Lectures on Machine Learning

Lecture 3: practical aspects of machine learning

Stefano Carrazza

TAE2018, 2-15 September 2018

European Organization for Nuclear Research (CERN)

Acknowledgement: This project has received funding from HICCUP ERC Consolidator grant (614577) and by the European Unions Horizon 2020 research and innovation programme under grant agreement no. 740006.

Outline

Lecture 1 (yesterday)

- Artificial intelligence
- Machine learning
- Model representation
- Metrics

Lecture 2 (today)

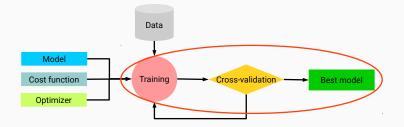
- Parameter learning
- Non-linear models
- Beyond neural networks
- Clustering

Lecture 3 (today)

- Hyperparameter tune
- Cross-validation
- ML in practice
- The PDF case study

Hyperparameter tune

Outline



• Model related:

- Model related:
 - model architecture / size

- Model related:
 - model architecture / size
 - if NN: layers, nodes, activation functions

- Model related:
 - model architecture / size
 - if NN: layers, nodes, activation functions
- Regularization techniques (to avoid overfitting):

- Model related:
 - model architecture / size
 - if NN: layers, nodes, activation functions
- Regularization techniques (to avoid overfitting):
 - weight decay (parameter λ)

- Model related:
 - model architecture / size
 - if NN: layers, nodes, activation functions
- Regularization techniques (to avoid overfitting):
 - weight decay (parameter λ)
 - if SGD: early stopping techniques

- Model related:
 - model architecture / size
 - if NN: layers, nodes, activation functions
- Regularization techniques (to avoid overfitting):
 - weight decay (parameter λ)
 - if SGD: early stopping techniques
 - if NN: dropout, artificial data, stochastic pooling, etc...

- Model related:
 - model architecture / size
 - if NN: layers, nodes, activation functions
- Regularization techniques (to avoid overfitting):
 - weight decay (parameter λ)
 - if SGD: early stopping techniques
 - if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

- Model related:
 - model architecture / size
 - if NN: layers, nodes, activation functions
- Regularization techniques (to avoid overfitting):
 - weight decay (parameter λ)
 - if SGD: early stopping techniques
 - if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

- the SGD learning parameters $\boldsymbol{\eta}$

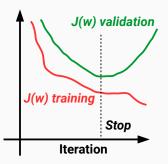
- Model related:
 - model architecture / size
 - if NN: layers, nodes, activation functions
- Regularization techniques (to avoid overfitting):
 - weight decay (parameter λ)
 - if SGD: early stopping techniques
 - if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

- the SGD learning parameters η
- other SGD parameters depending on the gradient descent scheme

Example: early stopping techniques are applied when the optimization is performed in an iterative procedure, *.e.g.* via gradient descent.

Example: early stopping techniques are applied when the optimization is performed in an iterative procedure, *.e.g.* via gradient descent.



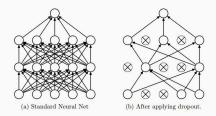
These techniques monitor the cost function for the validation set and stop when this quantity has stopped improving:

- look at the variation in a moving window
- stop at the minimum of the validation set (lookback method),

Example: neural network dropout

At each training stage:

- individual nodes and related incoming and outgoing edges are dropped-out of the neural network with a fixed probability.
- the reduced NN is trained on the data.
- the removed nodes are reinserted in the NN with their original weights.



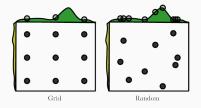
Other regularization techniques

How should we proceed with hyperparameter tune?

How should we proceed with hyperparameter tune?

Possible solutions:

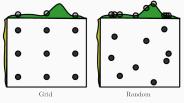
- grid search: exhaustive searching through a manually subset range of hyperparameter space
- random search: specially powerful with small number of hyperparameters affects the final performance of the ML algorithm.



How should we proceed with hyperparameter tune?

Possible solutions:

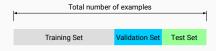
- grid search: exhaustive searching through a manually subset range of hyperparameter space
- random search: specially powerful with small number of hyperparameters affects the final performance of the ML algorithm.



Other useful methods:

- bayesian optimization
- gradient-based optimization
- evolutionary optimization

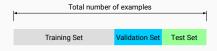
The hyperparameter tune procedure still requires the training/validation/test split to choose for the best model.



Problems:

- how to perform the data split when the available data set is small?
- how to define a suitable split?

The hyperparameter tune procedure still requires the training/validation/test split to choose for the best model.



Problems:

- how to perform the data split when the available data set is small?
- how to define a suitable split?

Solution:

Use cross-validation algorithms to access the quality of your model + hyperparameter choice.

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

Cross-validation performs a rotation estimation by:

- 1. partitioning data into training/validation subsets
- 2. multiple rounds of cross-validation using different partitions

Cross-validation performs a rotation estimation by:

- 1. partitioning data into training/validation subsets
- 2. multiple rounds of cross-validation using different partitions
- 3. results are averaged over the rounds to give an estimate of the model performance

Cross-validation performs a rotation estimation by:

- 1. partitioning data into training/validation subsets
- 2. multiple rounds of cross-validation using different partitions
- 3. results are averaged over the rounds to give an estimate of the model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the original sample into a training and a validation set.

Cross-validation performs a rotation estimation by:

- 1. partitioning data into training/validation subsets
- 2. multiple rounds of cross-validation using different partitions
- 3. results are averaged over the rounds to give an estimate of the model performance

- Exhaustive cross-validation: test all possible ways to divide the original sample into a training and a validation set.
 - Leave-p-out: uses p observations as validation set.

Cross-validation performs a rotation estimation by:

- 1. partitioning data into training/validation subsets
- 2. multiple rounds of cross-validation using different partitions
- 3. results are averaged over the rounds to give an estimate of the model performance

- Exhaustive cross-validation: test all possible ways to divide the original sample into a training and a validation set.
 - Leave-*p*-out: uses *p* observations as validation set.
 - Leave-one-out: set p = 1.

Cross-validation performs a rotation estimation by:

- 1. partitioning data into training/validation subsets
- 2. multiple rounds of cross-validation using different partitions
- 3. results are averaged over the rounds to give an estimate of the model performance

- Exhaustive cross-validation: test all possible ways to divide the original sample into a training and a validation set.
 - Leave-p-out: uses p observations as validation set.
 - Leave-one-out: set p = 1.
- Non-exhaustive cross-validation: do not test all possible ways to divide the original sample but use discrete subsamples.

Cross-validation performs a rotation estimation by:

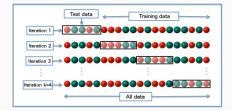
- 1. partitioning data into training/validation subsets
- 2. multiple rounds of cross-validation using different partitions
- 3. results are averaged over the rounds to give an estimate of the model performance

- Exhaustive cross-validation: test all possible ways to divide the original sample into a training and a validation set.
 - Leave-p-out: uses p observations as validation set.
 - Leave-one-out: set p = 1.
- Non-exhaustive cross-validation: do not test all possible ways to divide the original sample but use discrete subsamples.
 - *k*-fold cross-validation.

k-fold cross-validation:

- 1. the original data is randomly partitioned into $k \mbox{ equal sized subsamples.}$
- 2. from the k subsamples, a single subsample is used as validation data and the remaining k-1 subsamples are used as training data.
- 3. repeat the process k times by changing the validation and training partitions.
- 4. compute the average over the \boldsymbol{k} results.

Example of k-fold with k = 4:



Perform hyperparameter tune coupled to cross-validation:

Easy parallelization at search and cross-validation stages.

Closure testing

Validation and optimization of fitting strategy performed on **closure test** with known underlying law.

ML in practice

Most popular public ML frameworks

For experimental HEP:

• TMVA: ROOT's builtin machine learning package.

For experimental HEP:

• TMVA: ROOT's builtin machine learning package.

For ML applications:

- Keras: a Python deep learning library.
- Theano: a Python library for optimization.
- PyTorch: a DL framework for fast, flexible experimentation.
- Caffe: speed oriented deep learning framework.
- MXNet: deep learning frameowrk for neural networks.
- CNTK: Microsoft Cognitive Toolkit.

For experimental HEP:

• TMVA: ROOT's builtin machine learning package.

For ML applications:

- Keras: a Python deep learning library.
- Theano: a Python library for optimization.
- PyTorch: a DL framework for fast, flexible experimentation.
- Caffe: speed oriented deep learning framework.
- MXNet: deep learning frameowrk for neural networks.
- CNTK: Microsoft Cognitive Toolkit.

For ML and beyond:

- TensorFlow: libray for numerical computation with data flow graphs.
- scikit-learn: general machine learning package.

For experimental HEP:

• TMVA: ROOT's builtin machine learning package.

For ML applications:

- Keras: a Python deep learning library.
- Theano: a Python library for optimization.
- PyTorch: a DL framework for fast, flexible experimentation.
- Caffe: speed oriented deep learning framework.
- MXNet: deep learning frameowrk for neural networks.
- CNTK: Microsoft Cognitive Toolkit.

For ML and beyond:

- TensorFlow: libray for numerical computation with data flow graphs.
- scikit-learn: general machine learning package.

Why use public codes? \rightarrow builtin models and automatic differentiation

Keras is a high-level deep learning framework in Python which runs on top of TensorFlow, CNTK or Theano.

Keras is a high-level deep learning framework in Python which runs on top of TensorFlow, CNTK or Theano.

Pros:

- fast prototyping, user friendly, common code for multiple backends.
- support several NN architectures out-of-the-box.
- runs seamlessly on CPU and GPU.

Keras is a high-level deep learning framework in Python which runs on top of TensorFlow, CNTK or Theano.

Pros:

- fast prototyping, user friendly, common code for multiple backends.
- support several NN architectures out-of-the-box.
- runs seamlessly on CPU and GPU.

Cons:

- more tricky to extend when custom ML setups are required
- runs only in Python

```
model = Sequential() # allocate an empty model (MLP)
1
2
        # append feed-forward layers 2-5-3-1
3
        model.add(Dense(units=5, activation='sigmoid', input_dim=2))
4
        model.add(Dense(units=3, activation='sigmoid', input_dim=5))
5
        model.add(Dense(units=1, activation='linear', input_dim=3))
6
7
        model.compile(loss='mse', optimizer='sgd') # compile the model
8
9
        # train the model
10
11
        model.fit(x train, v train, epochs=1000, batch size=32)
12
13
        # measure performance
14
        loss_and_metrics = model.evaluate(x_test, y_test)
15
        # generate predictions
16
        classes = model.predict(x_test)
17
```

TensorFlow is a library for high performance numerical computation.

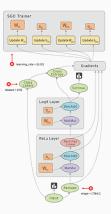
TensorFlow is a library for high performance numerical computation.

Pros:

- solves optimization problems with automatic differentiation.
- $\bullet\,$ can be extended in python and c/c++.
- runs seamlessly on CPU and GPU, and can uses JIT technology.

Cons:

- do not provides builtin models from the core framework
- less automation for cross-validation and hyperparameter tune



```
n_intput = 2
 2
         n_output = 1
         n hidden 1 = 5
 3
         n_hidden_2 = 3
 4
 \mathbf{5}
         # tf Graph input
 6
         X = tf.placeholder("float", [None, n_input])
 7
         Y = tf.placeholder("float", [None, n_output])
 8
 9
         # Store layers weight & bias
10
         weights = {
           'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
12
           'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
13
           'out': tf.Variable(tf.random_normal([n_hidden_2, n_output]))
14
         3
15
         biases = {
16
           'b1': tf.Variable(tf.random_normal([n_hidden_1])),
17
18
           'b2': tf.Variable(tf.random_normal([n_hidden_2])),
           'out': tf.Variable(tf.random_normal([n_output]))
19
20
         }
```

```
1
 2
         def MLP(x): # define the neural network
 3
             layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
 4
             layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
 5
             return tf.matmul(layer_2, weights['out']) + biases['out']
 6
 7
         model = MLP(X)  # attach model to the input placeholder
 8
         loss = tf.reduce_mean(tf.square(model-Y)) # evaluate loss graph
 9
         train = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
10
         # perform training loop manually
12
13
14
         for epoch in range(1000):
            _, cost = sess.run([train, loss], feed_dict={X: x_train, Y: y_train})
15
```

Scikit-learn

learn

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition. Algorithms: SVM, nearest neighbors, random forest..... - Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency Algorithms: PCA, feature selection, nonnegative matrix factorization.

- Examples

scikit-learn.org/stable/modules/clustering.html#mean-shift

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, - Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tunina Modules: grid search, cross validation, - Examples

metrics

Clustering

· Simple and efficient tools for data mining and data analysis · Accessible to everybody, and reusable in various contexts · Built on NumPy, SciPy, and matplotlib · Open source, commercially usable - BSD license

scikit-learn

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift..... - Examples

Preprocessing

Feature extraction and normalization

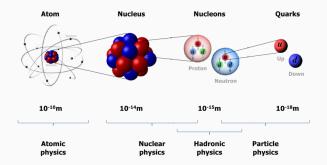
Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction, - Examples Scikit-learn contains the most popular algorithms for:

- Supervised learning: neural networks, decision trees, etc.
- Unsupervised learning: density estimate, clustering, etc.
- Model selection: cross-validation, hyperparameter tune, etc.
- Dataset transformations: feature extractions, dim. reduction, etc.
- Dataset loading
- Strategies to scale computationally
- Computational performance

The PDF case study

Parton density functions

The **parton** model was introduced by Feynman in 1969 in order to characterize **hadrons** (*e.g.* protons and neutrons) in QCD processes and interactions in high energy particle collisions.



Partons are quarks and gluons characterized by a probability density functions of its nucleon momentum.

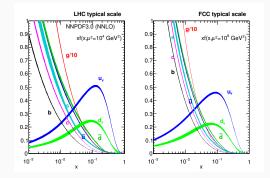
Parton density functions

• **PDFs** are **essential** for a **realistic computation** of any particle physics **observable**, *σ*, thanks to the factorization theorem

$$\sigma = \hat{\sigma} \otimes f,$$

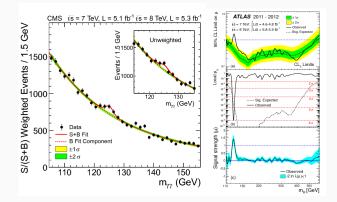
where the elementary hard cross-section $\hat{\sigma}$ is convoluted with f the PDF.

- PDFs are not calculable: reflect non-perturbative physics of confinement.
- PDFs are extracted by comparing theoretical predictions to real data.



Parton density functions

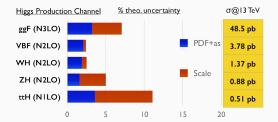
- PDFs are **necessary** to determine theoretical predictions for **signal/background** of experimental **measurements**.
 - e.g. the Higgs discovery at the LHC:



PDF uncertainties

PDF determination requires a sensible estimate of the **uncertainty**, and not only the central value, so not a well researched topic in ML.

CERN Yellow Report 4 (2016)



PDF uncertainties are a **limiting** factor in the accuracy of theoretical predictions for several processes at LHC.

 \Rightarrow Need of **precise** PDF determination and **uncertainty** estimate.

Why ML in PDFs determination?

 PDFs are essential for a realistic computation of hadronic particle physics observable, σ, thanks to the factorization theorem, e.g. in pp collider:

$$\underbrace{\sigma_X(s, M_X^2)}_{Y} = \sum_{a, b} \int_{x_{\min}}^1 dx_1 dx_2 \underbrace{\hat{\sigma}_{a, b}(x_1, x_2, s, M_X^2)}_{X} f_a(x_1, M_X^2) f_b(x_2, M_X^2),$$

where the elementary hard cross-section $\hat{\sigma}$ is convoluted with f the PDF.

• $f_i(x_1, M_X^2)$ is the PDF of parton *i* carrying a fraction of momentum *x* at scale $M \Rightarrow$ needs to be learned from data.

Why ML in PDFs determination?

 PDFs are essential for a realistic computation of hadronic particle physics observable, σ, thanks to the factorization theorem, e.g. in pp collider:

$$\underbrace{\sigma_X(s, M_X^2)}_{Y} = \sum_{a, b} \int_{x_{\min}}^1 dx_1 dx_2 \underbrace{\hat{\sigma}_{a, b}(x_1, x_2, s, M_X^2)}_{X} f_a(x_1, M_X^2) f_b(x_2, M_X^2),$$

where the elementary hard cross-section $\hat{\sigma}$ is convoluted with f the PDF.

- $f_i(x_1, M_X^2)$ is the PDF of parton *i* carrying a fraction of momentum *x* at scale $M \Rightarrow$ needs to be learned from data.
- Constraints come in the form of convolutions:

$$X \otimes f \to Y$$

- Experimental data points is $\sim 5000 \rightarrow$ not a big data problem
- Data from several process and experiments over the past decades
 ⇒ deal with data inconsistencies

ML and PDF determination

The NNPDF (Neural Networks PDF) implements the Monte Carlo approach to the determination of a global PDF fit. We propose to:

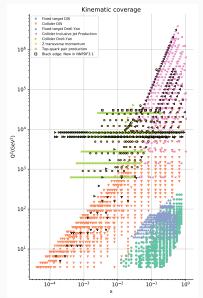
- 1. reduce all sources of theoretical bias:
 - no fixed functional form
 - possibility to reproduce non-Gaussian behavior
 - \Rightarrow use Neural Networks instead of polynomials
- 2. provide a sensible estimate of the uncertainty:
 - uncertainties from input experimental data
 - minimization inefficiencies and degenerate minima
 - theoretical uncertainties

 \Rightarrow use MC artificial replicas from data, training with a GA minimizer

3. Test the setup through closure tests

The total number of data points for the default PDF determination is

- 4175 at LO, 4295 at NLO and 4285 at NNLO.
- 7 physical processes from 14 experiments over ~30 years (deal with data inconsistencies)
- few data points at high and low x (deal with extrapolation)
- range of 5 and 7 orders of magnitude per PDF evaluation arguments (x,Q^2)



Can we reduce the PDF input size? Yes, thanks to DGLAP:

$$f_i(x_\alpha, Q^2) = \Gamma(Q, Q_0)_{ij\alpha\beta} f_j(x_\beta, Q_0^2)$$

We remove the Q^2 dependence from PDF determination thanks to the DGLAP evolution operator $\Gamma.$

$$f(x,Q^2) \rightarrow f(x,Q_0^2) := f(x)$$

- Precompute the DGLAP operator for all data points
- Apply the operator to the partonic cross section
- Store the results and perform fast convolutions

In NNPDF theoretical predictions are stored in **APFELgrid** tables:

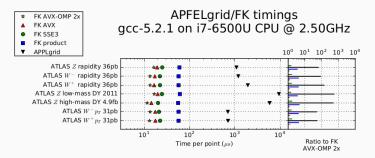
$$\sigma = \sum_{i,j}^{n_f} \sum_{\alpha,\beta}^{n_x} W_{ij\alpha\beta} f_i(x_\alpha, Q_0^2) f_j(x_\beta, Q_0^2)$$

Fast theory computation

APFELgrid (Bertone et al., arXiv:1605.02070) converts interpolated weight tables provided by APPLgrid in an efficient format for PDF fitting, *e.g.*

$$\sigma = \sum_{i,j}^{n_f} \sum_{\alpha,\beta}^{n_x} W_{ij\alpha\beta} f_i(x_\alpha, Q_0^2) f_j(x_\beta, Q_0^2)$$

where grids are pre-convoluted with PDF evolution kernels from **APFEL**. (Bertone et al., arXiv:1310.1394)



Public code: https://github.com/nhartland/APFELgrid

In comparison to a typical ML problem, a PDF fit

- requires a statistically sound uncertainty estimate
- is a regression problem but complex dependence on PDFs
- must satisfy physical constrains:
 - $f(x) \to 0$ for $x \to 1$ (continuity)
 - sum rules:

$$\sum_{i=1}^{n_f} \int_0^1 dx \, x f_i(x) = 1, \qquad \int_0^1 dx \, (u(x) - \bar{u}(x)) = 2$$

$$\int_0^1 dx \left(d(x) - \bar{d}(x) \right) = 1, \quad \int dx \left(q(x) - \bar{q}(x) \right) = 0, \ q = s, b, t$$

PDF parametrizations

• Early models:

$$f_i(x) = A \cdot x^{\alpha} (1-x)^{\beta}$$

- parameters are chosen based on Hessian minimization approach
- Can a simple model provide a reliable uncertainty estimate?
- Can it deal with data inconsistencies?

PDF parametrizations

• Early models:

$$f_i(x) = A \cdot x^{\alpha} (1-x)^{\beta}$$

- parameters are chosen based on Hessian minimization approach
- Can a simple model provide a reliable uncertainty estimate?
- Can it deal with data inconsistencies?
- NNPDF approach:

$$f_i(x, Q_0) = A \cdot x^{\alpha} (1 - x)^{\beta} N N(x)$$

- fully connected MLP (2-5-3-1)
- two sigmoid hidden layers and linear output layer
- x8 independent PDFs \Rightarrow 296 free parameters

• We minimize the cost function:

$$\chi^{2} = \sum_{ij} (D_{i} - O_{i})\sigma_{i,j}^{-1}(D_{j} - O_{j})$$

- D_i is the experimental measurement for point i
- O_i the theoretical prediction for point $i \ (= \bar{\sigma} \otimes f)$
- σ_{ij} is the covariance matrix between points i and j with corrections for normalization uncertainties
- · supplemented by additional penalty terms for positivity observables

Generate artificial **Monte Carlo** data replicas from experimental data. We perform N_{rep} O(1000) fits, sampling pseudodata replicas:

$$D_i^{(r)} \to D_i^{(r)} + \text{chol}(\Sigma)_{i,j} \mathcal{N}(0,1), \quad i, j = 1..N_{\text{dat}}, r = 1...N_{\text{rep}}$$

We obtain $N_{\rm rep}$ PDF replicas. No assumptions at all about the Gaussianity of the errors.

Generate artificial **Monte Carlo** data replicas from experimental data. We perform N_{rep} O(1000) fits, sampling pseudodata replicas:

$$D_i^{(r)} \to D_i^{(r)} + \text{chol}(\Sigma)_{i,j} \mathcal{N}(0,1), \quad i, j = 1..N_{\text{dat}}, r = 1...N_{\text{rep}}$$

We obtain $N_{\rm rep}$ PDF replicas. No assumptions at all about the Gaussianity of the errors.

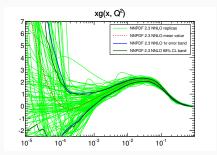
We perform compression techniques for PDF delivery:

- CMC-PDFs: compression algorithm for MC PDFs.
- mc2hessian: MC to hessian conversion tool for PDFs.
- SMPDF: Specialized Minimal PDFs.

PDF releases reduce 1000 replicas to 100.

PDF fit example

The procedure delivers a Monte Carlo representation of results:



The central value of observables based on PDFs are obtained with:

$$\langle \mathcal{O}[f] \rangle = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \mathcal{O}[f_k]$$

Optimization algorithm

The current approach is genetic optimization, based on nodal mutation probabilities and more recently the covariance matrix evolution strategy

$$w \to w + \eta \frac{r_{\delta}}{N_{\text{ite}}^{r_{\text{ite}}}}, \quad \eta = 15, \, r_{\delta} \sim U(-1, 1), \, r_{\text{ite}} \sim U(1, 0)$$

At each iteration, generate 80 mutants and select best mutant.

Advantages

- Simple to implement and understand.
- Good dealing with complex analytic behavior.
- Doesn't require evaluating the gradient.

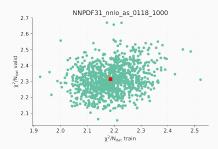
Disadvantages

- May not be close to a global minimum.
- Requires many functions evaluations.
- Needs tuning.

Stopping

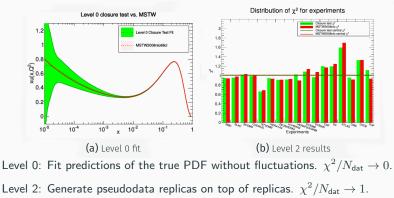
We have cross-validation implemented:

- We split data in a training and validation set.
- Training fraction is 50%, different for each replica.
- We perform the GA on the training set for a fixed number of iterations O(30000).
- Stop at the minimum of the validation set, storing the parameters from the replica at that iteration.



Closure tests

- Assume that the underlying PDF is known, generate data, fluctuations around the prediction of the true PDF.
- Perform a fit and compare to underlying PDF.
- Check that the results are consistent.



Summary

We have covered the following topics:

- The hyperparameter tune
- the cross-validation techniques
- ML frameworks
- The PDF case study