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Topology in condensed matter physics

Topological phases of matter

Topological insulators Fu Kane Mele 2007

Integer quantum Hall effect Thouless et al. 1982

Quantum spin Hall effect Kane Mele 2005

less modes is ubiquitous in physics and has appeared in
many contexts. It was originally found by Jackiw and
Rebbi !1976" in their analysis of a 1D field theory. Simi-
lar ideas were used by Su, Schrieffer, and Heeger !1979"
to describe soliton states in polyacetalene.

A simple theory of the chiral edge states based on
Jackiw and Rebbi !1976" can be developed using the two
band Dirac model !4". Consider an interface where the
mass m at one of the Dirac points changes sign as a
function of y. We thus let m→m!y", where m!y"!0
gives the insulator for y!0 and m!y""0 gives the quan-
tum Hall state for y"0. Assume m!!0 is fixed. The
Schrödinger equation, obtained by replacing q by −i!! in
Eq. !4", has a simple and elegant exact solution,

#qx
!x,y" $ eiqxx exp#− $

0

y

dy!m!y!"dy!/vF%#1
1
% , !6"

with E!qx"=%vFqx. This band of states intersects the
Fermi energy EF with a positive group velocity dE /dqx
=%vF and defines a right moving chiral edge mode.

In the 1980s related ideas were applied to narrow gap
semiconductors, which can be modeled using a 3D mas-
sive Dirac Hamiltonian !Volkov and Pankratov, 1985;
Fradkin, Dagotto, and Boyanovsky, 1986". An interface
where the Dirac mass changes sign is associated with
gapless 2D Dirac fermion states. These share some simi-
larities with the surface states of a 3D topological insu-
lator, but as we shall see in Sec. IV.A there is a funda-
mental difference. In a separate development, Kaplan
!1992" showed that in lattice quantum chromodynamics
four-dimensional !4D" chiral fermions could be simu-
lated on a five-dimensional lattice by introducing a simi-
lar domain wall. This provided a method for circumvent-
ing the doubling theorem !Nielssen and Ninomiya,
1983", which prevented the simulation of chiral fermions
on a 4D lattice. Quantum Hall edge states and surface
states of a topological insulator evade similar doubling
theorems.

The chiral edge states in the quantum Hall effect can
be seen explicitly by solving the Haldane model in a
semi-infinite geometry with an edge at y=0. Figure 2!b"
shows the energy levels as a function of the momentum
kx along the edge. The solid regions show the bulk con-
duction and valence bands, which form continuum states
and show the energy gap near K and K!. A single band,
describing states bound to the edge, connects the va-
lence band to the conduction band with a positive group
velocity.

By changing the Hamiltonian near the surface the dis-
persion of the edge states can be modified. For instance,
E!qx" could develop a kink so that the edge states inter-
sect EF three times—twice with a positive group velocity
and once with a negative group velocity. The difference,
NR−NL, between the number of right and left moving
modes, however, cannot change and is determined by
the topological structure of the bulk states. This is sum-
marized by the bulk-boundary correspondence,

NR − NL = &n , !7"

where &n is the difference in the Chern number across
the interface.

C. Z2 topological insulator

Since the Hall conductivity is odd under T, the topo-
logically nontrivial states described in Sec. II.B.3 can
only occur when T symmetry is broken. However, the
spin-orbit interaction allows a different topological class
of insulating band structures when T symmetry is unbro-
ken !Kane and Mele, 2005a". The key to understanding
this new topological class is to examine the role of T
symmetry for spin 1/2 particles.

T symmetry is represented by an antiunitary operator
'=exp!i(Sy /%"K, where Sy is the spin operator and K is
complex conjugation. For spin 1/2 electrons, ' has the
property '2=−1. This leads to an important constraint,
known as Kramers’ theorem, which all eigenstates of a T
invariant Hamiltonian are at least twofold degenerate.
This follows because if a nondegenerate state &)' existed
then '&)'=c&)' for some constant c. This would mean
'2&)'= &c&2&)', which is not allowed because &c&2
"−1. In the absence of spin-orbit interactions, Kramers’
degeneracy is simply the degeneracy between up and
down spins. In the presence of spin-orbit interactions,
however, it has nontrivial consequences.

A T invariant Bloch Hamiltonian must satisfy

'H!k"'−1 = H!− k" . !8"

One can classify the equivalence classes of Hamiltonians
satisfying this constraint that can be smoothly deformed
without closing the energy gap. The TKNN invariant is
n=0, but there is an additional invariant with two pos-
sible values, *=0 or 1 !Kane and Mele, 2005b". The fact
that there are two topological classes can be understood
by appealing to the bulk-boundary correspondence.

In Fig. 3 we plot analogous to Fig. 2 the electronic
states associated with the edge of a T invariant 2D insu-
lator as a function of the crystal momentum along the
edge. Only half of the Brillouin zone 0"kx"( /a is
shown because T symmetry requires that the other half
−( /a"k"0 is a mirror image. As in Fig. 2, the shaded
regions depict the bulk conduction and valence bands
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FIG. 3. !Color online" Electronic dispersion between two
boundary Kramers degenerate points +a=0 and +b=( /a. In !a"
the number of surface states crossing the Fermi energy EF is
even, whereas in !b" it is odd. An odd number of crossings
leads to topologically protected metallic boundary states.
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                 are related by 
a gauge transformation
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Magnetic monopoles and Dirac’s 
quantization condition

Suppose         is the wavefunction of  
a charge in a region without fields  
and suppose it has a nodal line with 
winding number
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When an electromagnetic field is  
turned on the wavefunction becomes
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Change in phase around a circuit is
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For a closed surface
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From Berry curvature to topological invariants

The integral of the Berry curvature over a  
closed manifold is a topological invariant  

called the Chern number.

Berry curvature
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Berry phase

Example:  Quantum Hall effect

TKNN integer* 
(Chern number)

�
xy

= C
e2

h

C =

1

2⇡

ZZ

BZ

B
k1k2dk1dk2

ˆH =

X

n�

t
n,n+1(c

†
n�

c
n+1� + c†

n+1�cn�)

✏2n = �

✏2n+1 = �

t2n,2n+1 = t0 � ↵⇠ =: t1

t2n+1,2n+2 = t0 + ↵⇠ =: t2

t1 = t0 � ↵⇠

t2 = t0 + ↵⇠

|Ai, |Bi !

~⌧ = (⌧
x

, ⌧
y

, ⌧
z

)

t1c
†
n�

c
n+1� ! t1c

†
lA

c
lB

t2c
†
n+1�cn+2� ! t2c

†
lb

c
l+1A

n =

l =

ˆH = t1
X

l�

c†
l�

c
l�

⌦ ⌧̂
x

+ t2
X

l�

✓
c†
l+1�cl� ⌦

⌧̂
x

+ i⌧̂
y

2

+H.c.

◆
(1)

1

�
xy

= C
e2

h

C =

1

2⇡

ZZ

BZ

B
k1k2dk1dk2

ˆH =

X

n�

t
n,n+1(c

†
n�

c
n+1� + c†

n+1�cn�)

✏2n = �

✏2n+1 = �

t2n,2n+1 = t0 � ↵⇠ =: t1

t2n+1,2n+2 = t0 + ↵⇠ =: t2

t1 = t0 � ↵⇠

t2 = t0 + ↵⇠

|Ai, |Bi !

~⌧ = (⌧
x

, ⌧
y

, ⌧
z

)

t1c
†
n�

c
n+1� ! t1c

†
lA

c
lB

t2c
†
n+1�cn+2� ! t2c

†
lb

c
l+1A

n =

l =

ˆH = t1
X

l�

c†
l�

c
l�

⌦ ⌧̂
x

+ t2
X

l�

✓
c†
l+1�cl� ⌦

⌧̂
x

+ i⌧̂
y

2

+H.c.

◆
(1)

1

*Thouless, Kohmoto, Nightingale, den Nijs 
Phys. Rev. Lett. 49, 405 (1982)



Edge states in one-dimensional systems
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Ĥ =
X

n�

✏
n�

c†
n�

c
n�

+
X

n�

t
n,n+1(c

†
n�

c
n+1� + c†

n+1�cn�)

✏2n = �

✏2n+1 = �

t2n,2n+1 = t0 � ↵⇠ =: t1
t2n+1,2n+2 = t0 + ↵⇠ =: t2

t1 = t0 � ↵⇠

t2 = t0 + ↵⇠

|Ai, |Bi !

~⌧ = (⌧
x

, ⌧
y

, ⌧
z

)

t1c
†
n�

c
n+1� ! t1c

†
lA

c
lB

t2c
†
n+1�cn+2� ! t2c

†
lb

c
l+1A
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Edge states in one-dimensional systems

Fully dimerized limit
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2. Zero-energy edge states
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1.3 Edge States 9

Fig. 1.4 Energy spectrum and wave functions of a finite-sized SSH model. The number of unit
cells is N D 10. (a) Energy spectrum of the system for intercell hopping amplitude w D 1 as a
function the intracell hopping amplitude v. v < 1 (v > 1) corresponds to the topological (trivial)
phases. (b) and (c) shows the wave functions of the hybridized edge states, while (d) shows a
generic bulk wave function

chain, v D 0;w D 1, of N D 10 unit cells changes, as we continuously turn on the
intracell hopping amplitude v. The spectra, Fig. 1.4, reveal that the energies of the
edge states remain very close to zero energy.

The wavefunctions of almost-zero-energy edge states have to be exponentially
localized at the left/right edge, because the zero of energy is in the bulk band
gap. A plot of the wavefunctions (which have only real components, since the
Hamiltonian is real), Fig. 1.4, reveals that the almost-zero-energy eigenstates are
odd and even superpositions of states localized exponentially on the left and right
edge. This is a result of the exponentially small overlap between the left and the right
edge states. We will later show, in Sect. 1.5.6, that the edge-state energies are also
controlled by this overlap, and are of the order E D e!N=! , with a localization length
! D 1= log.v=w/.

There is an important property of the left (right) edge states, which is only
revealed by the plot of the wavefunctions, Fig. 1.4. The right edge state has
nonvanishing components only on the A sublattice while the left edge state on the B
sublattice.

In the following, we show the generality of these properties, and show the link
between the bulk winding number and the presence/absence of edge states, known
as bulk–boundary correspondence. In the case of the SSH model, all this hinges on
a property of the model known as chiral symmetry.
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Edge states in one-dimensional systems
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The notion of bulk-boundary correspondence allows one to make 
predictions about the boundary of a system (e.g. the existence of  
edge states) based on knowledge of a bulk topological invariant.

In the SSH model, one finds that the number (0 or 1) of left-edge states 
equals the winding number of        , i.e.          .

⌧̂
x

+ i⌧̂
y

2

= |AihB|. (2)

ˆh(k) = hk| ˆH|ki = ~h(k) · ~�

8
<

:

h
x

= t1 + t2 cos k
h
y

= t2 sin k
h
z

= 0

| 
nk�

i = |u
nk

i ⌦ |ki ⌦ |�i, |u
nk

i = a
nk

|Ai+ b
nk

|Bi (3)

|�
nk

i = ↵
nk

|Ai+ �
nk

|Bi (4)

t1 = 1, t2 = 0

ˆh(k) = �̂
x

t1 = 0, t2 = 1

ˆh(k) = �̂
x

cos k + �̂
y

sin k

|ki ⌦ |�i = 1p
N

NX

n=1

eikn|n�i k =

2⇡n

N
n = 1, 2, . . . , N (5)

ˆH = u
X

n�

c†
n�

c
n�

⌦ ⌧̂
z

+ v
X

n�

c†
n�

c
n�

⌦ ⌧̂
x

+ w
X

n�

✓
c†
n+1�cn� ⌦

⌧̂
x

+ i⌧̂
y

2

+H.c.

◆
, (6)

ˆH = u
X

n�

c†
n�

c
n�

⌦ ⌧̂
z

+ v
X

n�

c†
n�

c
n�

⌦ ⌧̂
x

+ w
X

n�

✓
c†
n+1�cn� ⌦

⌧̂
x

+ i⌧̂
y

2

+H.c.

◆
, (7)

[

ˆH, ˆU ] = 0

ˆU ˆH ˆU †
=

ˆH (8)

{ ˆH, ˆ�} = 0

ˆ

�

ˆHˆ

�

†
= � ˆH (9)

ˆH| 
n

i = E
n

| 
n

i ) ˆHˆ

�| 
n

i = �ˆ

�

ˆH| 
n

i = �E
n

| 
n

i

�̂
z

ˆh(k)�̂
z

= �h(k) ) h
z

= 0 (10)

2

�̂
z

ˆh(k)�̂
z

= �h(k) ) h
z

= 0 (10)

⌫ = 0 (11)

⌫ = 1

N
A

�N
B

=

µ = ⌫

3

Asboth, Oroszlany, Palyi, A short 
course on topological insulators, 2016.



Polarization in one-dimensional systems
Consider two types of centrosymmetric one-dimensional systems

1. Dimerized lattice

2. Ionic lattice

Geometric phase formula for the macroscopic polarization
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Consider two types of centrosymmetric one-dimensional systems
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Geometric phase formula for the macroscopic polarization
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Thouless charge pumping

Spatially periodic time-dependent potential with time-period
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Pumped charge per period is a topological invariant
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4.2 Moving Away from the Control Freak Limit 61

Fig. 4.3 The smooth pump sequence of the Rice-Mele model for Nv D 1. The hopping amplitudes
and the sublattice potential (a) are varied smoothly as a function of time. The vector d.k; t/
corresponding to the bulk momentum-space Hamiltonian (b) traces out a torus in the 3-dimensional
space. Instantaneous spectrum of the Hamiltonian OH.t/ on an open chain of N D 10 sites (c)
reveals that during a cycle, one state crosses over to the upper band on the right edge, and one
to the lower band on the left edge (dark red/light blue highlights energies of edge states, whose
wavefunctions have than 60% weight on the rightmost/leftmost 2 unit cells). The wavefunctions
of the edge states (d,e) are exponentially localized to one edge and have support overwhelmingly
on one sublattice each. In contrast a typical bulk state (f) has a delocalized wavefunction with
support on both sublattices
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As in the control freak case, there is a branch of energy eigenstates crossing over
from E < 0 to E > 0 at the right edge, and from E > 0 to E < 0, at the left.
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Two-dimensional topological insulators
Integer quantum Hall effect

come to be called the integer quantum Hall effect, and it
deserves to be reexamined a quarter of a century later.
(Laughlin also made seminal contributions to the under-
standing of the fractional quantum Hall effect, discovered
in 1983. But that’s another story.) His argument goes much
of the way toward explaining the unexpected precision of
the integral plateaus. But by our present understanding,
it is short by one important step—namely, the inclusion of
topological quantum numbers. 

Laughlin considered a 2D electron gas cold enough so
that quantum coherence holds throughout. It is then
meaningful to speak of a wavefunction describing the sys-
tem and its Hamiltonian evolution. Laughlin looked at the
Hall effect as a quantum pump. He imagined the electron
gas confined to a looped ribbon, as shown in figure 3, with
a strong magnetic field normal to its surface. The two op-
posite edges of the ribbon are connected to separate elec-
tron reservoirs.

Laughlin then introduced a fictitious magnetic flux F
threading the loop. The change in this flux drives the
pump: Increasing the flux creates an electromotive force
(emf) around the ring, which, by the classical Hall effect,
results in the transfer of charge from one reservoir to the
other. The Aharonov–Bohm principle tells us that the
Hamiltonian describing the system is gauge invariant
under flux changes by integral multiples of F0 = hc/e, the
elementary quantum of magnetic flux (see PHYSICS TODAY,

January 1986, page 17). Therefore an adiabatic increase
of F by a single flux quantum is a cycle of the pump.

An easy calculation shows that the charge transported
between the reservoirs in one pump cycle, in units of the
electron charge e, is the Hall conductance of the system in
units of e2/h, the quantum of Hall conductance. Therefore,
if we can understand the precise quantization of the
charge transported in one cycle of Laughlin’s pump, we
will understand the integer quantum Hall effect. In
Laughlin’s words, “By gauge invariance, adding F0 maps
the system back to itself, . . . [which results in] the trans-
fer of n electrons.” The quantization of Hall conductance
is then implied.

We must ask, however, why the average transferred
charge has to be an integral multiple of e, the charge of the
electron. Classically, of course, an electron is either in reser-
voir A or B, but not in both. But why is that also true in a
quantum mechanical system? Admittedly, even in quantum
mechanics, a measurement of the number of electrons in a
reservoir must be an integer, as must the transported
charge. But in quantum mechanics, consecutive cycles of the
pump may transport different amounts of charge.

Gauge invariance does require that, after a cycle, the
pump is back in its original state. Doesn’t that guarantee
that the transported charge in different cycles must be the
same? The answer is no. Only in classical mechanics does
an exact reproduction of a prior state guarantee reproduction

http://www.physicstoday.org August 2003    Physics Today 39
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Figure 1. Edwin Hall’s 1878
experiment was the first
demonstration of the Hall 
effect. A magnetic field B nor-
mal to a gold leaf exerts a
Lorentz force on a current I
flowing longitudinally along
the leaf. That force separates
charges and builds up a trans-
verse “Hall voltage” between
the conductor’s lateral edges.
Hall detected this transverse
voltage with a voltmeter that
spanned the conductor’s two
edges.

Figure 2. The integer quantum Hall effect. Plotting the Hall
resistance (essentially the reciprocal of the Hall conduc-
tance) of a low-temperature two-dimensional electron gas
against the strength of the imposed magnetic field normal to
the gas plane, one finds a stairlike quantized sequence of
Hall conductances very precisely equal to ne2/h, where n is
the integer that characterizes each plateau. The natural unit
of resistance defined by this effect is about 26 kW. (Adapted
from M. Paalanen, D. Tsui, A. Gossard, Phys. Rev. B. 25,
5566 [1982].) 
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of the prior measured result. In quantum mechanics, re-
producing the state of the system does not necessarily re-
produce the measurement outcome. So one cannot conclude
from gauge invariance alone that the same number of elec-
trons is transferred in every cycle of the pump.

Why, then, is the Hall conductance quantized? To com-
plete the argument, one has to explain why the mean
transferred charge, averaged over many pump cycles, is
indeed quantized. That’s where topological quantum num-
bers come into play: Chern numbers quantize averages. 

Adiabatic curvature
In 1981, Michael Berry discovered that the phase accumu-
lated by the wavefunction undergoing adiabatic evolution
has a particular geometric component, now known as
Berry’s phase7 (see the article by Berry in PHYSICS TODAY,
December 1990, page 34). To explain what Berry’s phase is
and its significance for the Hall effect, let’s take a step back
and review the notion of parallel transport in geometry.

In 1917, Tulio Levi-Civita developed the modern per-
spective on the geometry of surfaces based on Karl
Friedrich Gauss’s earlier work. In the Euclidean plane,
there is an obvious notion of parallelism for vectors at dif-
ferent points. But that’s not so on a curved surface, where
there is no natural way to compare the directions of tan-
gent vectors at different points. To compare directions, we
need the notion of parallel transport.

For concreteness and simplicity, let us consider the
surface of Earth—ignoring its rotation for the moment.
The plane of a pendulum’s swing defines a direction on the
plane tangent to the surface. If the pendulum is moved
slowly from one point to another, the propagation of that
direction is a realization of parallel transport.

On the rotating planet, a Foucault pendulum is an ex-
ample of parallel transport along a line of latitude. Parallel
transport is an intriguing phenomenon, and the Foucault
pendulum never fails to fascinate visitors to science muse-
ums. John Sullivan has created an interactive Web site that
nicely illustrates parallel transport on a sphere.8 It shows
how a vector can be transported parallel to itself and yet
point in a different direction at the end of a round trip.
That’s what happens with the Foucault pendulum after 24
hours. Only at the poles and on the equator does the pen-
dulum point in the same direction as it did 24 hours earlier.

The failure of parallel transport for closed paths is a
hallmark of intrinsic curvature. In modern geometry, the
local curvature of a surface is defined as the angular mis-
match after the traversal of an infinitesimal closed loop,
divided by the loop’s area.

This notion of curvature extends to a wide range of
other situations. In particular, it lets us introduce curva-
ture into quantum mechanics. Consider a quantum Hamil-
tonian H(F,q) that depends on two angular parameters.
The parameters play a role analogous to the spherical co-
ordinates on Earth’s surface. Suppose that the Hamilton-
ian has a nondegenerate ground state at energy zero. Let

eia +c(F,q)¬ denote the ground state. We are free to choose
a as we please; it is the analog of the pendulum’s initial
direction.

Consider now a closed loop in the parameter space. If
the parameters are varied slowly, we can use the time-
dependent Schrödinger equation to transport the ground
state. The failure of parallel transport around a closed loop
is measured by Berry’s phase. In this case, the local adia-
batic curvature K of the bundle of ground states in the pa-
rameter space, defined as the limit of the Berry phase mis-
match divided by the loop area, turns out to be

K = 2 Im ∀]Fc+]qc¬. (1) 

Hall conductance as curvature 
The Hall conductance can be thought of as a curvature. To
see why, we identify the two angular parameters on which
the Hall-effect Hamiltonian depends. One of them, F, is
associated with the emf that drives the Hall current in fig-
ure 3. The second parameter, q, is related to the ammeter
that measures the Hall current. More precisely, q is cho-
sen in such a way that the Hall current takes the form: 
I = c]q H(F,q). One can treat both F and q as angular pa-
rameters because, by gauge invariance, the Hamiltonian
is periodic in both, with period F0. 

If F varies slowly and the ground-state energy is in-
dependent of F (and strictly below that of the first excited
state), the Schrödinger equation gives

∀c+I+c¬ = \cKF!! (2)

for the expectation value of the Hall current, where K is
the adiabatic curvature given by equation 1.

Equation 2 gives a linear relation between the expec-
tation value of the Hall current and the driving emf, F!! /c,
generated by the time-varying flux tube that threads the
loop. The Hall conductance is therefore \c2K. That relation
establishes the geometric interpretation of the Hall con-
ductance as curvature. 

Ludwig Boltzmann is reputed to have said that ele-
gance is for tailors. The geometric interpretation of the
Hall conductance as curvature is clearly elegant. But is
there more to it than elegance? There is: Geometry links
the Hall conductance with topological invariants. Topol-
ogy, therefore, is our next topic. 

Chern numbers 
Geometry and topology are intimately related. Let us re-
call this relation in the familiar setting of surfaces. A re-
markable relation between geometry and topology is the
formula by Gauss and Charles Bonnet: 

(3)

The integral is over a surface S without a boundary, like
the torus in figure 4, and K is the local curvature of the
surface. Therefore, K dA is the angular mismatch of par-

1
2

2 1
p

K A g
S

d∫ = −( ).

A B

F
B

B

Figure 3. Robert Laughlin’s 1981 gedanken experiment in-
terprets the integer Quantum Hall effect as a quantum

pump. Increasing the flux F that threads the conducting
loop by a single flux quantum constitutes a cycle of the

pump, transferring a quantized amount of charge between
the two reservoirs, A and B, connected to the two edges of

the conducting loop. The loop is everywhere subjected to a
perpendicular magnetic field B.

Thouless Kohmoto Nightingale den Nijs 1982; Avron Seiler Simon 1983;  
Niu Thouless Wu 1985; Avron Osadchy Seiler 2003.
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In the quantum world, atoms and their electrons can
form many different states of matter, such as crystalline solids,
magnets, and superconductors. Those different states can 
be classified by the symmetries they spontaneously break—
translational, rotational, and gauge symmetries, respectively,
for the examples above. Before 1980 all states of matter in 
condensed-matter systems could be classified by the principle 
of broken symmetry. The quantum Hall (QH) state, discovered
in 1980,1 provided the first example of a quantum state that has
no spontaneously broken symmetry. Its behavior depends only
on its topology and not on its specific geometry; it was topo-
logically distinct from all previously known states of matter.

Recently, a new class of topological states has emerged,
called quantum spin Hall (QSH) states or topological insula-
tors (see PHYSICS TODAY, January 2008, page 19). Topologically
distinct from all other known states of matter, including QH
states, QSH states have been theoretically predicted and ex-
perimentally observed in mercury telluride quantum wells,2,3
in bismuth antimony alloys,4,5 and in Bi2Se3 and Bi2Te3 bulk

crystals.6–8 QSH systems are insulating in the bulk—they have
an energy gap separating the valence and conduction bands—
but on the boundary they have gapless edge or surface states
that are topologically protected and immune to impurities or
geometric perturbations.9–12 Inside such a topological insula-
tor, Maxwell’s laws of electromagnetism are dramatically al-
tered by an additional topological term with a precisely quan-
tized coefficient,12 which gives rise to remarkable physical
effects. Whereas the QSH state shares many similarities with
the QH state, it differs in important ways. In particular, QH
states require an external magnetic field, which breaks time-
reversal (TR) symmetry; QSH states, in contrast, are TR invari-
ant and do not require an applied field.

From quantum Hall to quantum spin Hall 
In a one-dimensional world, there are two basic motions: for-
ward and backward. Random scattering can cause them to
mix, which leads to resistance. Just as we have learned from
basic traffic control, it would be much better if we could spa-

tially separate the counterflow directions
into two separate lanes, so that random
collisions could be easily avoided. That
simple traffic control mechanism turns
out to be the essence of the QH effect.1

The QH effect occurs when a strong
magnetic field is applied to a 2D gas of
electrons in a semiconductor. At low tem-
perature and high magnetic field, elec-
trons travel only along the edge of the
semiconductor, and the two counterflows
of electrons are spatially separated into
different “lanes” located at the sample’s
top and bottom edges. Compared with a
1D system with electrons propagating in
both directions, the top edge of a QH bar
contains only half the degrees of freedom.
That unique spatial separation is illus-
trated in  figure 1a by the symbolic equa-
tion “2 = 1 [forward mover] + 1 [backward
mover]” and is the key reason why the
QH effect is topologically robust. When
an edge-state electron encounters an im-
purity, it simply takes a detour and still
keeps going in the same direction 
(figure 1), as there is no way for it to turn
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In topological insulators, spin–orbit coupling and time-reversal symmetry combine to form a novel
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Spinless 1D chain Spinful 1D chain

2 = 1 + 1 4 = 2 + 2

Quantum Hall Quantum spin Hall

Figure 1. Spatial separation is at the heart of both the quantum Hall (QH) and
the quantum spin Hall (QSH) effects. (a) A spinless one-dimensional system has
both a forward and a backward mover. Those two basic degrees of freedom are
spatially separated in a QH bar, as illustrated by the symbolic equation
“2 = 1 + 1.”  The upper edge contains only a forward mover and the lower edge
has only a backward mover. The states are robust: They will go around an impu-
rity without scattering. (b) A spinful 1D system has four basic channels, which
are spatially separated in a QSH bar: The upper edge contains a forward mover
with up spin and a backward mover with down spin, and conversely for the
lower edge. That separation is illustrated by the symbolic equation “4 = 2 + 2.”
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Two-dimensional topological insulators
Integer quantum Hall effect

come to be called the integer quantum Hall effect, and it
deserves to be reexamined a quarter of a century later.
(Laughlin also made seminal contributions to the under-
standing of the fractional quantum Hall effect, discovered
in 1983. But that’s another story.) His argument goes much
of the way toward explaining the unexpected precision of
the integral plateaus. But by our present understanding,
it is short by one important step—namely, the inclusion of
topological quantum numbers. 

Laughlin considered a 2D electron gas cold enough so
that quantum coherence holds throughout. It is then
meaningful to speak of a wavefunction describing the sys-
tem and its Hamiltonian evolution. Laughlin looked at the
Hall effect as a quantum pump. He imagined the electron
gas confined to a looped ribbon, as shown in figure 3, with
a strong magnetic field normal to its surface. The two op-
posite edges of the ribbon are connected to separate elec-
tron reservoirs.

Laughlin then introduced a fictitious magnetic flux F
threading the loop. The change in this flux drives the
pump: Increasing the flux creates an electromotive force
(emf) around the ring, which, by the classical Hall effect,
results in the transfer of charge from one reservoir to the
other. The Aharonov–Bohm principle tells us that the
Hamiltonian describing the system is gauge invariant
under flux changes by integral multiples of F0 = hc/e, the
elementary quantum of magnetic flux (see PHYSICS TODAY,

January 1986, page 17). Therefore an adiabatic increase
of F by a single flux quantum is a cycle of the pump.

An easy calculation shows that the charge transported
between the reservoirs in one pump cycle, in units of the
electron charge e, is the Hall conductance of the system in
units of e2/h, the quantum of Hall conductance. Therefore,
if we can understand the precise quantization of the
charge transported in one cycle of Laughlin’s pump, we
will understand the integer quantum Hall effect. In
Laughlin’s words, “By gauge invariance, adding F0 maps
the system back to itself, . . . [which results in] the trans-
fer of n electrons.” The quantization of Hall conductance
is then implied.

We must ask, however, why the average transferred
charge has to be an integral multiple of e, the charge of the
electron. Classically, of course, an electron is either in reser-
voir A or B, but not in both. But why is that also true in a
quantum mechanical system? Admittedly, even in quantum
mechanics, a measurement of the number of electrons in a
reservoir must be an integer, as must the transported
charge. But in quantum mechanics, consecutive cycles of the
pump may transport different amounts of charge.

Gauge invariance does require that, after a cycle, the
pump is back in its original state. Doesn’t that guarantee
that the transported charge in different cycles must be the
same? The answer is no. Only in classical mechanics does
an exact reproduction of a prior state guarantee reproduction
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Figure 1. Edwin Hall’s 1878
experiment was the first
demonstration of the Hall 
effect. A magnetic field B nor-
mal to a gold leaf exerts a
Lorentz force on a current I
flowing longitudinally along
the leaf. That force separates
charges and builds up a trans-
verse “Hall voltage” between
the conductor’s lateral edges.
Hall detected this transverse
voltage with a voltmeter that
spanned the conductor’s two
edges.

Figure 2. The integer quantum Hall effect. Plotting the Hall
resistance (essentially the reciprocal of the Hall conduc-
tance) of a low-temperature two-dimensional electron gas
against the strength of the imposed magnetic field normal to
the gas plane, one finds a stairlike quantized sequence of
Hall conductances very precisely equal to ne2/h, where n is
the integer that characterizes each plateau. The natural unit
of resistance defined by this effect is about 26 kW. (Adapted
from M. Paalanen, D. Tsui, A. Gossard, Phys. Rev. B. 25,
5566 [1982].) 
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of the prior measured result. In quantum mechanics, re-
producing the state of the system does not necessarily re-
produce the measurement outcome. So one cannot conclude
from gauge invariance alone that the same number of elec-
trons is transferred in every cycle of the pump.

Why, then, is the Hall conductance quantized? To com-
plete the argument, one has to explain why the mean
transferred charge, averaged over many pump cycles, is
indeed quantized. That’s where topological quantum num-
bers come into play: Chern numbers quantize averages. 

Adiabatic curvature
In 1981, Michael Berry discovered that the phase accumu-
lated by the wavefunction undergoing adiabatic evolution
has a particular geometric component, now known as
Berry’s phase7 (see the article by Berry in PHYSICS TODAY,
December 1990, page 34). To explain what Berry’s phase is
and its significance for the Hall effect, let’s take a step back
and review the notion of parallel transport in geometry.

In 1917, Tulio Levi-Civita developed the modern per-
spective on the geometry of surfaces based on Karl
Friedrich Gauss’s earlier work. In the Euclidean plane,
there is an obvious notion of parallelism for vectors at dif-
ferent points. But that’s not so on a curved surface, where
there is no natural way to compare the directions of tan-
gent vectors at different points. To compare directions, we
need the notion of parallel transport.

For concreteness and simplicity, let us consider the
surface of Earth—ignoring its rotation for the moment.
The plane of a pendulum’s swing defines a direction on the
plane tangent to the surface. If the pendulum is moved
slowly from one point to another, the propagation of that
direction is a realization of parallel transport.

On the rotating planet, a Foucault pendulum is an ex-
ample of parallel transport along a line of latitude. Parallel
transport is an intriguing phenomenon, and the Foucault
pendulum never fails to fascinate visitors to science muse-
ums. John Sullivan has created an interactive Web site that
nicely illustrates parallel transport on a sphere.8 It shows
how a vector can be transported parallel to itself and yet
point in a different direction at the end of a round trip.
That’s what happens with the Foucault pendulum after 24
hours. Only at the poles and on the equator does the pen-
dulum point in the same direction as it did 24 hours earlier.

The failure of parallel transport for closed paths is a
hallmark of intrinsic curvature. In modern geometry, the
local curvature of a surface is defined as the angular mis-
match after the traversal of an infinitesimal closed loop,
divided by the loop’s area.

This notion of curvature extends to a wide range of
other situations. In particular, it lets us introduce curva-
ture into quantum mechanics. Consider a quantum Hamil-
tonian H(F,q) that depends on two angular parameters.
The parameters play a role analogous to the spherical co-
ordinates on Earth’s surface. Suppose that the Hamilton-
ian has a nondegenerate ground state at energy zero. Let

eia +c(F,q)¬ denote the ground state. We are free to choose
a as we please; it is the analog of the pendulum’s initial
direction.

Consider now a closed loop in the parameter space. If
the parameters are varied slowly, we can use the time-
dependent Schrödinger equation to transport the ground
state. The failure of parallel transport around a closed loop
is measured by Berry’s phase. In this case, the local adia-
batic curvature K of the bundle of ground states in the pa-
rameter space, defined as the limit of the Berry phase mis-
match divided by the loop area, turns out to be

K = 2 Im ∀]Fc+]qc¬. (1) 

Hall conductance as curvature 
The Hall conductance can be thought of as a curvature. To
see why, we identify the two angular parameters on which
the Hall-effect Hamiltonian depends. One of them, F, is
associated with the emf that drives the Hall current in fig-
ure 3. The second parameter, q, is related to the ammeter
that measures the Hall current. More precisely, q is cho-
sen in such a way that the Hall current takes the form: 
I = c]q H(F,q). One can treat both F and q as angular pa-
rameters because, by gauge invariance, the Hamiltonian
is periodic in both, with period F0. 

If F varies slowly and the ground-state energy is in-
dependent of F (and strictly below that of the first excited
state), the Schrödinger equation gives

∀c+I+c¬ = \cKF!! (2)

for the expectation value of the Hall current, where K is
the adiabatic curvature given by equation 1.

Equation 2 gives a linear relation between the expec-
tation value of the Hall current and the driving emf, F!! /c,
generated by the time-varying flux tube that threads the
loop. The Hall conductance is therefore \c2K. That relation
establishes the geometric interpretation of the Hall con-
ductance as curvature. 

Ludwig Boltzmann is reputed to have said that ele-
gance is for tailors. The geometric interpretation of the
Hall conductance as curvature is clearly elegant. But is
there more to it than elegance? There is: Geometry links
the Hall conductance with topological invariants. Topol-
ogy, therefore, is our next topic. 

Chern numbers 
Geometry and topology are intimately related. Let us re-
call this relation in the familiar setting of surfaces. A re-
markable relation between geometry and topology is the
formula by Gauss and Charles Bonnet: 

(3)

The integral is over a surface S without a boundary, like
the torus in figure 4, and K is the local curvature of the
surface. Therefore, K dA is the angular mismatch of par-

1
2

2 1
p

K A g
S

d∫ = −( ).

A B

F
B

B

Figure 3. Robert Laughlin’s 1981 gedanken experiment in-
terprets the integer Quantum Hall effect as a quantum

pump. Increasing the flux F that threads the conducting
loop by a single flux quantum constitutes a cycle of the

pump, transferring a quantized amount of charge between
the two reservoirs, A and B, connected to the two edges of

the conducting loop. The loop is everywhere subjected to a
perpendicular magnetic field B.

Thouless Kohmoto Nightingale den Nijs 1982; Avron Seiler Simon 1983;  
Niu Thouless Wu 1985; Avron Osadchy Seiler 2003.
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Gs
xy !

e
h
"hSziL # hSziR$jEF : (3)

Here the expectation value of Sz is evaluated for the left
and right moving states at EF. Since the edge states are not
necessarily Sz eigenstates this spin Hall conductance is not
quantized. Gs

xy is zero in the insulating phase, though,
provided EF is in the gap at the edge. If in the insulator
the edge states cross EF, then in a clean system there could
be spin accumulation at the edge (resulting from the ac-
celeration of the edge electrons in response toE). However,
if the edge states are localized then there will be no spin
accumulation. Thus the nonzero spin accumulation persists
only for the QSH phase, justifying the term quantum (but
not quantized) spin Hall effect.

In the quantum Hall effect, the states with zero and one
flux quantum threading the cylinder are distinguished by
the charge polarization. The two states cannot be con-
nected by any operator that locally conserves charge. In
the QSH effect there is no simple conserved quantity
distinguishing the two states. However, the states are dis-
tinguishable, because the state with an edge particle-hole
excitation at EF cannot be connected to the ground state
with a local T symmetric operator. Note, however, that if a
second flux is added, then there will be T invariant inter-
actions which do connect the state with the zero flux state.
This suggests that the state with one flux added is distin-
guished by a Z2 ‘‘T polarization.’’

The classification of quantum Hall states on the cylinder
according to Laughlin’s argument is intimately related to
the TKNN classification of the Bloch wave functions [4].
To establish the corresponding topological classification
for T -invariant systems we consider T constraints on the
Bloch wave functions for the two occupied bands
jui!1;2"k$i. jui"k$i form a rank 2 vector bundle over
Brillouin zone torus. T introduces an involution on the
torus which identifies pairs of points k and #k. Wave
functions at the identified points are related by jui"#k$i !
!jui"k$i, implying that the bundle is ‘‘real.’’ Since !2 !
#1, ! has period 4, so that the real bundle is ‘‘twisted.’’
These bundles are classified within the mathematical
framework of twisted Real K theory [13]. It is found that
such bundles have a Z% Z2 classification on a torus [14].
The first integer gives the rank of the bundle (i.e., the
number of occupied bands). The Z2 index is related to
the mod 2 index of the real Dirac operator [15]. In the
following we will explicitly construct this Z2 index from
the Bloch wave functions and show that it distinguishes the
QSH phase from the simple insulator.

T symmetry identifies two important subspaces of the
space of Bloch Hamiltonians H "k$ and the corresponding
occupied band wave functions jui"k$i. The ‘‘even’’ sub-
space, for which !H"k$!#1 ! H"k$, have the property
that !jui"k$i is equivalent to jui"k$i up to a U"2$ rotation.
From Eq. (2) it is clear that in this subspace dab"k$ ! 0. T
symmetry requires that H"k$ belong to the even subspace
at the " point k ! 0 as well as the three M points shown in

Figs. 2(a) and 2(b). The odd subspace has wave functions
with the property that the space spanned by !jui"k$i is
orthogonal to the space spanned by jui"k$i. We will estab-
lish the Z2 classification by studying the set of k which
belong to the odd subspace.

The special subspaces can be identified by considering
the matrix of overlaps, hui"k$j!juj"k$i. From the proper-
ties of ! it is clear that this matrix is antisymmetric, and
may be expressed in terms of a single complex number as
!ijP"k$. P"k$ is in fact equal to the Pfaffian

P"k$ ! Pf &hui"k$j!juj"k$i'; (4)

which for a 2% 2 antisymmetric matrix Aij simply picks
out A12. We shall see below that the Pfaffian is the natural
generalization when there are more than two occupied
bands. P"k$ is not gauge invariant. Under a U"2$ trans-
formation ju0ii ! Uijjuji, P0 ! P detU. Thus P is un-
changed by a SU"2$ rotation, but under a U"1$
transformation U ! ei", P0 ! Pe2i". In the even subspace
!juii is equivalent to juii up to a U"2$ rotation, and we
have jP"k$j ! 1. In the odd subspace P"k$ ! 0.

If no spatial symmetries constrain its form, the zeros of
P"k$ are found by tuning two parameters, and generically
occur at points in the Brillouin zone. First order zeros occur
at time reversed pairs of points (k) with opposite ‘‘vor-
ticity,’’ where the phase of P"k$ advances in opposite
directions around (k). For #v ! 0 the QSH phase is
distinguished from the simple insulator by the presence
of a single pair of first order zeros of P"k$. The C3 rota-
tional symmetry of our model constrains k) to be at the
corner of the Brillouin zone as shown in Fig. 2(a). If the C3
symmetry is relaxed, k) can occur anywhere except the
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FIG. 2 (color online). The zeros of P"k$ in the QSH phase
occur at points (k) for (a) #v ! 0 and on the oval for
(b) #v ! 0. (c) jP"0;$2$j in the QSH (solid line) and insulating
(dashed line) phases for a 2% 2 supercell using parameters in
Fig. 1. (d) Point (#v ! 0) and line (#v ! 0) zeros of P" ~$$ for the
2% 2 supercell. In (a), (b), and (d) the solid dots are
T -symmetric points, which cannot be zeros of P, and C is the
contour of integration for Eq. (5).
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• One-dimensional systems present several topological invariants 

• Examples demonstrate the connections between Berry curvature, 
symmetry and topological invariants 

• Bulk-boundary correspondence: Bulk topological invariants are 
connected to properties at the boundary 

• Many-body interactions can induce transitions between distinct 
topological phases

Summary


