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Outline

Lecture 1 (yesterday)

• Artificial intelligence

• Machine learning

• Model representation

• Metrics

Lecture 2 (today)

• Parameter learning

• Non-linear models

• Beyond neural networks

• Clustering

Lecture 3 (today)

• Hyperparameter tune

• Cross-validation

• ML in practice

• The PDF case study
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Hyperparameter tune
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Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

3



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

3



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

3



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

3



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

3



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

3



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

3



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

3



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

3



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

3



Other regularization techniques

Example: early stopping techniques are applied when the optimization is

performed in an iterative procedure, .e.g. via gradient descent.

Iteration

J(w) training

J(w) validation

Stop

These techniques monitor the cost function for the validation set and

stop when this quantity has stopped improving:

• look at the variation in a moving window

• stop at the minimum of the validation set (lookback method),
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Other regularization techniques

Example: neural network dropout

At each training stage:

• individual nodes and related incoming and outgoing edges are

dropped-out of the neural network with a fixed probability.

• the reduced NN is trained on the data.

• the removed nodes are reinserted in the NN with their original

weights.
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Other regularization techniques

How should we proceed with hyperparameter tune?

Possible solutions:

• grid search: exhaustive searching through a manually subset range of

hyperparameter space

• random search: specially powerful with small number of

hyperparameters affects the final performance of the ML algorithm.

Other useful methods:

• bayesian optimization

• gradient-based optimization

• evolutionary optimization

6



Other regularization techniques

How should we proceed with hyperparameter tune?

Possible solutions:

• grid search: exhaustive searching through a manually subset range of

hyperparameter space

• random search: specially powerful with small number of

hyperparameters affects the final performance of the ML algorithm.

Other useful methods:

• bayesian optimization

• gradient-based optimization

• evolutionary optimization

6



Other regularization techniques

How should we proceed with hyperparameter tune?

Possible solutions:

• grid search: exhaustive searching through a manually subset range of

hyperparameter space

• random search: specially powerful with small number of

hyperparameters affects the final performance of the ML algorithm.

Other useful methods:

• bayesian optimization

• gradient-based optimization

• evolutionary optimization 6



Cross-validation



Cross-validation

The hyperparameter tune procedure still requires the

training/validation/test split to choose for the best model.

Training Set Test Set

Total number of examples

Validation Set

Problems:

• how to perform the data split when the available data set is small?

• how to define a suitable split?

Solution:

Use cross-validation algorithms to access the quality of your model +

hyperparameter choice.
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Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the

model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the

original sample into a training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to

divide the original sample but use discrete subsamples.

• k-fold cross-validation.
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Example k-fold cross-validation

k-fold cross-validation:

1. the original data is randomly partitioned into k equal sized

subsamples.

2. from the k subsamples, a single subsample is used as validation data

and the remaining k − 1 subsamples are used as training data.

3. repeat the process k times by changing the validation and training

partitions.

4. compute the average over the k results.

Example of k-fold with k = 4:
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Complete recipe

Perform hyperparameter tune coupled to cross-validation:

Best solution

Grid/random search

Cross-validation Test set

Cross-validation Test set

Cross-validation Test set

... ...

Run I

Run II

Run n

Easy parallelization at search and cross-validation stages.
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Closure testing



Closure tests

Validation and optimization of fitting strategy performed on closure test

with known underlying law.

New fitting methodology

Define Underlying Law

Generate pseudo-data

Validate results by comparing to law

Perform Training

Fit real data
Fails OK
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ML in practice



Most popular public ML frameworks

For experimental HEP:

• TMVA: ROOT’s builtin machine learning package.

For ML applications:

• Keras: a Python deep learning library.

• Theano: a Python library for optimization.

• PyTorch: a DL framework for fast, flexible experimentation.

• Caffe: speed oriented deep learning framework.

• MXNet: deep learning frameowrk for neural networks.

• CNTK: Microsoft Cognitive Toolkit.

For ML and beyond:

• TensorFlow: libray for numerical computation with data flow graphs.

• scikit-learn: general machine learning package.

Why use public codes? → builtin models and automatic differentiation
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Keras

Keras is a high-level deep learning framework in Python which runs on

top of TensorFlow, CNTK or Theano.

Pros:

• fast prototyping, user friendly, common code for multiple backends.

• support several NN architectures out-of-the-box.

• runs seamlessly on CPU and GPU.

Cons:

• more tricky to extend when custom ML setups are required

• runs only in Python
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Example of code using Keras:

1 model = Sequential() # allocate an empty model (MLP)

2

3 # append feed-forward layers 2-5-3-1

4 model.add(Dense(units=5, activation=’sigmoid’, input_dim=2))

5 model.add(Dense(units=3, activation=’sigmoid’, input_dim=5))

6 model.add(Dense(units=1, activation=’linear’, input_dim=3))

7

8 model.compile(loss=’mse’, optimizer=’sgd’) # compile the model

9

10 # train the model

11 model.fit(x_train, y_train, epochs=1000, batch_size=32)

12

13 # measure performance

14 loss_and_metrics = model.evaluate(x_test, y_test)

15

16 # generate predictions

17 classes = model.predict(x_test)

14



TensorFlow

TensorFlow is a library for high performance numerical computation.

Pros:

• solves optimization problems with

automatic differentiation.

• can be extended in python and c/c++.

• runs seamlessly on CPU and GPU, and

can uses JIT technology.

Cons:

• do not provides builtin models from the

core framework

• less automation for cross-validation

and hyperparameter tune
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Example of code using TensorFlow:

1 n_intput = 2

2 n_output = 1

3 n_hidden_1 = 5

4 n_hidden_2 = 3

5

6 # tf Graph input

7 X = tf.placeholder("float", [None, n_input])

8 Y = tf.placeholder("float", [None, n_output])

9

10 # Store layers weight & bias

11 weights = {

12 ’h1’: tf.Variable(tf.random_normal([n_input, n_hidden_1])),

13 ’h2’: tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),

14 ’out’: tf.Variable(tf.random_normal([n_hidden_2, n_output]))

15 }

16 biases = {

17 ’b1’: tf.Variable(tf.random_normal([n_hidden_1])),

18 ’b2’: tf.Variable(tf.random_normal([n_hidden_2])),

19 ’out’: tf.Variable(tf.random_normal([n_output]))

20 }
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Example of code using TensorFlow:

1 ...

2

3 def MLP(x): # define the neural network

4 layer_1 = tf.add(tf.matmul(x, weights[’h1’]), biases[’b1’])

5 layer_2 = tf.add(tf.matmul(layer_1, weights[’h2’]), biases[’b2’])

6 return tf.matmul(layer_2, weights[’out’]) + biases[’out’]

7

8 model = MLP(X) # attach model to the input placeholder

9 loss = tf.reduce_mean(tf.square(model-Y)) # evaluate loss graph

10 train = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

11

12 # perform training loop manually

13 ...

14 for epoch in range(1000):

15 _, cost = sess.run([train, loss], feed_dict={X: x_train, Y: y_train})

17



Scikit-learn

18



Scikit-learn

Scikit-learn contains the most popular algorithms for:

• Supervised learning: neural networks, decision trees, etc.

• Unsupervised learning: density estimate, clustering, etc.

• Model selection: cross-validation, hyperparameter tune, etc.

• Dataset transformations: feature extractions, dim. reduction, etc.

• Dataset loading

• Strategies to scale computationally

• Computational performance

19



The PDF case study



Parton density functions

The parton model was introduced by Feynman in 1969 in order to

characterize hadrons (e.g. protons and neutrons) in QCD processes and

interactions in high energy particle collisions.

Partons are quarks and gluons characterized by a probability density

functions of its nucleon momentum.
20



Parton density functions

• PDFs are essential for a realistic computation of any particle physics

observable, σ, thanks to the factorization theorem

σ = σ̂ ⊗ f,

where the elementary hard cross-section σ̂ is convoluted with f the PDF.

• PDFs are not calculable: reflect non-perturbative physics of confinement.

• PDFs are extracted by comparing theoretical predictions to real data.

x

3−

10
2−

10
1−

10 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g/10

vu

vd

d

c

s

u

b

NNPDF3.0 (NNLO)

)
2

 GeV
4

=102µxf(x,

 
LHC typical scale

x

3−

10
2−

10
1−

10 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g/10

vu

vd

d

u

s

c

b

)
2

 GeV
8

=102µxf(x,

 
FCC typical scale

21



Parton density functions

• PDFs are necessary to determine theoretical predictions for

signal/background of experimental measurements.

• e.g. the Higgs discovery at the LHC:

22



PDF uncertainties

PDF determination requires a sensible estimate of the uncertainty, and not

only the central value, so not a well researched topic in ML.

CERN Yellow Report 4 (2016)

PDF uncertainties are a limiting factor in the accuracy of theoretical

predictions for several processes at LHC.

⇒ Need of precise PDF determination and uncertainty estimate.

23



Why ML in PDFs determination?

• PDFs are essential for a realistic computation of hadronic particle

physics observable, σ, thanks to the factorization theorem, e.g. in pp

collider:

σX(s,M2
X︸ ︷︷ ︸

Y

) =
∑
a,b

∫ 1

xmin

dx1dx2 σ̂a,b(x1, x2, s,M
2
X)︸ ︷︷ ︸

X

fa(x1,M
2
X)fb(x2,M

2
X),

where the elementary hard cross-section σ̂ is convoluted with f the PDF.

• fi(x1,M2
X) is the PDF of parton i carrying a fraction of momentum x at

scale M ⇒ needs to be learned from data.

• Constraints come in the form of convolutions:

X ⊗ f → Y

• Experimental data points is ∼ 5000 → not a big data problem

• Data from several process and experiments over the past decades

⇒ deal with data inconsistencies
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ML and PDF determination



The NNPDF methodology

The NNPDF (Neural Networks PDF) implements the Monte Carlo

approach to the determination of a global PDF fit. We propose to:

1. reduce all sources of theoretical bias:

• no fixed functional form

• possibility to reproduce non-Gaussian behavior

⇒ use Neural Networks instead of polynomials

2. provide a sensible estimate of the uncertainty:

• uncertainties from input experimental data

• minimization inefficiencies and degenerate minima

• theoretical uncertainties

⇒ use MC artificial replicas from data, training with a GA minimizer

3. Test the setup through closure tests

25



Experimental data

The total number of data points for

the default PDF determination is

• 4175 at LO, 4295 at NLO and

4285 at NNLO.

• 7 physical processes from 14

experiments over ˜30 years (deal

with data inconsistencies)

• few data points at high and low

x (deal with extrapolation)

• range of 5 and 7 orders of

magnitude per PDF evaluation

arguments (x,Q2)

10 4 10 3 10 2 10 1 100

x

101

102

103
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106

Q2 (
Ge

V2 )

Kinematic coverage
Fixed target DIS
Collider DIS
Fixed target Drell-Yan
Collider Inclusive Jet Production
Collider Drell-Yan
Z transverse momentum
Top-quark pair production
Black edge: New in NNPDF3.1
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DGLAP evolution

Can we reduce the PDF input size? Yes, thanks to DGLAP:

fi(xα, Q
2) = Γ(Q,Q0)ijαβfj(xβ , Q

2
0)

We remove the Q2 dependence from PDF determination thanks to the

DGLAP evolution operator Γ.

f(x,Q2)→ f(x,Q2
0) := f(x)

• Precompute the DGLAP operator for all data points

• Apply the operator to the partonic cross section

• Store the results and perform fast convolutions

In NNPDF theoretical predictions are stored in APFELgrid tables:

σ =

nf∑
i,j

nx∑
α,β

Wijαβfi(xα, Q
2
0)fj(xβ , Q

2
0)

27



Fast theory computation

APFELgrid (Bertone et al., arXiv:1605.02070) converts interpolated weight

tables provided by APPLgrid in an efficient format for PDF fitting, e.g.

σ =

nf∑
i,j

nx∑
α,β

Wijαβfi(xα, Q
2
0)fj(xβ , Q

2
0)

where grids are pre-convoluted with PDF evolution kernels from APFEL.
(Bertone et al., arXiv:1310.1394)

Public code: https://github.com/nhartland/APFELgrid 28



Defining the ML problem

In comparison to a typical ML problem, a PDF fit

• requires a statistically sound uncertainty estimate

• is a regression problem but complex dependence on PDFs

• must satisfy physical constrains:

• f(x)→ 0 for x→ 1 (continuity)

• sum rules:

nf∑
i

∫ 1

0

dxxfi(x) = 1,

∫ 1

0

dx (u(x)− ū(x)) = 2

∫ 1

0

dx (d(x)− d̄(x)) = 1,

∫
dx (q(x)− q̄(x)) = 0, q = s, b, t

29



PDF parametrizations

• Early models:

fi(x) = A · xα(1− x)β

• parameters are chosen based on Hessian minimization approach

• Can a simple model provide a reliable uncertainty estimate?

• Can it deal with data inconsistencies?

• NNPDF approach:

fi(x,Q0) = A · xα(1− x)βNN(x)

• fully connected MLP (2-5-3-1)

• two sigmoid hidden layers and linear output layer

• x8 independent PDFs ⇒ 296 free parameters
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Cost function

• We minimize the cost function:

χ2 =
∑
ij

(Di −Oi)σ−1
i,j (Dj −Oj)

• Di is the experimental measurement for point i

• Oi the theoretical prediction for point i (= σ̄ ⊗ f)

• σij is the covariance matrix between points i and j with corrections

for normalization uncertainties

• supplemented by additional penalty terms for positivity observables
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Propagating experimental uncertainties

Generate artificial Monte Carlo data replicas from experimental data.

We perform Nrep O(1000) fits, sampling pseudodata replicas:

D
(r)
i → D

(r)
i + chol(Σ)i,jN (0, 1), i, j = 1..Ndat, r = 1...Nrep

We obtain Nrep PDF replicas. No assumptions at all about the

Gaussianity of the errors.

We perform compression techniques for PDF delivery:

• CMC-PDFs: compression algorithm for MC PDFs.

• mc2hessian: MC to hessian conversion tool for PDFs.

• SMPDF: Specialized Minimal PDFs.

PDF releases reduce 1000 replicas to 100.
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PDF fit example

The procedure delivers a Monte Carlo representation of results:

­5
10 ­410

­3
10 ­210 ­110

­2

­1

0

1

2

3

4

5

6

7

)2xg(x, Q

NNPDF 2.3 NNLO replicas

NNPDF 2.3 NNLO mean value

 error bandσNNPDF 2.3 NNLO 1

NNPDF 2.3 NNLO 68% CL band

)2xg(x, Q

The central value of observables based on PDFs are obtained with:

〈O[f ]〉 =
1

Nrep

Nrep∑
k=1

O[fk]
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Optimization algorithm

The current approach is genetic optimization, based on nodal mutation

probabilities and more recently the covariance matrix evolution strategy

w → w + η
rδ
Nrite

ite

, η = 15, rδ ∼ U(−1, 1), rite ∼ U(1, 0)

At each iteration, generate 80 mutants and select best mutant.

Advantages

• Simple to implement and understand.

• Good dealing with complex analytic behavior.

• Doesn’t require evaluating the gradient.

Disadvantages

• May not be close to a global minimum.

• Requires many functions evaluations.

• Needs tuning.
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Stopping

We have cross-validation implemented:

• We split data in a training and validation set.

• Training fraction is 50%, different for each replica.

• We perform the GA on the training set for a fixed number of

iterations O(30000).

• Stop at the minimum of the validation set, storing the parameters

from the replica at that iteration.
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Validation with closure test

Closure tests

• Assume that the underlying PDF is known, generate data, fluctuations

around the prediction of the true PDF.

• Perform a fit and compare to underlying PDF.

• Check that the results are consistent.

Level 0: Fit predictions of the true PDF without fluctuations. χ2/Ndat → 0.

Level 2: Generate pseudodata replicas on top of replicas. χ2/Ndat → 1.
36



Summary



Summary

We have covered the following topics:

• The hyperparameter tune

• the cross-validation techniques

• ML frameworks

• The PDF case study
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