

LHC Physics (Higgs II)

BIST

TAE, Benasque, September 2018

Outline for Part II

- Other (Bronze) Channels
- Detailed study on Couplings
- Higgs width
- Invisibly decaying Higgs
- Higgs and Vacuum Stability
- Hierarchy Problem & SUSY
- Search for other Higgs (few examples)
- What to expect in the future ?

Disclaimer: completely unbalanced set of results from CMS and ATLAS and no fanatic collection of latest results

Higgs Couplings to SM

Couplings proportional to masses of particles → This determines the phenomenology

Higgs Production (LHC)

For a Higgs of 125 GeV

Higgs Program in a Glance

Channel categories	ggF g 70000000 g 70000000			
γγ	1	1	1	1
ZZ (IIII)	1	1	1	~
WW (InIn)	1	1	1	~
ττ	х	1	1	1
bb	Х	1	1	~
Zγ	1	✓		Pecalys
μμ	1	1	Rare	
Invisible	1	1	1	

Rare Decays

Global Understanding

Channel categories	ggF g 7000000 g 7000000			
γγ	1	1	1	1
ZZ (IIII)	1	1	1	1
WW (InIn)	1	1	1	1
ττ		1	1	1
bb		1	1	1
Zγ	1	1		
μμ	1	1		
Invisible	1	1	1	

Detailed Study of Couplings

$$n^{c}_{signal} = (\sum_{i} \mu_{i} \sigma_{i,SM} \times A^{c}_{if} \times \varepsilon^{c}_{if}) \times \mu_{f} \times B_{f,SM} \times \mathcal{L}$$

$$i \in \{ggH, VBF, VH, ttH\}$$

$$f \in \{\gamma\gamma, WW, ZZ, bb, \tau\tau\}$$

Taking some assumptions

$$(\mu_{ggH+ttH} = \mu_{ggH} = \mu_{ttH})$$

$$(\mu_{VBF+VH} = \mu_{VBF} = \mu_{VH})$$

PDG 2016

Higgs Couplings

Run I:

Within the uncertainty of the data all looks consistent with a SM Higgs

Using EFT Lagrangian in Global Fit

$$\mathcal{L} = \kappa_3 \frac{m_H^2}{2v} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu H + \kappa_W \frac{2m_W^2}{v} W_\mu^+ W^{-\mu} H + \kappa_g \frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a\mu\nu} H + \kappa_\gamma \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_Z \gamma \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H + \kappa_{VV} \frac{\alpha}{2\pi v} \left(\cos^2 \theta_W Z_{\mu\nu} Z^{\mu\nu} + 2 W_{\mu\nu}^+ W^{-\mu\nu} \right) H - \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f \overline{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f \overline{f} + \kappa_\tau \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \overline{f} \right) H$$

Global EFT analysis using scale factors κ_k that modify SM couplings

One can build the relationships between different scale factors according to the different processes...

$$k \in \{Z, W, f, g, \gamma, Z\gamma\}$$

- The Z_{\(\eta\)} (0.2%) $\kappa_{Z_\(\eta\)} \propto 1.12 \times \kappa_W^2 - 0.15 \times \kappa_t \kappa_W + 0.03 \times \kappa_t^2$

- The $\mu\mu$ channel (0.02%) $\propto \kappa_{\mu}^2 / \kappa_{H}^2$

As in PDG (Aug 2014) Relative Couplings to fermions/bosons

As in PDG (Aug 2016) Relative Couplings to fermions/bosons

As in PDG (Aug 2016)

So close to 1...

Using Run II data

ATLAS-CONF-2018-031

So close (too close) to 1...

Higgs Couplings vs mass

If it looks like a duck, swims like a duck, and quacks like a duck...

Custodial Symmetry (W/Z ratio)

Consistent with SM $\rho = 1$

Does not look like..

Going differential...

Going differential...

arXiv:1802.04146

Better agreement in 13 TeV data (much more data will be needed.....)

0.2% precision in mass

Higgs width

Sensitive to small contributions

 $\Gamma_{\rm H}(SM) = 4.2 \,{\rm MeV}$

Invisibly decaying Higgs

Remember Z width..

Invisible Higgs

BR (invisible) < 75% @ 95% CL

 $\sigma Br_{inv} / \sigma^{SM} < 1.8 @ 95\% CL$

 \bar{q}

 Z^*

H

Evidence for Dark Matter

The rotation of the stars around the center of the galaxies is not consistent with the amount of mass observed (L/M ratio)_{SUN}

Spherical dark matter halo

Large distortion of the imagines of distant galaxies due to gravitation lensing
→ indication of DM in galaxy clusters

Gravitational Lensing

Collisions of clusters of galaxies .

Considered the ultimate demonstration of the presence of Dark Matter since this does not involve Newton's Law

Higgs Portal

The limits on invisibly decaying Higgs can be re-interpreted in the context of SM – DM interactions via light Higgs mediators

X

h

Note the LHC results provide unique access to light DM range (< 10 GeV)

 \bar{q}

Higgs Portal

Assuming different kind of DM – Higgs Interactions

The BEH Mechanism

The scalar sector becomes more transparent in the unitary gauge:

$$\phi(x) = \frac{e^{\frac{i}{v}\vec{\chi}(x)\cdot\vec{\tau}}}{\sqrt{2}} \begin{pmatrix} 0\\ v+H(x) \end{pmatrix} \xrightarrow{SU(2)} \phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+H(x) \end{pmatrix}$$

after which the Lagrangian becomes

$$\mathcal{L} = \mu^2 H^2 - \lambda v H^3 - \frac{1}{4} H^4 = -\frac{1}{2} M_H^2 H^2 - \sqrt{\frac{\lambda}{2}} M_H H^3 - \frac{1}{4} \lambda H^4$$

Three degrees of freedom, the $\chi^a(x)$ Goldstone bosons, have been reabsorbed into the longitudinal components of the W^{\pm}_{μ} and Z^0_{μ} weak gauge bosons. One real scalar field remains:

the Higgs boson, H, with mass $M_H^2 = -2\mu^2 = 2\lambda v^2$ and self-couplings:

Higgs mass and Vacuum Stability

 $(t = \ln(Q^2/Q_0^2), y_t = m_t/v \rightarrow \text{top quark Yukawa coupling}).$

Higgs vs Vacuum Stability

What this really means ?

Large dependence on top and Higgs masses Assumes no BSM physics enters in the RGE

This really means that the SM is consistent all the way to the Planck scale..

Do not worry .. Lifetime probably larger than the age of the Universe.

Hierarchy Problem

$$<$$
 H $>$ = 174 GeV \rightarrow m_H² \approx O(-100 GeV²)

if $\Lambda_{\rm UV} \approx M_{\rm planck} \rightarrow$ fine tuning in 10³⁰ !!

Already a serious problem at 5 TeV scale (cancellation among top, gauge and Higgs loops)

This kind of conspiracy has name in Physics...

SuperSymmetry ?

SuperSymmetry in 30"

- Fermion/Boson symmetry
 - Q | fermion > = | boson > Q | boson > = | fermion >
- Exact cancellation between fermion & boson loops for Higgs

...will mix to form mass eigenstates..

Higgs sector with 2 doublets

...SUSY must be broken..... model-dependent phenomenology

Hard to believe in SUSY if the Higgs sector stays with just h₀

....Looking for extra Higgs particles

Tree level : M_A and $\tan\beta$ as parameters

MSSM Higgs production cross section boosted compared to SM at large $tan\beta$

$$\begin{aligned} \sigma(b\bar{b}A) \times \mathrm{BR}(A \to b\bar{b}) &\simeq & \sigma(b\bar{b}A)_{\mathrm{SM}} \, \frac{\tan^2 \beta}{\left(1 + \Delta_b\right)^2} \times \frac{9}{\left(1 + \Delta_b\right)^2 + 9} \\ \sigma(gg, b\bar{b} \to A) \times \mathrm{BR}(A \to \tau^+ \tau^-) &\simeq & \sigma(gg, b\bar{b} \to A)_{\mathrm{SM}} \, \frac{\tan^2 \beta}{\left(1 + \Delta_b\right)^2 + 9} \,, \end{aligned}$$

At low masses

 $Br(h \rightarrow bb) \sim 90\%$, $Br(h \rightarrow \tau\tau) \sim 10\%$

MSSM Neutral Higgs

500

10⁻⁴

0

m_{ττ} [GeV]

1500

1000

MSSM Neutral Higgs

t

Ŧ

W⁺

W.

$X \rightarrow HH (\rightarrow bbbb)$

3-b control region

Very difficult analysis (huge QCD and ttbar)

arXiv:1807.04873

$X \rightarrow HH (\gamma\gamma bb)$

LHC BEYOND RUN I+II

HL-LHC

LHC Plan

Producción 174M Higgs

Higgs signal strength

Higgs Couplings

5-10% accuracy on couplings

ATL-PHYS-PUB-2014-019 ATL-PHYS-PUB-2014-016 LHC-HL prospects

Higgs couplings (assuming SM Γ_{H})

- 2-5% in most cases
- 10% for rare processes ($H \rightarrow \mu\mu$, $ttH \rightarrow tt\gamma\gamma$)
- may measure Higgs self couplings to 30%?

 $m_{\gamma\gamma}\,[GeV]$

Higgs width

Lance J. Dixon¹ and Ye Li¹

Bounding the Higgs Boson Width Through Interferometry

Higgs Portal to DM

End Part II