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QUANTUM TRANSPORT WITH FERMI GASES

Observing the Drop of Resistance in the Flow of a Superfluid Fermi Gas
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The ability of particles to flow with very low re-
sistance is a distinctive character of a superfluid
or superconducting state and led to its discov-
ery in the last century [1, 2]. While the particle
flow in liquid Helium or superconducting mate-
rials is essential to identify superfluidity or su-
perconductivity, an analogous measurement has
not been performed with superfluids based on ul-
tracold Fermi gases. Here we report on the di-
rect measurement of the conduction properties
of strongly interacting fermions, and the obser-
vation of the celebrated drop of resistance asso-
ciated with the onset of superfluidity. We ob-
serve variations of the atomic current over sev-
eral orders of magnitude by varying the depth
of the trapping potential in a narrow channel,
which connects two atomic reservoirs. We relate
the intrinsic conduction properties to thermo-
dynamic functions in a model-independent way,
making use of high-resolution in-situ imaging in
combination with current measurements. Our re-
sults show that, similar to solid-state systems,
current and resistance measurements in quantum
gases are a sensitive probe to explore many-body
physics. The presented method is closely analo-
gous to the operation of a solid-state field-e↵ect
transistor. It can be applied as a probe for op-
tical lattices and disordered systems, and paves
the way towards the modeling of complex super-
conducting devices.

Over the last decade, cold atoms have emerged as a
many-body system with a uniquely high level of control
[3]. Experiments have shown that interacting atomic
Fermi gases, analogous to electrons in a solid, can dis-
play superfluidity [4]. The equilibrium properties of those
gases have been measured with high precision [5–7] and
the superfluid character of the ground state has been in-
vestigated via the response to external perturbations [8]
and rotation [9], in the same way as for Bose-Einstein
condensates [10–14]. With the new techniques to create
and observe directed currents [15, 16] it is now possible
to study transport properties of mesoscopic systems di-
rectly analogous to electronic devices [17].

In this work, we investigate the conduction proper-
ties of strongly interacting fermions flowing through a
quasi two-dimensional, multimode channel, which con-
nects two atomic reservoirs [16]. As illustrated in figure
1, the atomic current in the channel is controlled using a
repulsive potential created by an o↵-resonant laser beam.
In analogy with an electronic field-e↵ect transistor, this

FIG. 1: Principle of the experiment. Two atomic reservoirs
(source and drain) are connected by a quasi-two dimensional
conducting channel. The curved shape of the reservoirs indi-
cates the harmonic confinement along the y-axis. An atom
number imbalance �N between source and drain drives an
atom current through the channel, indicated by the arrows.
A repulsive laser beam (gate beam) propagating along the
z-axis is focused on the channel. It creates a repulsive poten-
tial with a gaussian envelope and a tunable amplitude. The
lighter region in the channel indicates the reduced density due
to the repulsive potential.

gate potential controls the chemical potential in the chan-
nel while keeping the temperature imposed by the reser-
voirs unchanged. With the gate potential as a control
parameter, we measure the current through the channel
over a large dynamic range and determine the density
distribution in the channel region. This allows us to ob-
serve the onset of frictionless flow of strongly interacting
fermions. These measurements are compared to the case
of a weakly interacting Fermi gas.

Our experiments are performed with strongly and
weakly interacting quantum degenerate gases of
fermionic 6Li atoms, equally populating the lowest two
hyperfine states. To obtain a strongly interacting gas,
the atoms are placed in a homogeneous magnetic field
of 834G where interactions are attractive and lead to
the formation of pairs, while a weakly interacting gas is
studied at a field of 475G. The atoms are radially con-
fined in the x-z plane by an optical dipole trap oriented
along the y-axis with a 1/e2 beam radius of 22(1)µm.
Along the y-direction, the curvature of the magnetic
field yields a harmonic confinement with a frequency of
!y = 2⇡ · 32(1)Hz. To engineer the reservoirs, we split
the cloud into two parts using a repulsive laser beam at
a wavelength of 532 nm that points along the x-direction
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FIG. 1: Concept of the experiment. (A) Schematics of the two atom reservoirs (blue) connected by a QPC. Two repulsive
beam (green) confine the center of the cloud in x- and z-direction, the attractive gate beam (red) tunes the density in the
QPC. The dark contours are schematics of the beam profiles. (B) Potential landscape in the plane z = 0. Close to the QPC
the attractive gate creates areas of high density (blue). (C) Theoretical model for the QPC. Both sites of the QPC have
a defined atom number, imposing a chemical potential µL, µR and a pairing gap �L,�R. The transparency ↵ is an energy
dependent function describing the transmission of single particles from one site to the other. (D) Transport via multiple
Andreev reflections. Coherent tunnelling of pairs allows for the creation and tunnelling of a single particle excitation (pair
breaking) leading to a DC current, even for �µ ⌧ �.

anism solely characterised by the transparency ↵ of the
QPC (see Figure 2C) [5, 15–18]. This model excludes
any finite size and geometry-dependent e↵ects, which we
think of as absorbed in ↵. It is motivated by the large
proximity e↵ect in superfluids separated by a ballistic
normal barrier [20]. Indeed, we expect a coherence length
of ~vF

kBT ⇠ 3µm, where vF is the Fermi velocity, kB is
Boltzmann’s constant and T is the temperature of the
gas. This is comparable to half the length of the chan-
nel (5.6 µm), thus we approximate the channel with a
point-like connection. Using a non-equilibrium Keldysh
Green function technique [21] with mean-field approxi-
mation [11] we compare theoretical current-bias curves
with our data.

Since the pairing gap and the EoS of the unitary gas
are known a priori, the only free parameter in our model
is the transparency ↵n for each transverse mode n in
the QPC [11]. The solid lines in Figure 2B show the re-
sults with the best fits of ↵. For the two lowest gate po-
tentials we obtain good agreement with a single channel
model, whereas for higher gate potentials three channels
are required, in agreement with our reference measure-
ment with a weakly interacting Fermi gas [16].

The agreement between theory and experiment clar-
ifies the microscopic origin of the current. Reflecting
the strongly interacting nature of the system, we have
�µ ⌧ �. In this regime, a current flow is allowed via
multiple coherent reflections of quasiparticles between su-
perconducting reservoirs, i.e., multiple Andreev reflec-
tions, illustrated in Figure 1D [16]. The gap for a single
particle transfer can be bridged by the simultaneous, co-
herent transfer of n pairs if 2n�µ > �, with a probability
of order ↵

2n. As is seen in Figure 2B, the drop of cur-
rent observed at low bias corresponds to �µ ⇠ �(1� ↵)
[16], where the finite transparency ↵ suppresses the corre-
sponding Andreev processes. In the very low bias regime,
not resolved in the experiment, the DC current is expo-

nentially suppressed and an oscillating current caused by
the energy mismatch between the two reservoirs occurs.
This averages to zero in the DC limit, and represents an
AC Josephson current adding to the DC response [11, 22–
27].

We now investigate the current-bias relation as a func-
tion of temperature, for a fixed gate potential VG =
674 nK. To this end, we introduce a controlled heat-
ing of both reservoirs before the transport is started,
using variable amplitude parametric heating. With this
method we explore a temperature range of 124-290 nK,
from a deeply superfluid regime up to the superfluid-to-
normal transition point. We measure the decay of parti-
cle imbalance with increasing temperature and observe a
crossover towards exponential decay when temperature is
above 145 nK. We extract the current- bias characteristic
(Figure 3A) using the known finite-temperature EoS of
the unitary Fermi gas [8, 11]. With increasing temper-
ature the non-linearity disappears and the current glob-
ally decreases. We interpret this as the disappearance of
the superfluid contribution to transport as temperature
is raised.

From these data, the di↵erential resistance R at low
bias is estimated by fitting a line to the low bias region
of the curve. The result is presented in Figure 3B, where
the decrease in R is clearly visible as temperature is de-
creased. We compare this to a model independent mea-
sure of the non-linearity of the characteristic provided
by the �

2 parameter of an exponential fit to the entire
decay curves [11]. This parameter, as well as the fitted
timescale ⌧ of the exponential decay tracks the measured
di↵erential resistance (Figure 3C).

While in the low temperature regime, non-linearity is
captured by our mean- field model, the model fails to re-
produce the resistance at high temperature, indicating a
breakdown of the mean-field description. In particular,
it predicts a resistance in the linear regime given by the
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FERMIONIC MANY-BODY DYNAMICS AT LENS

‣ Spin diffusion at an artificial domain wall
Valtolina et al., Nature Phys. 13 (2017)

 Superfluid transport in tunnel junctions

‣ Weak-link geometry between Fermi superfluids 
➙ tuneable Josephson junction

‣ Critical superflow and dissipation mechanisms
Valtolina et al., Science 350 (2015) 
Burchianti et al., Phys. Rev. Lett. 120 (2018) 
Kwon et al., in preparation (2019)

 Spin dynamics in repulsive Fermi gases
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‣ Pump-probe spectroscopy of repulsive Fermi gas
Scazza et al., Phys. Rev. Lett. 118 (2017) 
Amico et al., Phys. Rev. Lett. 121 (2018)



‣ Two-component Fermi gas with short-range (contact-like) interactions

ULTRACOLD FERMI GASES
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THE BEC-BCS CROSSOVER

BEC-BCS crossover

BEC BCSUnitary gas

Repulsive interactionsAttractive interactions

BEC-BCS crossover

BEC BCSUnitary gas

BEC-BCS crossover

BEC BCSUnitary gas

‣ Two-component Fermi gas with strong interactions between  
distinguishable spins: crossover from BEC to BCS superfluidity

a < 0                             |a| ￫ ∞                               a > 0

T/TF ~ 0.05

‣ Explore different paradigms of superfluidity within a single system!

Temperature-interaction phase diagram

Small pair size: 
pairing in r-space

Large pair size: 
pairing in k-space

Pair size ~  
interparticle spacing 

kF a (adimensional) quantifies interactionsThe BCS-BEC crossover and the unitary Fermi gas.  
Lecture notes in physics, 836, Edited by W. Zwerger (Springer, Berlin, 2012).  

Randeria, Nature Phys. 6, 561 (2010)



BEC-BCS CROSSOVER SUPERFLUIDS

Proceedings of the International School of Physics "Enrico Fermi", Course CLXIV,  Varenna. 
Edited by M. Inguscio, W. Ketterle, and C. Salomon (IOS Press, Amsterdam, 2008)

‣ Crossover from two-body to many-body pairing, from tightly bound pairs to Cooper pairs,  
from bosonic to fermionic excitations: binding energy of pairs approaches εF near unitarity 

‣ Bosonic theories are appropriate for ϵB ≃ ℏ2

ma2 ≪ εF

Chemical potential and superfluid gap Pair correlation length Landau critical velocity (bulk)



THE PLAN

‣ Introduction: ultracold Fermi gases across the BEC-BCS crossover  

‣ Josephson junction basics 

‣ Our experimental setup: a thin tunable Josephson junction between Fermi superfluids 

‣ Dynamics in population-biased junctions:  
Josephson-plasma oscillations and dissipative flow through vortex nucleation 

‣ Current-driven junctions:  
probing the critical current via the DC Josephson effect 

‣ Outlook: local phase manipulation and quantum transport of two-dimensional gases
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JOSEPHSON JUNCTION BASICS

x

‣ Josephson effect: quantum coherent tunnelling  
superfluid of order parameter  
➝ Demonstrating the macroscopic phase coherence  
     of condensed state i.e. superfluids 
➝ Pin down the order parameter 

ψL = |ΔL | eiϕL , ψR = |ΔR | eiϕL

|Δ | ∼ ncIn BEC regime:

ϕ = ϕL − ϕR‣ Relative phase:‣ Relative phase:

‣ Josephson current: I(t) = Ic sin ϕ(t)

‣ Josephson-Anderson relation: ℏ ·ϕ(t) = − Δμ = μR − μL

CONTENTS 35

chemical potential and thus no chemical potential bias as the number of photons is not
conserved. Nevertheless the transmission probability through narrow apertures also
increases stepwise as the aperture is opened, as was observed in [129]. The crucial
ingredient in observing this e↵ect is to mimic incoherent reservoirs which populate
every energetically accessible modes while keeping monochromatic light to mimic the
low temperature case, and symmetrically detectors should integrate over all possible
momenta for the photons emerging from the channel. This was achieved using di↵use
illumination and an integrating sphere for the detection. Jumps in the transmission
occur with a spacing of �/2. No quantum e↵ects are involved in the experiment,
highlighting the fundamental role of the wave character of matter for massive particles.

The case of phonons in solid state systems is conceptually similar, but of much
more fundamental interest due to its connection with heat transport. For dielectric
narrow wires where heat is only carried by phonons the Landauer approach yields
a universal heat conductance quantum equal to k2

B⇡
2T/3h, where T is the average

temperature of the system, in the low temperature limit [130]. Experiments conducted
on suspended nano-structures have shown saturations of the heat conductance at low
temperature compatible with this bound [131]. Quite remarkably, the quantum of heat
conductance is actually a universal bound, not restricted to phonon transmission . It
is rooted in Shannon’s theorem stating the upper bound to the amount of information
that a single channel can carry [132]. Recently, a new set of experiments have measured
the quantum of heat conductance associated with electrons in a mesoscopic structure
in the quantum Hall regime, showing good agreement with the universal limit [133].

Quantized transport measurements were also proposed for dilute mixtures of 3He
in 4He. For very dilute mixtures at the lowest temperatures, 3He behaves like an ideal
Fermi gas with a very long mean free path of several tens of micrometers. An array
of nano-pores was then proposed as a connection between two tanks of Helium, with
holes of the order of 10 nm, compatible with the Fermi wavelength of 3He [134, 135].

5. Superfluid transport in Bose-Einstein condensates

The results that were presented in the previous sections concerned weakly interacting
Fermi gases, and the physics was that of ideal gases. In the presence of interactions
between particles, the gases can turn superfluid in part if not all the system. This is
the case for low temperature Bosons, and low temperature Fermions in the presence
of attractive interactions. Both cases are realised in cold atoms experiments, and
transport in the two terminal setup has been studied under these conditions.

In contrast to normal currents, which are driven by chemical potential gradients,
superfluid currents are driven by gradients in the phase � of the superfluid order
parameter  = | |ei�. More precisely, superfluid velocity is given by vs = ~

mr�.
Most of the dynamical properties of superfluids can be understood based on this
principle contained in the Josephson-Anderson equation [136, 137, 138, 139, 140]:

~d�

dt
= µ (20)

where µ is the chemical potential. In the two terminal configuration, this reduces to
the usual Josephson relation, but it has a very general validity for both bosonic and
fermionic superfluids, weak and strongly interacting, and explains in particular a wide
range of phenomena such as vortex motion and nucleation.

For a general superfluid system such as Helium, the relation between the
superfluid order parameter and the microscopic parameters of the system is a very

‣ Supercurrent induced by phase jump: 

Critical current

Bias potential

[e.g. population imbalance]

For sufficiently small T

Ic ∝ Δ ∼ nc‣ Ambegaokar-Baratoff relation: 



JOSEPHSON JUNCTION BASICS

C

R

I

I = 0 I < Ic I > Ic

DC Josephson Effect Running-phase regimeNo applied current

Frolov et al., Phys. Rev. B 70, 144505 (2004)

I-V curve

‣ Mass ~ 
‣ Friction coefficient ~  
‣ Potential energy ~ −1/C (Iϕ + Ic cos ϕ)

G = 1/R
C

Flow a current: current-biased junction

Current flow with no potential drop



JOSEPHSON-PLASMA OSCILLATIONS

‣   (Forget about resistance for now) Two relevant energies: 
  
Josephson energy:                                          ,EJ ⇠ J(µ, V0, w)N0

EC ⇠ @µ

@n
=

1



EJ > kBT

~ż / �EJ sin(�)
~�̇ / ECz z = �N/N

Relative imbalance

➙ Pendulum-like dynamics:

Charging energy:                                               (junction capacity)

ℏωJ = EJECJosephson-Plasma oscillations:

Josephson-Plasma frequency

‣  Charge the junction: population-biased junction dynamics

V0

N2,�2N1,�1

J

Pendulum-like 

evolution

Josephson relation (             )V0 & µ
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Magneto-Optical Trap + D1 molasses
N ~ 108 at T ~ 50 µK

FERMI GASES OF LITHIUM-6

Optical dipole trap 
1064 nm

Optical dipole trap 
1070 nm

x

y

z

Ultracold lithium-6 cloud 
N ~ 105 at T ~ 30 nK < 0.1 TF

All-optical preparation 
of ultracold lithium gases 

Burchianti et al., Phys. Rev. A 90 (2014)

100 µm



Magneto-Optical Trap + D1 molasses
N ~ 108 at T ~ 50 µK

FERMI GASES OF LITHIUM-6

Optical dipole trap 
1064 nm

Optical dipole trap 
1070 nm

x

y

z

Ultracold lithium-6 cloud 
N ~ 105 at T ~ 30 nK < 0.1 TF

All-optical preparation 
of ultracold lithium gases 

Burchianti et al., Phys. Rev. A 90 (2014)

Local manipulation 
532 nm

100 µm

2 µm ≳ w ≳ 0.8 µm



 In situ imaging ➙ Current through junction 
 Time-of-flight imaging ➙ Phase diff. across junction

OUR JOSEPHSON JUNCTION

� = �1 � �2• Relative phase:

• Imbalance: �N = N1 �N2

• Current:

a

b

φ = φ1 - φ2  

N1 N2 

 i =
p

Nie
�i�iOrder parameters:

‣   Ultracold lithium Fermi gas bisected by  
   thin insulating barrier wb ≳ 3ξ

Prepare 
imbalanced 
reservoirs at rest

Slowly raise barrier 
and move trap to  
create imbalance

Rapidly lower 
barrier to target 
value of V0

Preparation of tuneable ∆µ

Step 2

Step 3

Step 1

I = (Ṅ1 � Ṅ2)/2
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RECENT UPGRADES: OBJECTIVE AND DMD

Digital Micromirror Device (DMD)

10 µm

Viewport
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M ~ 55
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JOSEPHSON-PLASMA REGIME

~ż / �EJ�
~�̇ / ECz

‣  For small excitations (small population bias): Josephson-Plasma oscillations  

Unitary: 1/(kFa) = 0
a

b

BEC: 1/(kFa) = 4.6

  Plasma frequency: !J =
p

EJEC/~

Universality of Josephson-
Anderson relation over 
BEC-BCS crossover

Valtolina et al., Science 350 (2015)

Imbalance and phase 
oscillate in quadrature  
➙ conjugate observables



‣ Constant barrier height V0 > EF , varying the interaction strength 1/(kFa)  

‣ Use measured Josephson-Plasma frequency to extract Josephson energy:

Ic / EJ = JN0

Number of 
condensed pairs

‣   Towards BCS side, EC  grows but condensed 
   fractions decreases linearly with Δ 

➙ Overall decrease of EJ  towards BCS side!

EBCS
J / �

Ambegaokar-Baratoff relation

!J =
p

EJEC/~

JOSEPHSON-PLASMA REGIME

‣ Towards BEC side, EC  decreases because of 
decreasing chemical potential

➙ Maximum Josephson energy near unitarity!



THE RUNNING-PHASE REGIME

‣  If charging energy exceeds Josephson energy: running-phase evolution 

�N >

r
2EJ

EC

‣ One way to reach this: raise the barrier to V0 ≫ !, so as to strongly reduce EJ

Small imbalance oscillation at Josephson frequency

~�(t) ⇠ EC�N(0)t

Linear phase evolution is observed: 
phase coherence is clearly there,  
but large shot-to-shot fluctuations

Population imbalance decays:  
no Josephson oscillations observed,  
no “quantum self-trapping” (MQST)

A. Smerzi et al, Phys. Rev. Lett. 79, 4950 (1997)  
I. Zapata et al., Phys. Rev. A 57, R28, (1998) 

What is the origin of incoherent transport?

Running pendulum 

evolution

Valtolina et al., Science 350 (2015)

ω ≃ Δμ0/ℏ



INCREASING THE INITIAL POPULATION BIAS

‣ Increase the initial imbalance while keeping EJ constant at V0 ≃ !

 
  

Topological defects 
  are present! 

BEC BCSUnitary gas
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INCREASING THE INITIAL POPULATION BIAS

‣ Increase the initial imbalance while keeping EJ constant at V0 ≃ !

 
  

Topological defects 
  are present! 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chemical potential and thus no chemical potential bias as the number of photons is not
conserved. Nevertheless the transmission probability through narrow apertures also
increases stepwise as the aperture is opened, as was observed in [129]. The crucial
ingredient in observing this e↵ect is to mimic incoherent reservoirs which populate
every energetically accessible modes while keeping monochromatic light to mimic the
low temperature case, and symmetrically detectors should integrate over all possible
momenta for the photons emerging from the channel. This was achieved using di↵use
illumination and an integrating sphere for the detection. Jumps in the transmission
occur with a spacing of �/2. No quantum e↵ects are involved in the experiment,
highlighting the fundamental role of the wave character of matter for massive particles.

The case of phonons in solid state systems is conceptually similar, but of much
more fundamental interest due to its connection with heat transport. For dielectric
narrow wires where heat is only carried by phonons the Landauer approach yields
a universal heat conductance quantum equal to k2

B⇡
2T/3h, where T is the average

temperature of the system, in the low temperature limit [130]. Experiments conducted
on suspended nano-structures have shown saturations of the heat conductance at low
temperature compatible with this bound [131]. Quite remarkably, the quantum of heat
conductance is actually a universal bound, not restricted to phonon transmission . It
is rooted in Shannon’s theorem stating the upper bound to the amount of information
that a single channel can carry [132]. Recently, a new set of experiments have measured
the quantum of heat conductance associated with electrons in a mesoscopic structure
in the quantum Hall regime, showing good agreement with the universal limit [133].

Quantized transport measurements were also proposed for dilute mixtures of 3He
in 4He. For very dilute mixtures at the lowest temperatures, 3He behaves like an ideal
Fermi gas with a very long mean free path of several tens of micrometers. An array
of nano-pores was then proposed as a connection between two tanks of Helium, with
holes of the order of 10 nm, compatible with the Fermi wavelength of 3He [134, 135].

5. Superfluid transport in Bose-Einstein condensates

The results that were presented in the previous sections concerned weakly interacting
Fermi gases, and the physics was that of ideal gases. In the presence of interactions
between particles, the gases can turn superfluid in part if not all the system. This is
the case for low temperature Bosons, and low temperature Fermions in the presence
of attractive interactions. Both cases are realised in cold atoms experiments, and
transport in the two terminal setup has been studied under these conditions.

In contrast to normal currents, which are driven by chemical potential gradients,
superfluid currents are driven by gradients in the phase � of the superfluid order
parameter  = | |ei�. More precisely, superfluid velocity is given by vs = ~

mr�.
Most of the dynamical properties of superfluids can be understood based on this
principle contained in the Josephson-Anderson equation [136, 137, 138, 139, 140]:

~d�

dt
= µ (20)

where µ is the chemical potential. In the two terminal configuration, this reduces to
the usual Josephson relation, but it has a very general validity for both bosonic and
fermionic superfluids, weak and strongly interacting, and explains in particular a wide
range of phenomena such as vortex motion and nucleation.

For a general superfluid system such as Helium, the relation between the
superfluid order parameter and the microscopic parameters of the system is a very
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‣ Increase the initial imbalance while keeping EJ constant at V0 ≃ !
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VORTEX NUCLEATION: PHASE-SLIPPAGE 

P. W. Anderson, Rev. Mod. Phys. 38, 2 (1966) 
E. Hoskinson et al. Nature Phys. 2, 23 (2006)

x

y

z

t = 0

t ~ h/∆µ

(b)

(a)

(c)

De
ns

ity
 (a

.u
.)

0

1

NL , φL NR , φR 

z0 = 0.23

0 0.05 0.1 0.15 0.2

σ φ
 (π

)

0
0.5

1

Time (s)

0 0.05 0.1 0.15 0.2

0

-0.1

0.1

0.2

0.3

z

0 0.05 0.1 0.15 0.2

-0.5

-1

0

0.5

1

φ 
(π

)

(d)

‣ Our thin 3D junction geometry favours vortex nucleation and shedding into bulk 
Vortex dynamics affects superflow through junction ➙ initial imbalance decay!

‣ Phase coherence is preserved, ruling out pair-breaking effects or 
quasiparticle currents 

‣ Dissipation can originate from (topological) vortex excitations 
rather than by (Landau) single-particle excitations  
➙ analogous to phase slippage for liquid 4He through orifice 
 

‣ When a vortex line crosses the superflow, dissipation arises: phase slippage 
➙ Energy transfer from the superflow to vortex motion  
The phase slips and the superfluid velocity jumps

[cf. Levy et al., Nature 449, 579 (2007)]
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between particles, the gases can turn superfluid in part if not all the system. This is
the case for low temperature Bosons, and low temperature Fermions in the presence
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transport in the two terminal setup has been studied under these conditions.

In contrast to normal currents, which are driven by chemical potential gradients,
superfluid currents are driven by gradients in the phase � of the superfluid order
parameter  = | |ei�. More precisely, superfluid velocity is given by vs = ~
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Most of the dynamical properties of superfluids can be understood based on this
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where µ is the chemical potential. In the two terminal configuration, this reduces to
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Transition from phase slips to the
Josephson effect in a superfluid 4He
weak link
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The rich dynamics of flow between two weakly coupled
macroscopic quantum reservoirs has led to a range of
important technologies. Practical development has so far

been limited to superconducting systems, for which the basic
building block is the so-called superconducting Josephson
weak link1. With the observation of quantum oscillations2 in
superfluid 4He near 2 K, we can now envision analogous practical
superfluid helium devices. The characteristic function that
determines the dynamics of such systems is the current–phase
relation Is(ϕ), which gives the relationship between the superfluid
current Is flowing through a weak link and the quantum phase
difference ϕ across it. Here we report the measurement of the
current–phase relation of a superfluid 4He weak link formed
by an array of nano-apertures separating two reservoirs of
superfluid 4He. As we vary the coupling strength between the
two reservoirs, we observe a transition from a strongly coupled
regime in which Is(ϕ) is linear and flow is limited by 2π
phase slips, to a weak-coupling regime where Is(ϕ) becomes the
sinusoidal signature of a Josephson weak link.

The dynamics of flow between two weakly coupled macroscopic
quantum reservoirs can be highly counterintuitive. In both
superconductors and superfluids, currents will oscillate through
a constriction (weak link) between two reservoirs in response
to a static driving force, which, in a classical system, would
simply yield flow in one direction. In superconductors, such
junctions have given rise to a range of technologies. Although
promising analogous devices3–5 based on weak links have been
demonstrated in superfluid 3He, practical development will be
hampered by the difficulty of working at the very low temperatures
(T < 10−3 K) required. Quantum oscillations were observed
in superfluid 4He at a temperature 2,000 times higher. To
understand the fundamental nature of these oscillations, and to
make progress towards device development, it is necessary to
know the relationship between current and phase difference across
the junction, Is(ϕ). The measurement of Is(ϕ) reported here
reveals a transition between two distinct quantum regimes and
opens the door to the development of superfluid 4He interference

t

v

vc

v

vc

0

0

a b

Figure 1 Schematic of flow through an aperture and corresponding velocity
evolution. a, Superfluid with velocity v accelerates in response to a driving force up
to a critical velocity vc at which a singly quantized vortex is nucleated, crosses the
flow path and causes a drop in v. b , Repeated vortex nucleation events give rise to a
sawtooth waveform. The critical velocity vc drops as T → Tl. At some T (lower
curve in b ) the superfluid flow will actually reverse direction.

devices analogous to the d.c.-SQUID, which will be highly sensitive
to rotation.

When superfluid 4He, well below its transition temperature
Tl = 2.17 K, is forced through a constriction, it will accelerate
until it reaches a critical velocity, vc, at which a quantized vortex
is nucleated. This is shown schematically in Fig. 1. The vortex
moves across the path of the fluid, decreasing the quantum phase
difference between the reservoirs by 2π and decreasing the fluid
velocity6 by a quantized amount "vs. This phase-slip process
repeats, such that the flow through the constriction follows a
sawtooth waveform. The critical velocity decreases towards zero
as T is increased towards Tl, but "vs is mostly independent of
T . When vc < "vs, the flow actually reverses direction whenever
a phase slip occurs. If this situation were to continue as T → Tl
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[see also recent work by Gauthier et al., arXiv:1903.04086]



VORTEX NUCLEATION: SIMULATIONS

‣ Phase slippage and vortex shedding is well reproduced by GP simulations of junction dynamics in BEC regime  
[see also early works e.g. Piazza et al., New J. Phys. 13 (2011)]

‣ Phase slippage can be clearly seen in the superfluid velocity
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SIMULATIONS OF VORTEX DYNAMICS
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RESISTIVE FLOW AND RSJ CIRCUIT MODEL
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‣ Imbalance z(t) and phase φ(t) evolution well fitted by numerical solution of RLCJ model:  
resistively shunted Josephson (RSJ) junction circuit ➙ incorporates all Ohmic dissipation into resistor R

3

FIG. S4. Evolution of the condensed fraction for a molecular BEC
in the absence of the barrier (red), and in the presence of a barrier of
height V0/µ ' 1.3 (blue) and with z0 ' 0.4 (�µ0/µ ' 0.32). For
such values of z0 and V0, the evolution of the population imbalance
z(t) consists of a purely dissipative decay to zero. The inset dis-
plays the evolution of the ratio between the two measured condensed
fractions. The condensed fraction appears to be limited only by the
molecular BEC lifetime, with no markedly different trend detected
in the presence of the barrier potential.

phase relation IJ = �Ic sin('), a shunt resistance R and a
LC series (see Ref. [6] and Fig. S5). The capacitance chan-
nel is associated with the potential energy stored in the junc-
tion, with C = 1

2
@N
@µ , i.e. the gas compressibility [7], and it

is calculated using the superfluid equation of state [8]. The
inductance L represents the atoms kinetic energy in the har-
monic trapping potential, and it is obtained experimentally by
measuring !x =

p
1/(LC). The circuit is described by two

coupled differential equations for k(t) and '(t) [6]:

Lk̈ +R(k̇ + Ic sin') + k/C = 0 , (S.2)

~'̇+R(k̇ + Ic sin') = 0. (S.3)

Eq. (S.2) represents the circuit Kirchhoff’s law, while
Eq. (S.3) is the generalized Josephson-Anderson relation. By
numerically solving Eqs. (S.2)-(S.3), we can obtain z(t) and
'(t). We fit the measured evolution of z with the calculated

C

L

Ic R

FIG. S5. Diagram of the RSJ-like circuit model described by
Eqs. (S.2)-(S.3). The Josephson junction allows a dissipationless
current to flow up to a value of Ic, while an additional dissipative
current is allowed to flow through the resistor R.

one, leaving R and Ic as fitting parameters; in this way, we
also obtain the corresponding evolution of � for the fitted pa-
rameters (see Fig. 1 in the main text).

S.3. CONDUCTANCE AND CRITICAL CURRENT AS A
FUNCTION OF BARRIER HEIGHT

By fitting the measured population imbalance evolution
z(t) with the numerical solution of the RSJ-like circuit model
in Eqs. (S.2)-(S.3) (see Fig. S5), we extract the conductance
G and critical current Ic of the junction. In the main text, we
present the dependence of G and Ic upon the central density
n0. Figure S7 displays the extracted values of G and Ic for
0.05 < �µ0 < 0.2 at various barrier heights V0/µ in the
different regimes of superfluidity. For a given V0/µ, G de-
creases from the BEC to the BCS side of the crossover, as
a consequence of the increasing chemical potential µ. In all
regimes, Ic decreases roughly exponentially upon increasing
V0, as expected for a tunnelling process.

S.4. CURRENT-BIAS RELATION ACROSS THE JUNCTION

We characterize the dependence of the dissipative current
I(t) as a function of the chemical potential difference across
the barrier �µ(t). By performing a numerical derivative of
the time-evolving population imbalance, we obtain the instan-
taneous current I(t) as a function of the instantaneous bias
potential �µ(t), which corresponds to the current-voltage re-
lation of the equivalent circuit. In Fig. S6(a), the population
imbalance z(t) is shown for a gas at unitarity, with z0 ' 0.45
and V0/µ ' 1.35. As shown in Fig. S6(b), I(t) exhibits a lin-
ear dependence on �µ, associated with an ohmic dissipative
current. The observed linear behaviour of I(�µ) rules out
any significant non-linear dissipation effects, differently from
what reported in Ref. [5]. There, a non-linear current-bias re-
lation was observed for unitary superfluids connected via a
quantum point-contact and attributed to multiple Andreev re-
flections.

S.5. THEORETICAL METHODS:
THE EXTENDED THOMAS-FERMI MODEL

We use the extended Thomas-Fermi model (ETFM) [9] for
determining the bulk properties of the gas and for theoretically
investigating the onset of dissipation at T = 0. This model is
an extension of the Gross-Pitaevskii equation (GPE) for atom
pairs, where the local chemical potential is parametrized as a
function of the scattering length a, according to the equation
of state in the BEC-BCS crossover [10]. In this framework,
the condensate wave function  (r, t), normalized to the total
number of condensate pairs N , obeys the following equation:

i~@t (r, t) =
✓
� ~2
2M

r2 + V (r) + f(| (r, t)|2, a)
◆
 (r, t) ,

(S.4)
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FIG. S4. Evolution of the condensed fraction for a molecular BEC
in the absence of the barrier (red), and in the presence of a barrier of
height V0/µ ' 1.3 (blue) and with z0 ' 0.4 (�µ0/µ ' 0.32). For
such values of z0 and V0, the evolution of the population imbalance
z(t) consists of a purely dissipative decay to zero. The inset dis-
plays the evolution of the ratio between the two measured condensed
fractions. The condensed fraction appears to be limited only by the
molecular BEC lifetime, with no markedly different trend detected
in the presence of the barrier potential.

RESISTIVELY-SHUNTED JUNCTION CIRCUIT

In order to characterize the transport properties of our junc-
tion, we model its dynamics using a RSJ-like circuit made of
three parallel elements: a Josephson weak link with a current-
phase relation IJ = �Ic sin('), a shunt resistance R and a
LC series (see Ref. [6] and Fig. S5). The capacitance chan-
nel is associated with the potential energy stored in the junc-
tion, with C = 1

2
@N
@µ , i.e. the gas compressibility [7], and it

is calculated using the superfluid equation of state [8]. The
inductance L represents the atoms kinetic energy in the har-
monic trapping potential, and it is obtained experimentally by
measuring !x =

p
1/(LC).

FIG. S5. Diagram of the RSJ-like circuit model described by
Eqs. (S.2)-(S.3). The Josephson junction allows a dissipationless
current to flow up to a value of Ic, while an additional dissipative
current is allowed to flow through the resistor R.

The circuit is described by two coupled differential equations
for k(t) and '(t) [6]:

Lk̈ +R(k̇ + Ic sin') + k/C = 0 , (S.2)

~'̇+R(k̇ + Ic sin') = 0. (S.3)

Eq. (S.2) represents the circuit Kirchhoff’s law, while
Eq. (S.3) is the generalized Josephson-Anderson relation. By
numerically solving Eqs. (S.2)-(S.3), we can obtain z(t) and
'(t). We fit the measured evolution of z with the calculated
one, leaving R and Ic as fitting parameters; in this way, we
also obtain the corresponding evolution of � for the fitted pa-
rameters (see Fig. 1 in the main text).

CONDUCTANCE AND CRITICAL CURRENT AS A
FUNCTION OF BARRIER HEIGHT

By fitting the measured population imbalance evolution
z(t) with the numerical solution of the RSJ-like circuit model
in Eqs. (S.2)-(S.3) (see Fig. S5), we extract the conductance
G and critical current Ic of the junction. In the main text, we
present the dependence of G and Ic upon the central density
n0. Figure S7 displays the extracted values of G and Ic for
0.05 < �µ0 < 0.2 at various barrier heights V0/µ in the
different regimes of superfluidity. For a given V0/µ, G de-
creases from the BEC to the BCS side of the crossover, as
a consequence of the increasing chemical potential µ. In all
regimes, Ic decreases roughly exponentially upon increasing
V0, as expected for a tunnelling process.

CURRENT-BIAS RELATION ACROSS THE JUNCTION

We characterize the dependence of the dissipative current
I(t) as a function of the chemical potential difference across
the barrier �µ(t). By performing a numerical derivative of
the time-evolving population imbalance, we obtain the instan-
taneous current I(t) as a function of the instantaneous bias
potential �µ(t), which corresponds to the current-voltage re-
lation of the equivalent circuit. In Fig. S6(a), the population
imbalance z(t) is shown for a gas at unitarity, with z0 ' 0.45
and V0/µ ' 1.35. As shown in Fig. S6(b), I(t) exhibits a lin-
ear dependence on �µ, associated with an ohmic dissipative
current. The observed linear behaviour of I(�µ) rules out
any significant non-linear dissipation effects, differently from
what reported in Ref. [5]. There, a non-linear current-bias re-
lation was observed for unitary superfluids connected via a
quantum point-contact and attributed to multiple Andreev re-
flections.

Extract R and Ic

RSJ-like circuit model

Burchianti et al., Phys. Rev. Lett. 120 (2018)

‣ Model the evolution of imbalance and phase with RC-shunted Josephson Junction circuit

See also: Bidasyuk et al., J. Phys. B 51 (2018)
From trap frequency Gauthier et al., arXiv:1903.04086ì
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‣ Same origin of resistive transport throughout BEC-BCS crossover! 
‣ Large G ➙ composite “bosonic” nature of the tunneling particles  

[cf. Krinner et al. Nature 517 (2015)]

Central density from ETFM

Fitting the data with G	∝	n0α	
α=1.0(3) BEC
α=1.2(2) Unitary
α=1.5(2) BCS (pair breaking?)

IR	∝	γNex	=	Nex	Δμ/h	  
➙	G	∝	Nex/h	∝	n0
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chemical potential and thus no chemical potential bias as the number of photons is not
conserved. Nevertheless the transmission probability through narrow apertures also
increases stepwise as the aperture is opened, as was observed in [129]. The crucial
ingredient in observing this e↵ect is to mimic incoherent reservoirs which populate
every energetically accessible modes while keeping monochromatic light to mimic the
low temperature case, and symmetrically detectors should integrate over all possible
momenta for the photons emerging from the channel. This was achieved using di↵use
illumination and an integrating sphere for the detection. Jumps in the transmission
occur with a spacing of �/2. No quantum e↵ects are involved in the experiment,
highlighting the fundamental role of the wave character of matter for massive particles.

The case of phonons in solid state systems is conceptually similar, but of much
more fundamental interest due to its connection with heat transport. For dielectric
narrow wires where heat is only carried by phonons the Landauer approach yields
a universal heat conductance quantum equal to k2

B⇡
2T/3h, where T is the average

temperature of the system, in the low temperature limit [130]. Experiments conducted
on suspended nano-structures have shown saturations of the heat conductance at low
temperature compatible with this bound [131]. Quite remarkably, the quantum of heat
conductance is actually a universal bound, not restricted to phonon transmission . It
is rooted in Shannon’s theorem stating the upper bound to the amount of information
that a single channel can carry [132]. Recently, a new set of experiments have measured
the quantum of heat conductance associated with electrons in a mesoscopic structure
in the quantum Hall regime, showing good agreement with the universal limit [133].

Quantized transport measurements were also proposed for dilute mixtures of 3He
in 4He. For very dilute mixtures at the lowest temperatures, 3He behaves like an ideal
Fermi gas with a very long mean free path of several tens of micrometers. An array
of nano-pores was then proposed as a connection between two tanks of Helium, with
holes of the order of 10 nm, compatible with the Fermi wavelength of 3He [134, 135].

5. Superfluid transport in Bose-Einstein condensates

The results that were presented in the previous sections concerned weakly interacting
Fermi gases, and the physics was that of ideal gases. In the presence of interactions
between particles, the gases can turn superfluid in part if not all the system. This is
the case for low temperature Bosons, and low temperature Fermions in the presence
of attractive interactions. Both cases are realised in cold atoms experiments, and
transport in the two terminal setup has been studied under these conditions.

In contrast to normal currents, which are driven by chemical potential gradients,
superfluid currents are driven by gradients in the phase � of the superfluid order
parameter  = | |ei�. More precisely, superfluid velocity is given by vs = ~

mr�.
Most of the dynamical properties of superfluids can be understood based on this
principle contained in the Josephson-Anderson equation [136, 137, 138, 139, 140]:

~d�

dt
= µ (20)

where µ is the chemical potential. In the two terminal configuration, this reduces to
the usual Josephson relation, but it has a very general validity for both bosonic and
fermionic superfluids, weak and strongly interacting, and explains in particular a wide
range of phenomena such as vortex motion and nucleation.

For a general superfluid system such as Helium, the relation between the
superfluid order parameter and the microscopic parameters of the system is a very

IR	=	G	Δμ

Jendrzejewski et al., PRL 113, 045305 (2014) 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CRITICAL CURRENT IC
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1/kFa=4 (BEC)
1/kFa=0 (unitary)
1/kFa=-0.6 (BCS)

Ic / EJ = JN0
‣ Measure conductance of normal 

state on BCS side of resonance: 

Ic	=	n0x	c0
‣ Calculated upper bound on Ic :

Inspired by hydrodynamic scenario,  
barrier as an obstacle  
➙ seems ok also for tunnelling regime 
Spuntarelli et al., PRL. 99, 040401 (2007) 
Watanabe et al., PRA 80, 053602 (2009)  

What limits the critical current on BCS 
side? Pair-breaking or condensate 

depletion?

Miller et al., PRL 99 (2007) 
Valtolina et al., Science 350 (2015)

Gap



INCOHERENT TUNNELLING REGIME

-0.05

0

0.05

0

0.1

0.2

0 0.05 0.1 0.15 0.2
0

0.2

0.4
0.6

Time (s)

z
z

z

Δμ  / μ = 0.100

Δμ  / μ = 0.020

Δμ  / μ = 0.390

-1
G

(1
03

h
)

N

(a)

(b)

(c)

‣ Increasing the initial imbalance z0 > 0.3 ➙ Disappearance of coherent oscillations

‣ Conductance decreases: saturation of phase-slippage rate. What is the cause?

0.2

(d)

(e)
0

0.4

0.8

1.2

-1
G

(1
03

h
)

0.1 0.2 0.3 0.4

0

2

4

〈N
v〉

Δμ /μ0



THE PLAN

‣ Introduction: ultracold Fermi gases across the BEC-BCS crossover  

‣ Josephson junction basics 

‣ Our experimental setup: a thin tunable Josephson junction between Fermi superfluids 

‣ Dynamics in population-biased junctions:  
Josephson-plasma oscillations and dissipative flow through vortex nucleation 

‣ Current-driven junctions:  
probing the critical current via the DC Josephson effect 

‣ Outlook: local manipulation and quantum transport of two-dimensional gases

➙ Ongoing…



N1 N2 

Δμ = EC(z − zeq)

δx

‘	‘	

❷

N1 N2 

z = �N/N Δμ = ECz

v
t = 0❶

t = v δx

CURRENT-BIASED JUNCTION

Ultracold bosons: 

Giovanazzi et al., PRL 84 (2000) 
Levy et al., Nature 449, 579 (2007) 
Ryu et al., PRL 111 (2013)

Tunnelling super current 
without bias I < Ic

DC Josephson current

ℏ ·ϕ(t) = − Δμ = μR − μL

I = Ic sin ϕ − GΔμ Δμ = 0
I < Ic

Δμ(t) = 0



6 µm thick barrier (just for visualization)

N1 N2 

Homogeneous barrier (DMD feedback - dithering)

CURRENT-BIASED JUNCTION: EXPERIMENT

w = 1.5 μm , kFw ≈ 3
V0/εF ≃ 0.8 → V0/μ > 1

v = 0.1 mm/s
δx = 10 μm

Unitary gas (raw images, single shots)



DC JOSEPHSON EFFECT

Δμ = EC (z − zeq)
‣ For final off-centered barrier, zeq ≠ 0

|zeq| ≃ 0.15

‣ Move barrier through the gas at constant velocity along 10 µm

for 10 µm movement

v ≃ 0.3 mm/s v ≃ 0.8 mm/s v ≃ 1.5 mm/s

Below critical velocity, superfluid flows entirely through barrier!

V0/εF ≃ 0.8V0/εF ≃ 0.8 V0/εF ≃ 0.8

Sound velocity (bulk): 
c ≈ 10 mm/s



IV CURVE AND CURRENT-PHASE RELATION

‣ Above critical current: finite Δµ is created, but smaller than 
superfluid gap ➙ no excitation of quasiparticle branch 
Only AC/MQST branch (unstable)

I < Ic

‣ Clear footprint of DC Josephson effect ! Evolution can be 
modelled by RC-shunted junction circuit (…ongoing)

BEC

vc

Current

Phase

V0/εF ≃ 0.5



CRITICAL VELOCITY

‣ Map out imbalance after barrier movement at variable height V0 and speed v

Unitary gasBEC



CRITICAL BARRIER HEIGHT VS SIZE
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‣ Extract critical barrier height V0 at constant velocity v 
➙ varying the barrier size

 
Watanabe et al., “Critical velocity of superfluid flow through 
single barrier and periodic potentials”. PRA 80, 053602 (2009)  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PRELIMINARY

CRITICAL VELOCITY VS INTERACTION STRENGTH

‣ Extract critical velocity as a function of 1/(kFa)

Spuntarelli et al., PRL 99, 040401 (2007) 

‣ Maximum critical velocity is located slightly on BCS side of resonance



THE PLAN

‣ Introduction: ultracold Fermi gases across the BEC-BCS crossover  

‣ Josephson junction basics 

‣ Our experimental setup: a thin tunable Josephson junction between Fermi superfluids 

‣ Dynamics in population-biased junctions:  
Josephson-plasma oscillations and dissipative flow through vortex nucleation 

‣ Current-driven junctions:  
probing the critical current via the DC Josephson effect 

‣ Outlook: local phase manipulation and quantum transport of two-dimensional gases
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LOCAL PHASE CONTROL: PHASE IMPRINTING
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LOCAL PHASE CONTROL: VELOCITY IMPRINTING
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TWO-DIMENSIONAL POTENTIALS
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