

FORTH

Hypersonic matterwave guiding for atom-interferometry

Saurabh Pandey Hector Mas Giannis Drougakis Premjith Thekkeppatt

FUTURE & EMERGING TECHNOLOGIES scheme

MatterWave

Marie Curie-Excellence **MatterWaves**

QUESCA Marie Curie-Excellence Fellowship

Wolf von Klitzing

Atomtronics @ Benasque 08/08/2019

Vasiliki Bolpasi Georgios Vasilakis **Konstantinos Poulios** Wolf von Klitzing

e vou

ESA-OBST1 ESA-OBST2

BEC and MatterWaves at IESL-FORTH

Matter-Wave Interferometry

Guided for Matter-Wave Interferometry for inertial navigation

Matter-Wave&Quantum Tools

Large Interferometers

BEC in Space: Testing Einstein's Weak equivalence principle

Very long Baseline Matterwave interferometry

Experiment

Theory

Partners

Short-term visits... 1 week - 2 months for experimentalists and theorists

AtomQT

LaserlabEurope

For open PhD and Postdoc Positions see BEC.gr

For open PhD and Postdoc Positions see BEC.gr

Interferometry $\phi = \frac{1}{\hbar} \left(\left(U_2(t) - U_1(t) \right) dt \right)$ = 1.5 rad/feV in 1s

Bloch Lab

Matter-Wave Interferometers Free Fall Outer Space

Release Mech. with capsule Deceleration Catapult

STE-QUEST

K. Henderson et al. N. J. Phys. 11:043030 (2009)

Y. J. Wang et al. Phys.Rev.Lett 94: 090405 (2005)

G. Gauthier et al. Optica 3:10 1136 (2016)

Mark Keil et al. Journal of Modern Optics : I-46 (2016)

- Magnetic Fields
- LSD IP-Trap
- LSD Atomic chips
- LSD Mini-traps
- LSD Adiabatic (LSD)
- LSD TAAPs

Time-Averaged Adiabatic Potentials

Gauthier et al. Optica 3:10 1136 (2016) Y. J. Wang et al. PRL 94: 090405 (2005)

For $kz \gg 1$ $A(k,z) \propto \exp(-kz)/\sqrt{kz}$

Jones, et al. J. Phys. B 37, L15 (2004)

For $kz = \frac{2\pi}{0.5 \text{ mm}} \times 50 \text{ mm} \simeq 630$ $A(k,z) \propto \exp(-kz) / \sqrt{kz} \approx 10^{-275}$

Atomtronic Time Scales @ Crete

Experiment Repetition 10^{-1} Time Quasi DC Averaging Manipulation 10^{4}

Time averaged Adiabatic Averaged Potentials (TAAP)

ω_{Trap}

Quasi Static

~ DC

WLarmor

Time-Averaging

Audio

Adiabatic **Potentials**

RF

Time-Averaged Adiabatic Potentials (TAAP)

Suppression of roughness by 3×10^{-275}

1) MOT 2) Quadrupole-Trap 3) BEC in Dipole Trap 4) BEC in Ring

BEC in a Ring

BEC in a Ring

MOT Quadrupole-Trap BEC in Dipole Trap BEC in Ring Accelerate

Bang-Bang Scheme of Optimal Control Theory

Chen et al. Phys. Rev. A 84, 43415 (2011).

Acceleration of BECs in TAAP rings

using the bang-bang scheme of optimal control theory Chen et al. Phys. Rev. A 84, 43415 (2011).

Hypersonic BEC in an accelerator ring

Ring hold [s]

S. Pandey et al. *Nature*, in press

Ring Accelerator

Expansion of a rotating BEC in the ring

Ring Accelerator

80 000 atoms with 40 000 \hbar /atom

Static vs Supersonic atoms

Flatness < 250 nK

Flatness < 189 pK

Optimal Control Atom-Optics

Free expansion

Delta Kick

Optimal Control Atom-Optics

Free expansion

Delta Kick

Loading Rotating BECs in to a Shell

BECs in a shell at 50nK

Duration of Transfer [ms]

- Matterwave accelerator ring
- Lossless Hypersonic flow of BECs
- Optimal Control
- Ultra-high angular Momentum
- Atomtronics (Delta-Kick)
- State dependent control of multi-component BECs

Atomtronic Ring Physics

8

