δ

(l)
i and a

(l)
i .

4: perform weight updates, ∆w
(l)
ij , via gradient descent using ∇(l)

ij J .

29

Backpropagation algorithm

The backpropagation steps:

1: perform a forward propagation (calculate a
(l)
i)

2: perform a backward propagation: evaluate for each node a

“prediction error”:

δ
(l)
j = “error” of node j in layer l.

3: calculate ∇(l)
ij J using erros δ

(l)
i and a

(l)
i .

4: perform weight updates, ∆w
(l)
ij , via gradient descent using ∇(l)

ij J .

29

Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))

30

Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))

30

Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))

30

Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))

30

Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))

30

Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))

30

Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))

At this step we know the output of the current MLP setup.

30

Backpropagation algorithm

2. evaluate for each node the error δ
(k)
j for k = 2, 3, . . . , L.

Some remarks:

It is possible to proof using derivative chain rules that:

∇(l)
ij J =

∂J

∂z
(l+1)
i

a
(l)
j ≡ δ

(l+1)
i a

(l)
j ,

for l = 1, . . . , L− 1.

The recursive relation for the error is:

δ
(l)
i =

∑
k

w
(l)
ki δ

(l+1)
k · g′(z(l)

i)

and at l = L, i.e. the highest l index:

δ
(L)
i =

∂J

∂a
(L)
i

· g′(z(L)
i)

where g′(z
(l)
i) = a

(l)
i (1− a(l)

i) if g is the sigmoid function.

31

Backpropagation algorithm

2. evaluate for each node the error δ
(k)
j for k = 2, 3, . . . , L.

Some remarks:

It is possible to proof using derivative chain rules that:

∇(l)
ij J =

∂J

∂z
(l+1)
i

a
(l)
j ≡ δ

(l+1)
i a

(l)
j ,

for l = 1, . . . , L− 1.

The recursive relation for the error is:

δ
(l)
i =

∑
k

w
(l)
ki δ

(l+1)
k · g′(z(l)

i)

and at l = L, i.e. the highest l index:

δ
(L)
i =

∂J

∂a
(L)
i

· g′(z(L)
i)

where g′(z
(l)
i) = a

(l)
i (1− a(l)

i) if g is the sigmoid function.

31

Backpropagation algorithm

Example: evaluating error δ
(l)
j for a MLP with sigmoids in the hidden

layers and linear activation function in the output layer:

• δ(4) = a(4) − y
• δ(3) = (w(3))T δ(4) · (a(3)(1− a(3)))

• δ(2) = (w(2))T δ(3) · (a(2)(1− a(2)))

32

Backpropagation algorithm summary

Data: training set (x(i),y(i)) with i = 1, . . . ,m examples.

Result: the trained neural network

Initialize network weights;

while stopping criterion is not satisfied do

Set all ∆w
(l)
ij = 0.

for k = 1 to m do

Perform forward pass and compute a(l) for l = 1, 2, 3, . . . , L;

Perform backward pass and compute δ(l) for l = 2, . . . , L;

∆w
(l)
ij := ∆w

(l)
ij + aljδ

(l+1)
i

end

Update network weights using gradient descent;

end

33

Training neural networks

Some remarks and example of neural network initialization:

• zero: all weights are set to zero so all neurons perform the same

calculation. The complexity of the neural network is equivalent to a

single neuron.

• random: breaks parameter symmetry.

• glorot/xavier: initialize each weight with a small Gaussian value with

mean zero and variance based on the in/out size of the weight.

• he: avoid activation function saturation. Weights are random

initialized considering the size of the previous layer.

34

Artificial neural networks architectures

Some examples of neural network popular architectures:

• Recurrent neural networks: neural networks where connections

between nodes form a directed cycle.

• built-in internal state memory

• built-in notion of time ordering for a time sequence

35

Artificial neural networks architectures

• Recursive neural networks: a variation of recurrent neural network

where pairs of layers or nodes are merged recursively.

• successful applications on natural language processing.

• some recent applications for model inference.

• Long short-term memory: another variation of recurrent neural

networks composed by custom units cells:

• LSTM cells have an input gate, an output gate and a forget gate.

• powerful when making predictions based on time series data.

36

Artificial neural networks architectures

• Recursive neural networks: a variation of recurrent neural network

where pairs of layers or nodes are merged recursively.

• successful applications on natural language processing.

• some recent applications for model inference.

• Long short-term memory: another variation of recurrent neural

networks composed by custom units cells:

• LSTM cells have an input gate, an output gate and a forget gate.

• powerful when making predictions based on time series data.

36

Artificial neural networks architectures

• Boltzmann Machines: is a generative stochastic recursive artificial

neural network.

• comes with energy-based model features and advantages.

• generalizations like RTBMs can be used for pdf estimate, filtering,

regression, classification and sampling.

The system energy for given state vectors (v, h):

E(v, h) =
1

2
vtTv +

1

2
htQh+ vtWh+Bhh+Bvv

37

Artificial neural networks architectures

• Convolutional neural networks: multilayer perceptron designed to

require minimal preprocessing, i.e. space invariant architecture.

• the hidden layers consist of convolutional layers, pooling layer, fully

connected layers and normalization layers

• great successful applications in image and video recognition.

38

Artificial neural networks architectures

• Generative adversarial network: unsupervised machine learning

system of two neural networks contesting with each other.

• one network generate candidates while the other discriminates.

39

Beyond neural networks

Beyond neural networks

Even if neural networks are the most popular architecture nowadays

employed in ML and Deep Learning, there are other models and

techniques that are used frequently with great success in HEP-EXP

Supervised learning examples:

• Decision tree

• Ensemble models (random forest, bagging, boosting)

• Support Vector Machines (SVM)

• k-nearest neighbors algorithm (k-NN)

40

Clustering

Unsupervised learning examples:

• k-means

• Mean-shift

• Hierarchical

• Gaussian mixture models

• Density-based spatial

• Affinity propagation

41

Others

Dimensionality reduction:

• Principal component analysis (PCA)

• Linear discriminant analysis (LDA)

Anomaly detection:

• GMM density estimate

• Kernel density estimate

• Restricted boltzmann machines

• k-NN

−6 −4 −2 0 2 4 6
v1

−6

−4

−2

0

2

4

6

v2

0.0

0.2

0.4
P(v1)

0.00 0.25 0.50
P(v2)

−6 −4 −2 0 2 4 6
v1

−6

−4

−2

0

2

4

6

v2

0.0

0.1

0.2

P(v1)

0.0 0.2
P(v2) 42

Summary

Summary

We have covered the following topics:

• Parameter learning: normal equations, first and second order

optimization, genetic algorithm

• Neural network definition and most popular architectures

• Other models used in ML.

43

	Parameter learning
	Artificial neural networks
	Beyond neural networks
	Summary

