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Outline

2

‣Jet algorithms

‣How are jets made

‣Jet substructure

‣What’s inside them
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IRC safety

3

An observable is infrared and collinear safe if, 
in the limit of a  collinear splitting, or the emission of an 
infinitely soft particle, the observable remains unchanged:

O(X; p1, . . . , pn, pn+1 � 0) � O(X; p1, . . . , pn)
O(X; p1, . . . , pn ⇥ pn+1) � O(X; p1, . . . , pn + pn+1)

If we wish to be able to calculate a jet rate in perturbative QCD 
the jet algorithm that we use must be IRC safe: 

soft emissions and collinear splittings must not change the hard jets

This property ensures cancellation of real and virtual divergences 
in higher order calculations
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Sterman-Weinberg jets
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The first rigorous definition of an 
infrared and collinear safe jet in 
QCD is due to Sterman and Weinberg, 
Phys. Rev. Lett. 39, 1436 (1977):

Calculable in pQCD (here is the result) but notice the soft and collinear large logs
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Why jets
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A jet is something that happens 
in high energy events: 

a collimated bunch of hadrons 
flying roughly in the 

same direction

We could eyeball the collimated 
bunches, but it becomes impractical 

with millions of events

The classification of particles into jets is best done 
using a clustering algorithm



Matteo Cacciari - LPTHE 2018 Taller de Altas Energías - Benasque

Why do jets happen?

6
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Taming reality

7

QCD predictions Real data

??

Jets

One purpose of a ‘jet clustering’ algorithm is to
reduce the complexity of the final state, simplifying many hadrons 

to simpler objects that one can hope to calculate

Multileg + PS
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Jets

821

Jets can serve two purposes

‣ They can be observables, that one can measure 
and calculate

‣ They can be tools, that one can employ to extract 
specific properties of the final state

Different clustering algorithms have different properties and characteristics 
that can make them more or less appropriate for each of these tasks
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Jet clustering algorithm
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{pi} {jk}
jet algorithm

particles,
4-momenta,

calorimeter towers, ....

jets

A jet algorithm maps the momenta of the final state particles 
into the momenta of a certain number of jets:

Most algorithms contain a resolution parameter, R, 
which controls the extension of the jet
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Jet definitions as projections

10

NB: projections are NOT unique: 
a jet is NOT EQUIVALENT to a parton
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Reconstructing jets is an ambiguous task

7

Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?

Gavin Salam (CERN) Jets and jet substructure (1) June 2013 6 / 35

2 clear jets 3 jets?
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Reconstructing jets is an ambiguous task

8

Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?

Gavin Salam (CERN) Jets and jet substructure (1) June 2013 6 / 35

2 clear jets 3 jets? 
or 4 jets?
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Reconstructing jets must respect rules

13

Perturbative calculations of jet observable will 
only be possible with collinear (and infrared) safe 

jet definitions
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Two main classes of jet algorithms

14

‣ Sequential recombination algorithms 
 Bottom-up approach: combine particles starting from closest ones 

         How? Choose a distance measure, iterate recombination until     
                     few objects left, call them jets

Works because of mapping closeness ⇔ QCD divergence
Examples: Jade, kt, Cambridge/Aachen, anti-kt, …..

‣ Cone algorithms
  Top-down approach: find coarse regions of energy flow. 

        How? Find stable cones (i.e. their axis coincides with sum of momenta of particles in it)

Works because QCD only modifies energy flow on small scales
Examples: JetClu, MidPoint,  ATLAS cone, CMS cone, SISCone…...

Usually trivially made IRC safe, but their 
algorithmic complexity scales like N3

Can be programmed to be fairly fast, at the  
price of being complex and IRC unsafe
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A little history

15

‣Cone-type jets were introduced first in QCD in the 1970s 
(Sterman-Weinberg ’77)

‣In the 1980s cone-type jets were adapted for use in hadron 
colliders (SppS, Tevatron...) ➙ iterative cone algorithms

‣LEP was a golden era for jets: new algorithms and many 
relevant calculations during the 1990s
‣ Introduction of the ‘theory-friendly’ kt algorithm

‣  sequential recombination type algorithm, IRC safe
‣  it allows for all order resummation of jet rates

‣Several accurate calculations in perturbative QCD of jet 
properties: rates, jet mass, thrust, ....
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e+e- kt (Durham) algorithm

16

Distance:

In the collinear limit, the numerator reduces to the relative transverse 
momentum (squared) of the two particles, hence the name of the algorithm

[Catani, Dokshitzer, Olsson, Turnock, Webber ’91]

‣ Find the minimum ymin of all yij

‣ If ymin is below some jet resolution threshold ycut, recombine i and j 
into a single new particle (‘pseudojet’), and repeat

‣ If no ymin < ycut are left, all remaining particles are jets
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e+e- kt (Durham) algorithm in action 

17

Characterise events 
in terms of number of jets 

(as a function of ycut)

Resummed calculations for distributions of ycut doable with the kt algorithm

2-jet

3-jet

4-jet

5-jet
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e+e- kt (Durham) algorithm v. QCD

18

One key feature of the kt 
algorithm is its relation to the 
structure of QCD divergences:

kt is a sequential recombination type algorithm

The yij distance is the inverse of the emission probability

‣The kt algorithm roughly inverts the QCD branching sequence 
(the pair which is recombined first is the one with the largest 
probability to have branched)

‣The history of successive clusterings has physical meaning



Matteo Cacciari - LPTHE 2018 Taller de Altas Energías - Benasque 19Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015

hadron-collider kt algorithm

Two parameters, R and pt,min 
(These are the two parameters in essentially every widely 
used hadron-collider jet algorithm)

Sequential recombination algorithm
1. Find smallest of dij, diB 

2.  If ij, recombine them 
3.  If iB, call i a jet and remove from list of particles 
4.  repeat from step 1 until no particles left 

 Only use jets with pt > pt,min

13

Inclusive kt algorithm
S.D. Ellis & Soper, 1993 

Catani, Dokshitzer, Seymour & Webber, 1993

dij = min(p2ti, p
2
tj)

�R2
ij

R2
, �R2

ij = (yi � yj)
2 + (�i � �j)

2
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The kt algorithm and its siblings

20

p = 1    kt algorithm S. Catani, Y. Dokshitzer, M. Seymour and B.  Webber,  Nucl. Phys. B406 (1993)  187
S.D. Ellis and D.E. Soper,  Phys. Rev. D48 (1993) 3160

p = 0   Cambridge/Aachen algorithm
Y. Dokshitzer, G. Leder, S.Moretti and B.  Webber,  JHEP 08 (1997) 001

M. Wobisch and T. Wengler, hep-ph/9907280

p = -1  anti-kt algorithm MC, G. Salam and G. Soyez, arXiv:0802.1189

NB: in anti-kt pairs with a hard particle will cluster first: if no other 
hard particles are close by, the algorithm will give perfect cones

Quite ironically, a sequential recombination algorithm is the ‘perfect’ cone algorithm

dij = min(p2p
ti , p2p

tj )
�y2 + ��2

R2
diB = p2p

ti
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IRC safety of generalised-kt algorithms

21

p > 0
New soft particle (pt →0) means that d → 0   ⇒  clustered first, no effect on jets

New collinear particle (Δy2+ΔΦ2 → 0) means that d → 0   ⇒  clustered first, no effect on jets

p = 0
New soft particle (pt →0) can be new jet of zero momentum ⇒  no effect on hard jets

New collinear particle (Δy2+ΔΦ2 → 0) means that d → 0   ⇒  clustered first, no effect on jets

p < 0
New soft particle (pt →0) means d →∞  ⇒  clustered last or new zero-jet,  no effect on hard jets

New collinear particle (Δy2+ΔΦ2 → 0) means that d → 0   ⇒  clustered first, no effect on jets

dij = min(p2p
ti , p2p

tj )
�y2 + ��2

R2
diB = p2p

ti
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IRC safe algorithms

22

kt

SR
dij = min(pti2,ptj2)ΔRij2/R2

hierarchical in rel pt

Catani et al ‘91
Ellis, Soper ‘93 NlnN

Cambridge/
Aachen

SR
dij = ΔRij

2/R2

hierarchical in angle

Dokshitzer et al ‘97
Wengler, Wobish ‘98 NlnN

anti-kt

SR
dij = min(pti-2,ptj-2)ΔRij

2/R2

gives perfectly conical hard jets

MC, Salam, Soyez ’08
(Delsart, Loch) N3/2

SISCone
Seedless iterative cone 

with split-merge
gives ‘economical’ jets

Salam, Soyez ‘07 N2lnN

All are available in FastJet, http://fastjet.fr
‘second-generation’ algorithms

(As well as many IRC unsafe ones)

http://fastjet.fr
http://fastjet.fr
http://fastjet.fr
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij
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around hard cores
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Anti-kt in action
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Anti-kt in action
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Anti-kt in action
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores



Matteo Cacciari - LPTHE 2018 Taller de Altas Energías - Benasque 30Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015

Anti-kt in action
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Anti-kt in action
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Anti-kt in action
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Anti-kt in action
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Anti-kt in action
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Anti-kt in action
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Anti-kt in action
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores



Matteo Cacciari - LPTHE 2018 Taller de Altas Energías - Benasque 38Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015

Anti-kt in action

16

Anti-kt gives 
circular jets  
(“cone-like”) 

in a way that’s 
infrared safe

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores



kt Cam/Aa

SISCone anti-kt
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Example of jet observable

40

Inclusive 
jet cross 
section

Excellent 
theory-data 

agreement over 
many orders of 

magnitude
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Jet substructure

41

First studied by Mike Seymour in the early ‘90s

Topic revived about 10 years 
ago in order to study boosted objects

X
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Why boosted objects

42

Heavy particle X at rest Boosted heavy particle X

X
X

Easy to resolve jets and 
calculate invariant mass, 

but signal very likely 
swamped by background 

(eg H→bb v. tt →WbWb)

Cross section very much 
reduced, but acceptance 

better and some 
backgrounds smaller/

reducible
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Mass of a single jet

43

A heavy object decaying 
into a single jet naturally 

gives it a mass...

... but pure QCD jets can be 
massive too:

G. Salam

Signal

Background
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This means that one can’t rely on the invariant mass only. 
An appropriate strategy must be found to reduce the background 

and enhance the signal

Mass of a single jet

44

Summing ‘signal’ and ‘background’ (with appropriate cross sections)
shows how much the background dominates

Background only Signal + background

Practically identical
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Tagging

45

X
How to tell this from this ?

Decay of a heavy 
(boosted) object

Light parton 
fragmentation
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Tagging and Grooming

46

‣The substructure of a jet can be exploited to
‣tag a particular structure inside the jet, i.e. a massive 

particle
‣ First examples: Higgs (2-prong decay), top (3-prong decay)

‣remove background contamination from the jet or its 
components, while keeping the bulk of the perturbative 
radiation (often generically denoted as grooming)

‣ First examples: filtering,  trimming, pruning
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Why substructure

47

Scales: m ~ 100 GeV, pt ~ 500 GeV
(e.g. electroweak particle from decay of ~ 1TeV BSM particle)

Possible strategies
‣ Use large R, get a single jet : background large
‣ Use small R, resolve the jets : what is the right scale?
‣Also: small jets lead to huge combinatorial issues

‣ need small R (< 2m/pt ~ 0.4) to resolve two prongs
‣ need large R (>~ 3m/pt ~ 0.6) to cluster into a single jet

 Let an algorithm find the ‘right’ substructure
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What jets to use for substructure?

48

Different jet algorithms will give different ‘pictures’ 
of what’s inside a jet
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Dendrogram

49

Distance between two objects 
is given by the height of the 
lowest internal node that they 

share.

Internal node

Order of clustering here is 1,2,3,4

1
2

3
4

Used to represent graphically the sequence of clustering steps 
in a sequential recombination algorithm

Distance

The clustering sequence is 4-5 (1), 2-3 (2), 23-45 (3), 1-2345 (4)

1 2 3 4 5
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First try

50

anti-kt
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 3.57137e−05

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000496598

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000688842

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000805103

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.



Matteo Cacciari - LPTHE 2018 Taller de Altas Energías - Benasque 60

Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000773759

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.0014577

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 0.00147749

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 1.96

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Second try

68

kt
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.318802

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.977453

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 1.48276

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 2.34277

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 13.5981

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 30.8068

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 717.825

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 11432

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics

This meant it was the first algorithm
to be used for jet substructure.

Seymour ’93

Butterworth, Cox & Forshaw ’02
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Third try

86

Cambridge/Aachen
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.142857

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.214286

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.415037

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.686928

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 1.20645

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 1.93202

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} > 2

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} > 2

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

The interesting substructure is buried
inside the clustering sequence — it’s
less contamined by soft junk, but
needs to be pulled out with special
techniques

Butterworth, Davison, Rubin & GPS ’08
Kaplan, Schwartz, Reherman & Tweedie ’08

Butterworth, Ellis, Rubin & GPS ’09
Ellis, Vermilion & Walsh ’09

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Hierarchical substructure

104

Slide by 
Gavin Salam

Undo the last 
clustering step(s)
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The IRC safe algorithms

105

Speed Regularity UE
contamination

Backreaction Hierarchical
substructure

kt ☺☺☺ ☂ ☂☂ ☁☁ ☺☺

Cambridge
/Aachen

☺☺☺ ☂ ☂ ☁☁ ☺☺☺

anti-kt ☺☺☺ ☺☺ ☁/☺ ☺☺ ✘

SISCone ☺ ☁ ☺☺ ☁ ✘

Array of tools with different characteristics. 
Pick the right one for the job
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QCD v. heavy decay

106

A possible approach for reducing the QCD background is to identify the two 
prongs of the heavy particle decay, and put a cut on their momentum fraction

Signal: Background: 
P (z) ⇥ 1 + z2

1� z
P (z) ⇥ 1 + (1� z)2

z
P (z) � 1

Will split mainly 
symmetrically

Will split mainly 
asymmetrically

Will split mainly 
symmetrically
Will split mainly 

symmetrically

Potential tagger: asymmetric splitting

y = min(p2
ti, p

2
tj)

�R2
ij

m2
� min(pti, ptj)

max(pti, ptj)
Possibly 

implemented 
via a cut on
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Splittings and distances

107

Quasi-collinear 
splitting (ptj < pti)

pt
pti = (1-z)pt

m ptj = zpt

m2 ⇥ ptiptj�R2
ij = (1� z)zp2

t �R2
ijInvariant mass:

dij = z2p2
t �R2

ij ⇥
z

1� z
m2

kt distance:

For a given mass, the background will have smaller distance dij than the signal, 
i.e.  it will tend to cluster earlier in the kt algorithm

(ptj < pti)

Potential tagger: last clustering in kt algorithm
This is where the hierarchy of the kt algorithm becomes relevant. 

QCD radiation is clustered first, and only at the end the symmetric, 
large-angle splittings due to decays are reclustered
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The BDRS tagger/groomer

108

‣A two-prong tagger/groomer for boosted Higgs, which
‣ Uses the Cambridge/Aachen algorithm (because it’s ‘physical’)

‣ Employs a Mass-Drop condition, as well as an asymmetry cut to 
find the relevant splitting (i.e. ‘tag’ the heavy particle)

‣ Includes a post-processing step, using ‘filtering’ (introduced in the same paper) 
to clean as much as possible the resulting jets of UE contamination 
(‘grooming’)

Butterworth, Davison, Rubin, Salam, 2008

pp →ZH → ννbb--



Matteo Cacciari - LPTHE 2018 Taller de Altas Energías - Benasque 109

pp →ZH → ννbb

Start with the 
hardest jet

Use C/A with 
large R=1.2

mj = 150 GeV
G

. S
al

am

- -
BDRS: tagging
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pp →ZH → ννbb

Undo last step of 
clustering

Check how the mass splits 
between the two subjets

(m1 = 139 GeV, m2 = 5 GeV)
and how asymmetric the 

splitting is

If repeator
min(p2

t1, p
2
t2)

m2
j

�R2
12 < ycut

max(m1,m2)
mj

> µ

BDRS: tagging
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pp →ZH → ννbb

m1 = 52 GeV, m2 = 28 GeV

Stop when a large mass 
drop is observed 

(and recombine these
 two jets)

[NB. Parameters used μ = 0.67 and ycut = 0.09]
G

. S
al

am

BDRS: tagging
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BDRS: filtering

112

Start with the 
recombined jet

pp →ZH → ννbb

G
. S

al
am
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Recluster the 
contituents with Rfilt

pp →ZH → ννbb

G
. S

al
am

BDRS: filtering
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Only keep the nfilt 
hardest jets

The low-momentum stuff surrounding the hard particles has been removed

pp →ZH → ννbb

G
. S

al
am

BDRS: filtering
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Visualisation of BDRS

115

Cluster with a large R
Undo the clustering into subjets,

until a large asymmetry/mass drop 
is observed: tagging step

Re-cluster with smaller R, 
and keep only 3 hardest 

jets: grooming step

pp →ZH → ννbb--
Butterworth, Davison, Rubin, Salam, 2008
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Conclusion part 1

116

‣ A number of different IRC-safe jet algorithms exist
‣ They all try to be good proxies for hard partons, but they have 

different characteristics, especially with respect to soft particles

‣ Jets from all algorithms inevitably suffer from pileup contamination
‣ Techniques exist to subtract it, either at jet-level, or at particle-level

‣ Both the jet algorithms and many pileup subtraction techniques are 
packaged aither in FastJet or in fjcontrib contributions
‣Use of standard algorithms and packages (either directly or 

through interfaces) should be privileged, as it ensures 
reproducibility

http://fastjet.fr http://fastjet.hepforge.org/contrib/
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Conclusions part 2

117

The big news of the past few years has been the 
emergence of jet-based taggers and groomers
‣ They have proven their worth in ‘Standard Model’ analyses

‣ They are being implemented in BSM searches


