Topological invariants and topological insulators

Ryan Requist Max Planck Institute of Microstructure Physics, Halle, Germany

Aug. 24, 2018

Outline

I. Introduction

- A. Topological invariants in condensed matter physics
- B. Dirac monopole
- C. From geometry to topology
- II. Topological invariants in one-dimensional systems
 - A. Edge states in the Su-Schrieffer-Heeger model
 - B. Polarization in the Su-Schrieffer-Heeger model
 - C. Thouless charge pumping in Rice-Mele model
 - D. Effect of interactions: Rice-Mele-Hubbard model
- III. Topological invariants in two-dimensional systems
 - A. Integer quantum Hall effect
 - B. Quantum spin Hall effect

Topology in condensed matter physics

Nobel Prize in Physics 2016

for discoveries of topological phase transitions & topological phases of matter

Topological phases of matter

Integer quantum Hall effect Thouless et al. 1982

Quantum spin Hall effect Kane Mele 2005

Topological insulators Fu Kane Mele 2007

Dirac 1931

Magnetic monopoles and Dirac's quantization condition

$$\nabla \cdot \mathbf{B} = \sum_{i} g_i \delta^{(3)}(\mathbf{r} - \mathbf{r}_i)$$

$$\mathbf{B} = B_r \mathbf{r}$$
$$B_r = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_\phi \sin \theta)$$

$$A_{\phi}^{+} = g \frac{1 - \cos \theta}{r \sin \theta} \qquad \text{for} \quad \theta < \frac{\pi}{2} + \delta$$
$$A_{\phi}^{-} = g \frac{-1 - \cos \theta}{r \sin \theta} \qquad \text{for} \quad \theta > \frac{\pi}{2} - \delta$$

Magnetic monopoles and Dirac's quantization condition

$$\nabla \cdot \mathbf{B} = \sum_{i} g_i \delta^{(3)}(\mathbf{r} - \mathbf{r}_i)$$

$$\mathbf{B} = B_r \mathbf{r}$$
$$B_r = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_\phi \sin \theta)$$

$$A_{\phi}^{+} = g \frac{1 - \cos \theta}{r \sin \theta} \qquad \text{for} \quad \theta < \frac{\pi}{2} + \delta$$
$$A_{\phi}^{-} = g \frac{-1 - \cos \theta}{r \sin \theta} \qquad \text{for} \quad \theta > \frac{\pi}{2} - \delta$$

 A^+ and A^- are related by a gauge transformation

 $\psi(\mathbf{r}) \to e^{if_{+-}(\theta,\phi)}\psi(\mathbf{r})$

$$A_{\phi}^{+} = A_{\phi}^{-} + \frac{\partial}{\partial\phi} f_{+-}(\theta, \phi)$$
$$A_{\phi}^{+} = A_{\phi}^{-} + \frac{\partial}{\partial\phi} \frac{2g\phi}{r\sin\theta}$$

 $g_{-+}: (\theta, \phi, e^{i\alpha_{-}}) \to (\theta, \phi, e^{if_{+-}(\theta, \phi)}e^{i\alpha_{+}})$

Dirac 1931

Magnetic monopoles and Dirac's quantization condition

Suppose $\psi_0(\mathbf{r})$ is the wavefunction of a charge in a region without fields and suppose it has a nodal line with winding number

$$n = \frac{1}{2\pi} \oint dS = \frac{1}{2\pi} \oint \nabla S \cdot d\mathbf{r}$$

When an electromagnetic field is turned on the wavefunction becomes

$$\psi(\mathbf{r}) = \psi_0(\mathbf{r}) e^{i\frac{e}{\hbar c} \int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{A} \cdot d\mathbf{x}}$$

Change in phase around a circuit is

$$\Delta S = 2\pi n + \frac{e}{\hbar c} \oint_C \mathbf{A} \cdot d\mathbf{r}$$
$$= 2\pi n + \frac{e}{\hbar c} \int_S \mathbf{B} \cdot d\mathbf{S}$$

For a closed surface $\Delta S = 0$

$$\Rightarrow \quad \Phi_B = \frac{2\pi\hbar c}{e} = 4\pi g$$

$$g = \frac{n\hbar c}{2e} \Rightarrow g_0 = \frac{\hbar c}{2e}$$

Dirac 1931

From Berry curvature to topological invariants

- $\int_{M} K dS = 2\pi \chi(M) \qquad K = \text{Gaussian curvature}$
 - $\chi =$ Euler characteristic

$$\chi = 2 - 2g \qquad \qquad g = \text{genus}$$

Figures from wikipedia.com

From Berry curvature to topological invariants

Berry phase

$$\gamma(C) = -\iint_{S} \mathbf{B} \cdot d\mathbf{S}$$

$$= -\iint_{S} B_{\perp} dQ_{2} dQ_{3}$$

Berry curvature

$$B_{\perp} = 2 \operatorname{Im} \left\langle \frac{d\Phi_{\underline{\mathbf{R}}}}{dQ_2} \left| \frac{d\Phi_{\underline{\mathbf{R}}}}{dQ_3} \right\rangle \right.$$

The integral of the Berry curvature over a closed manifold is a topological invariant called the Chern number.

Example: Quantum Hall effect

*Thouless, Kohmoto, Nightingale, den Nijs Phys. Rev. Lett. 49, 405 (1982)

 $\sigma_{xy} = C \frac{e^2}{h}$

$$C = \frac{1}{2\pi} \iint_{BZ} B_{k_1k_2} dk_1 dk_2$$

TKNN integer* (Chern number)

 $n\sigma$

Su-Schrieffer-Heeger model $\hat{H} = \sum t_{n,n+1} (c_{n\sigma}^{\dagger} c_{n+1\sigma} + c_{n+1\sigma}^{\dagger} c_{n\sigma})$

 $\begin{array}{ll} \text{dimerized} & t_1 = t_0 - \alpha \xi \\ \text{hopping} & t_2 = t_0 + \alpha \xi \end{array}$

 $\xi = displacement of B sublattice$

Internal space $|A\rangle, |B\rangle \rightarrow$ pseudospin $\vec{\tau} = (\tau_x, \tau_y, \tau_z)$

$$t_1 c_{n\sigma}^{\dagger} c_{n+1\sigma} \to t_1 c_{lA}^{\dagger} c_{lB}$$
 $n = \text{site index}$
 $t_2 c_{n+1\sigma}^{\dagger} c_{n+2\sigma} \to t_2 c_{lb}^{\dagger} c_{l+1A}$ $l = \text{cell index}$

$$\hat{H} = t_1 \sum_{l\sigma} c_{l\sigma}^{\dagger} c_{l\sigma} \otimes \hat{\tau}_x + t_2 \sum_{l\sigma} \left(c_{l+1\sigma}^{\dagger} c_{l\sigma} \otimes \frac{\hat{\tau}_x + i\hat{\tau}_y}{2} + H.c. \right)$$

Su Schrieffer Heeger, Phys. Rev. Lett. 42, 1698 (1979)

Su-Schrieffer-Heeger model

$$\hat{H} = t_1 \sum_{l\sigma} c_{l\sigma}^{\dagger} c_{l\sigma} \otimes \hat{\tau}_x + t_2 \sum_{l\sigma} \left(c_{l+1\sigma}^{\dagger} c_{l\sigma} \otimes \frac{\hat{\tau}_x + i\hat{\tau}_y}{2} + H.c. \right)$$

k-space Hamiltonian
$$\hat{h}(k) = \langle k | \hat{H} | k \rangle = \vec{h}(k) \cdot \vec{\sigma}$$

$$\begin{cases}
h_x = t_1 + t_2 \cos k \\
h_y = t_2 \sin k \\
h_z = 0
\end{cases}$$

Bloch states $|\psi_{nk\sigma}\rangle = |u_{nk}\rangle \otimes |k\rangle \otimes |\sigma\rangle, \qquad |u_{nk}\rangle = a_{nk}|A\rangle + b_{nk}|B\rangle$

Chiral symmetry $\{\hat{H},\hat{\Gamma}\}=0$ $\hat{\Gamma}\hat{H}\hat{\Gamma}^{\dagger}=-\hat{H}$

$$\hat{H}|\Psi_n\rangle = E_n|\Psi_n\rangle \quad \Rightarrow \quad \hat{H}\hat{\Gamma}|\Psi_n\rangle = -\hat{\Gamma}\hat{H}|\Psi_n\rangle = -E_n|\Psi_n\rangle$$

Asboth, Oroszlany, Palyi, A short course on topological insulators, 2016.

k-space Hamiltonian $\hat{h}(k) = \langle k | \hat{H} | k \rangle = \vec{h}(k) \cdot \vec{\sigma}$ $\begin{cases}
h_x = t_1 + t_2 \cos k \\
h_y = t_2 \sin k \\
h_z = 0
\end{cases}$

$$\hat{\sigma}_z \hat{h}(k) \hat{\sigma}_z = -h(k) \quad \Rightarrow \quad h_z = 0$$

Fully dimerized limit

1. No edge states

$$t_1 = 1, t_2 = 0 \qquad \hat{h}(k) = \hat{\sigma}_x$$

2. Zero-energy edge states

$$t_1 = 0, t_2 = 1$$
 $\hat{h}(k) = \hat{\sigma}_x \cos k + \hat{\sigma}_y \sin k$

Fully dimerized limit

1. No edge states

$$t_1 = 1, t_2 = 0 \qquad \hat{h}(k) = \hat{\sigma}_x$$

2. Zero-energy edge states

 $t_1 = 0, t_2 = 1$ $\hat{h}(k) = \hat{\sigma}_x \cos k + \hat{\sigma}_y \sin k$

 $\mu =$ number of zero-energy states at the left edge

Fully dimerized limit

1. No edge states

$$t_1 = 1, t_2 = 0 \qquad \hat{h}(k) = \hat{\sigma}_x$$

2. Zero-energy edge states

$$t_1 = 0, t_2 = 1 \qquad \hat{h}(k) = \hat{\sigma}_x \cos k + \hat{\sigma}_y \sin k$$

Asboth, Oroszlany, Palyi, A short course on topological insulators, 2016.

The notion of bulk-boundary correspondence allows one to make predictions about the boundary of a system (e.g. the existence of edge states) based on knowledge of a bulk topological invariant.

In the SSH model, one finds that the number (0 or 1) of left-edge states equals the winding number of $\vec{h}(k)$, i.e. $\mu = \nu$.

Fully dimerized limit

1. No edge states

$$t_1 = 1, t_2 = 0 \qquad \hat{h}(k) = \hat{\sigma}_x$$

2. Zero-energy edge states

$$t_1 = 0, t_2 = 1 \qquad \hat{h}(k) = \hat{\sigma}_x \cos k + \hat{\sigma}_y \sin k$$

Asboth, Oroszlany, Palyi, A short course on topological insulators, 2016.

Polarization in one-dimensional systems

Consider two types of centrosymmetric one-dimensional systems

Dimerized lattice
 Ionic lattice

Geometric phase formula for the macroscopic polarization

$$P_{elec} = -\frac{e}{2\pi} \sum_{n}^{\text{occ}} \int i \langle u_{nk} | \nabla_k u_{nk} \rangle dk \mod e$$

Parity operator $\hat{\Pi}$ takes $P \rightarrow -P$

Centrosymmetric systems must have $P = 0 \mod P$

$$P = 0 \mod e$$

$$P = \frac{e}{2} \mod e$$
or

Polarization in one-dimensional systems

Consider two types of centrosymmetric one-dimensional systems

Geometric phase formula for the macroscopic polarization

$$P_{elec} = -\frac{e}{2\pi} \sum_{n}^{\text{occ}} \int i \langle u_{nk} | \nabla_k u_{nk} \rangle dk \mod e$$
$$P = P_{elec} + \frac{e}{a} \sum_{n} Z_n \mathbf{t}_n$$

1. Dimerized lattice $P_{elec} = \frac{e}{4} + \frac{e}{4} = \frac{e}{2} \mod e \implies P = 0 \mod e$

2. Ionic lattice $P_{elec} = \frac{e}{2} + \frac{e}{2} = 0 \mod e \implies P = \frac{e}{2} \mod e$

Spatially periodic time-dependent potential with time-period T

$$v(r, t + T) = v(r, t)$$
 $v(r + a, t) = v(r, t)$

Pumped charge per period is a topological invariant

$$Q = \frac{e}{2\pi} \int_0^T dt \int_{BZ} dk \, 2\mathrm{Im} \sum_n \langle \partial_t u_{nk} | \partial_k u_{nk} \rangle$$

Thouless Phys. Rev. B 27, 6083 (1983); Niu Thouless J. Phys. A: Math. Gen. 17, 2453 (1984)

Rice-Mele-Hubbard model

$$\hat{H} = \sum_{n\sigma} \left[\epsilon_n c_{n\sigma}^{\dagger} c_{n\sigma} + t_{nn+1} (c_{n\sigma}^{\dagger} c_{n+1\sigma} + c_{n+1\sigma}^{\dagger} c_{n\sigma}) + U c_{n\uparrow}^{\dagger} c_{n\uparrow} c_{n\downarrow}^{\dagger} c_{n\downarrow} \right]$$

$$\epsilon_{2n} = -\Delta$$

$$\epsilon_{2n+1} = +\Delta$$

Driving protocol

$$t_1 = t_0 + \Delta_0 \cos(2\pi t/T)$$

$$t_2 = t_0 - \Delta_0 \cos(2\pi t/T)$$

$$\Delta = \Delta_0 \sin(2\pi t/T)$$

k-space Hamiltonian $\hat{h}(k) = \langle k | \hat{H} | k \rangle = \vec{h}(k) \cdot \vec{\sigma}$

Asboth, Oroszlany, Palyi, A short course on topological insulators, 2016.

Rice-Mele-Hubbard model

$$\hat{H} = \sum_{n\sigma} \left[\epsilon_n c_{n\sigma}^{\dagger} c_{n\sigma} + t_{nn+1} (c_{n\sigma}^{\dagger} c_{n+1\sigma} + c_{n+1\sigma}^{\dagger} c_{n\sigma}) + U c_{n\uparrow}^{\dagger} c_{n\uparrow} c_{n\downarrow}^{\dagger} c_{n\downarrow} \right]$$

$$Q = 2e \rightarrow Q = 0e$$

at a critical U_c

$$t = 0$$

t = T/2

$$t = 3T/4$$
 -

For $\Delta_0 = \frac{t_0}{8}$,

 $U_c/t_0 = 0.630 \pm 0.001$

RR & Gross, arxiv:1709.03372

Two-dimensional topological insulators Integer quantum Hall effect

$$\sigma_{H} = \frac{e^{2}}{h} \frac{1}{4\pi i} \int_{BZ} d^{2}k \sum_{n}^{\text{occ}} \left[\left\langle \frac{\partial u_{n}}{\partial k_{1}} \middle| \frac{\partial u_{n}}{\partial k_{2}} \right\rangle - \left\langle \frac{\partial u_{n}}{\partial k_{2}} \middle| \frac{\partial u_{n}}{\partial k_{1}} \right\rangle \right]$$
$$= \frac{e^{2}}{h} C \qquad C = \text{TKNN integer (Chern number)}$$

Thouless Kohmoto Nightingale den Nijs 1982; Avron Seiler Simon 1983; Niu Thouless Wu 1985; Avron Osadchy Seiler 2003.

Quantum spin Hall effect

$$I = \frac{1}{2\pi i} \oint_C d\mathbf{k} \cdot \nabla_{\mathbf{k}} \log[P(\mathbf{k}) + i\delta]$$

$$P(\mathbf{k}) = \Pr[\langle u_i(\mathbf{k}) | \hat{\Theta} | u_j(\mathbf{k}) \rangle]$$

Time-reversal op $\ \hat{\Theta}|u
angle=i(\hat{I}\otimes\hat{s}^y)|u
angle^*$

Kane Mele 2005

Qi Zhang, Physics Today 2010

Two-dimensional topological insulators Integer quantum Hall effect

$$\sigma_{H} = \frac{e^{2}}{h} \frac{1}{4\pi i} \int_{BZ} d^{2}k \sum_{n}^{\text{occ}} \left[\left\langle \frac{\partial u_{n}}{\partial k_{1}} \middle| \frac{\partial u_{n}}{\partial k_{2}} \right\rangle - \left\langle \frac{\partial u_{n}}{\partial k_{2}} \middle| \frac{\partial u_{n}}{\partial k_{1}} \right\rangle \right]$$
$$= \frac{e^{2}}{h} C \qquad C = \text{TKNN integer (Chern number)}$$

Thouless Kohmoto Nightingale den Nijs 1982; Avron Seiler Simon 1983; Niu Thouless Wu 1985; Avron Osadchy Seiler 2003.

Quantum spin Hall effect

$$I = \frac{1}{2\pi i} \oint_C d\mathbf{k} \cdot \nabla_{\mathbf{k}} \log[P(\mathbf{k}) + i\delta]$$

$$P(\mathbf{k}) = \Pr[\langle u_i(\mathbf{k}) | \hat{\Theta} | u_j(\mathbf{k}) \rangle]$$

Time-reversal op $\hat{\Theta}|u\rangle = i(\hat{I}\otimes\hat{s}^y)|u\rangle^*$

Qi Zhang, Physics Today 2010

Kane Mele 2005

Summary

- One-dimensional systems present several topological invariants
- Examples demonstrate the connections between Berry curvature, symmetry and topological invariants
- Bulk-boundary correspondence: Bulk topological invariants are connected to properties at the boundary
- Many-body interactions can induce transitions between distinct topological phases