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Attention! Next two sentences constitute a formula-less
crash course on Bethe Ansatz
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Kaleidoscopes are the systems of mirrors where one
does not know where one mirror ends and another
begins. 1ightly linked to Bethe Ansatz solvability. No
sharp transitions -> no tails in Fourier transtorm ->
can hope to have a solution with a finite number of
plane waves = Bethe Ansatz

“Inside kaleido e’
expl ratorium’
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Kaleidoscopes are the systems of mirrors where one
does not know where one mirror ends and another

begins. Tightly linked to Bethe Ansatz solva

sharp transitions -> no tails in Fourier transfe

oility. No

orm -->

can hope to have a solution with a finite number of

plane waves = Bethe Ansatz. Kale1doscopes
classified using " :
the reflection
oTOupS.

“Inside kaleido e’
expl ratorium’
San Francisco
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Reflection groups generate solvable wave problems with
O-functional slabs along the mirrors of the group

[Gutkin (1982); Emsiz-Opdam-Stokman (2006)].

Those, 1n turn, may, potentially, generate integrable
problems with pair-wise o-interacting particles
Girardeau, Lieb-Lineger, McGuire, Yang, Gaudin, ...
(1960s - early 1970s)].
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Dithculty: number of mirrors typically far exceeds the
number of particle pairs



Reflection groups generate solvable wave problems with
o-functional slabs along the mirrors of the group

[Gutkin (1982); Emsiz-Opdam-Stokman (2006)].

Those, 1n turn, may, potentially, generate integrable
problems with pair-wise o-interacting particles
Girardeau, Lieb-Lineger, McGuire, Yang, Gaudin, ...
(1960s - early 1970s)].

Dithculty: number of mirrors typically far exceeds the
number of particle pairs

Must have a way to disable mirrors!



IDEAS WITH HARD-CORE
PARTICLES: HIDING
MIRRORS BEHIND HARD-~-
CORE WALLS



d hard-cores on a half-line d-dimensional billiard
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Hard-core particle systems generate simplex-shaped

billiards.

In particular, alcoves (1.e. a system of generating
mirrors) of all reflection group with a non-tforking
Coxeter diagram can be built. They, 1n turn,
ocenerate integrable hard-core particle
systems...



Hard-core particle systems generate simplex-shaped

billiards.

In particular, alcoves (1.e. a system of generating
mirrors) of all reflection group with a non-tforking
Coxeter diagram can be built. They, 1n turn,
ocenerate integrable hard-core particle
systems...

..10 of them



A proof of principle




BUILDING A PARTICLE SYSTEM
FROM THE F4 COXETER DIAGRAM

mo=-nti A B 1mo=mn3 1mMs3s=mnt4 m4-=mnts

Single solution:
mo=00, m1=06m, mo=2m, ms=m, ms=3m, ms—oo0
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Ground state energy:

Ground state wavefunction:
consists of 1152 plane
waves (the same for

any other eigenstate)




Quantum Galilean Gannon as an entanglement amplifier




A PRACTICALLY IMPORTANT PROPERTY OF
THE PLATONIC SOLIDS

A light ray sent through a center of a face of a
Platonic solid, perpendicular thereto, will leave through
either a center of another face or through a vertex.




That 1s:

“Special point in, special point out”



““Special point in, special point out”
Example: Galilean Gannon

Y[]u Search

> Pl o) 424/529

Brian Greene Explains The Most Powerful Explosions In The

Universe
The Late Show with Stephen Colbert
BITLELLEN 1,579,955 i
526,669 views
+ Add to A Share eee More |‘ 6,095 ,' 154

Published on May 26, 2016
Theoretical Physicist Brian Greene explains supernovas and demonstrates how a star like ours eventually dies. Oh, and he breaks a world
record, too.
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A scheme for an entanglement amplifier
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30,000 realizations

T'he same wavelength as for
a single particle of a fofal mass
of the system with the same velocity
as the out-velocity



Implementation note:

- quasi-1D atom guide
- two species or two Internal states
- attractive 1intra-specie mnteraction
-> NLS solitons as particles
- alternating order ot species
- hard-core inter-soliton (hence inter-specie) repulsion
R at 695 G, mixture of (mF = — 1) —{mE =
ERE- ) D ap, 200 = — 10 ap, a.10 = F 1E0RGR

- massive particles of difterent mass are emulated by
the solitons of different length
- Need: Lkinetic, toral << p (within reach)




I I I I

2.5

| |
1

0.5F

Alsua(]

50

-50

-100



Integrability = maximal light-to-
heavy energy transfer and protected
channels in phase space to protect
entanglement



Another idea: slow-down of relaxation

. [o(m)




my =2 +3Sqrt[d], mx =1, m3=2 + Sqri{5]}
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Relaxation time, T [mean-free-time scale, (p,vh)'1]
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Integrability = slowdown of
relaxation



6] N.L. Harshman, Maxim Olshanu, A.S. Dehkharghani, A.G. Volosniev, Steven
Glenn Jackson, N.'T. Zinner, Integrable families of hard-core particles with
unequal masses in a one-dimensional harmeonic trap, Phys. Rev. X 7, 041001

(2017)

[50] X. M. Aretxabaleta, M. Gonchenko, N. L.. Harshman, S. G. Jackson, M. Olshan,
G. E. Astrakharchik, Two-ball billiard predicts digits of the number PI in
non-integer numerical bases, arXiv:1712.06698 (2017), submitted to JPA

[4] M. Olshanii, T. Scoquart, Dmitry Yampolsky, V. Dunjko, S. G. Jackson, Creating
entanglement using integrals of motion, PRA 97, 013630 (2018)

[3] 'I. Scoquart, J. J. Seaward, S. G. Jackson, M. Olshanii, Exactly solvable
quantum few-body systems associated with the symmetries of the three-
dimensional and four-dimensional icosahedra, SciPost Phys. 1(1), 005 (2016)
(inaugural 1ssue)

[2] Maxim Olshanii & Steven G. Jackson, An exactly solvable quantum four-

body problem associated with the symmetries of an octacube, NP 17,
105005 (2015)

1] Zayong Hwang, Frank Cao, Maxim Olshaniu, Traces of Integrability in
Relaxation of One-Dimensional Two-Mass Mixtures, J Stat. Phys. 161, 467
201 5)



IDEAS WITH O-
INTERACTING PARTICLES:
SUPPRESSING MIRRORS
WITH NODAL SURFACES



Integrability-induced prohibition of dissociation of dimers
on a barrier: a spatially compact readout for chip
interferometers

¢




Real world, particles:

8ba]rrier

two bosons
and a barrier



Ideal world, solvable :

X i
2 : Sbarrier

8' e Sinteraction
Iinteraction °-,

8ba]rrier



Ideal & real:



Ideal & real:

Sinteraction
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Prohibition of
chemaistry, of
dissociation 1n
particular






Suggested application: compact readout 1n chip-based
interferometers.
Can use the monomer production as a measure of
relative phase between the interterometer armes,



[1] Juan Polo Gomez, Anna Minguzzi, Maxim Olshanii, Traces of integrability in
scattering of one-dimensional dimers on a barrier, New J. Phys. 21, 023008

(2019)



https://arxiv.org/search/?searchtype=author&query=Gomez%2C+J+P
https://arxiv.org/search/?searchtype=author&query=Minguzzi%2C+A
https://arxiv.org/search/?searchtype=author&query=Olshanii%2C+M

All this 1s very recent, and 1t suspected to be a pair ot a

bigger whole.

Work 1n progress: “asymmetric Bethe ansatz”

Inspired by this work and [Yanxia Liu, Fan Q1, Yunbo
Zhang, and Shu Chen, arXiv:1903.08449]

(integrability of two hard cores with a 3:1 mass ratio,
with o-interactions, in a box)



Can keep unphysical interactions if
the wavefunction has a node at their
location

Integrability = prohibition of
chemistry



SUMMARY AND OUTLOOK



SUMMARY

- entanglement
amplifier

- “Integrability peaks”

Reflection

oTOUPS .
- Interferometer output %
readout via monomer
production

“Mathematics catalogues everything that is not self-
contradictory; within that vast inventory, physics is an
island of structures rich enough to contain their own
beholders.”

— Greg Egan, Oceanic


https://www.goodreads.com/author/show/32699.Greg_Egan
https://www.goodreads.com/work/quotes/7253536
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Felix Werner (ENS), Jean-Sébastien Gaux (U Amsterdam),
Dominik Schneble (Stony Brook), Randy Hulet (Rice),
Helene Perrin (Paris-Nord), Romain Dubessy (Paris-Nord)
Discovery Museums (Acton, MA)
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BREATHERS
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SMALL FIELD
FLUCTUATIONS FEEDING
THE SOLITON RELATIVE

DISTANCE FLUCTUATIONS
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Start from a single BEC soliton, at a coupling go
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Quench the coupling 4-fold, go » g = 4X gy
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Quench the coupling 4-fold, go » g = 4X gy

&0

0.15

0.10

oet a “breather”
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Quench the coupling 4-fold, g0 » g = 4X gy
0.20

0.15

0.10 - distance governed by the

nitial small noise
< >




QUANTUM FLUCTUATIONS
FEEDING THE SOLITON
RELATIVE DISTANCE
QUANTUM FLUCTUATIONS

=L



Exact separable action-angle Hamiltonian,
through the Inverse Scattering Iranstorm
# atoms 1n soliton

momentum density
one-atom momentum

, . , of the unbound atoms
in soliton |
¢2 % +00 v 2
i - Nipy  mgg A3 J' o n(p)p
B 042 ]

Canonical pairs:
(N, D)); (P1,q; = xl,comN1)§ (n(p), p(p))

Faddeev & 'lakhtadjan,
Hamalton Approach to the Soliton ‘I heory



Loower part of the spectrum

s/ S
quantum

, frozen 7
g/
/n(p) o 17

soliton + one free atom

hﬂ_m%
R

Ny

pure soliton



Back to a single soliton, go; now assume 7 = p
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Back to a single soliton, go; now assume 7 = p
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Quench the coupling 4-fold, go » g = 4X gy

0.20 [
g0 : [
0.15
g§=4Xg
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I
0 05 E\ + quantum noise
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Quench the coupling 4-fold, go » g = 4X gy
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Quench the coupling 4-fold, g0 » g = 4X gy
0.20

0.15

distance governed by the
mnitial quantum noise

SN/ 4 0.10
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Quench the coupling 4-fold, go » g = 4X gy

0.20
0.15
ﬁ d by th
overned by the
SN/4 oof . 5 .
mitial quantum noise
<€ >

cold quantum unbounded

macroscopic degree of freedom
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(); What enables the eftect?

A: Existence of solitons



FROM 1-SOLITON TO 2-
SOLITON SHEET



Satsuma & Yajima,Supplement of the Progress
of Theoretical Physics, No. 55, 1974

1 soliton+

9 solitons+
fluctuations

g: [9/—: 25/—

] soliton+
fluctuations

2 solitons+
fluctuations

| X g0

Remark: CoM motion 1s
completely decoupled



Satsuma & Yajima,Supplement of the Progress
of Theoretical Physics, No. 55, 1974

1 soliton+

ure
fuc@@iod o
@ 9-soliton

9 solitons+
fluctuations

g=S

] soliton+
fluctuations

2 solitons+ lton

fluctuations

Remark: CoM motion 1s
completely decoupled



microscopic quantum fluctuations at go become
macroscopic quantum fluctuations at g =4 X gy



PREDICTIONS
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e — 3 < 10°  Av

0.10f

) = i< 254k z

0.05 F

Uscatt — — 4 UBohr
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Bogoliubov propagation starting from a

white quantum noise on the mother soliton:

((Av)2>:£ lg| 2J\f:oo136905 lg| 2N
1680 \ A | A

Bogoliubov propagation starting from the

Bogoliubov-correlated noise on the mother soliton: ((Av)?)




5
B3 < 10° |
) = 2m X 2564Hz |

Uscatt — — 4 UBohr

-40 =20 . 20 40

Extrapolation from Bethe Ansatz for N = 20:
E— ©.08

Bogoliubov propagation starting from a

white quantum noise: 7 = 8.3 s

Bogoliubov propagation starting from the

Bogoliubov noise on mother soliton{ 7™ = 12.8s



[2] Oleksandr V. Marchukov, Boris A. Malomed, Maxim Olshanii, Vanja Dunjko,
Randall G. Hulet, and Vladimir A. Yurovsky, Quantum fluctuations of the
center-of-mass and relative parameters of NLS breather, in preparation.

[1] Vladimir A. Yurovsky, Boris A. Malomed, Randall G. Hulet, Maxim Olshani,
Dissociation of one-dimensional matter-wave breathers due to quantum

many-body effects, Phys. Rev. Lett. 119, 220401 (2017).



SUMMARY

A factor of 4 coupling quench from a soliton

2

Quantum macroscopic unbounded degree of
freedom: the relative distance between daughter solitons
in a breather

Observable 1n ambient mean-filed conditions
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RECENT DEVELOPMENTS
WITH SPHERE-INVERSION
AND ELECTROSTATICS:
LOVING MIRRORS,
CHANGING THE QUESTION



1 MAKM What Is Mathematics? Richard
' Courant & Herbert Robbins,
edited by lan Stewart
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Dmitry Yampolsky, discovered
numerically that sequential
circle inversions lie on another
circle. Yur1 Styrkas (Princeton
HS), proved this property







Dmitry Yampolsky, discovered
numerically that sequential

circle inversions lie on another
circle. Yur1 Styrkas, proved this

property

Steven Jackson explained it in

b min: “2D circle inversions are
stereographic projections of
3D reflections . I'hctietk
follows, including hifting to 4D
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2D
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Building solvable electrostatic problems



sphere inversion
— —
Pl



sphere 1mnversion
— —
P15




sphere 1mnversion
— —
P15




Imagine an empty cavity surrounded by a
orounded conductor.



Imagine an empty cavity surrounded by a
orounded conductor.

Assume that 1ts walls are formed by segments
of spherical surtaces.
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Imagine an empty cavity surrounded by a
orounded conductor.

Assume that 1ts walls are formed by segments
of spherical surtaces.

The field induced by a point

charge placed nside the cavity can be
constructed using a method of 1images 1t the
following three conditions are satistied:



T'he field induced by a point

charge placed nside the cavity can be
constructed using a method of 1images 1t the
following three conditions are satisfied:

I. The set of image charge locations produced via
sequential application of the inversions with respect to
any of the spheres involved 1s finite;

II. The values of the image charges can be
unambiguously assigned;

I11. No image charges are produced inside the cavity.



Consider a set of spheres each of which being a 4D
stereographic projection of a grand hyper-circle on a

surface of a 4D hypersphere

4D

3D




It can be explicitly shown that it two points on the
hypersphere are related by a reflection via a 4D mirror,
then their stereographic images will be related by a
sphere 1nversion

4D

3D




Consider several mirrors; assume they generate a finite
reflection group.

Conducting cavity of interest = stereographic image of
the cross-section of the principle chamber of the group
and the stereographic sphere.

4D

3D




[t can be shown (see my talk last T hursday) that in this
case the conditions I-1I-11I are met

4D

3D
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19 three-parametric famihes
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