

Non-Abelian geometric transformations in a cold Fermionic strontium gas David Wilkowski

Physics and applied physics, SPMS, NTU Centre for Quantum Technologies, Singapore Centre for Disruptive Photonics Technologies, Singapore MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit

Benasque, May 16th 2019

Triangle on flat/curve space

Foucault Pendulum (Paris, 1851)

Synthetic gauge fields in ultracold gases

Synthetic magnetic field: Y.-J. Lin et al, *Nature* **462**, 628 (2009) Edge state on lattice strip: M. Mancini et al, *Science* **349**, 1510 (2015) Quantum Hall: M. Aidelsburger et al, *Nat. Phys.* **11**, 162 (2015)

Extracted from: Y.-J. Lin et al, Nature 462, 628 (2009)

Quantum computing

Topologically protected Quantum state

Fractional hall effect ($\nu = 5/2$): S. Das Sarma et al, *PRL* **94**, 166802 (2005)

Geometrical quantum gate

NV centers: C. Zu et al, *Nature* **514**, 72 (2014) Superconducting circuit: A. Abdumalikov Jr et al, *Nature* **496**, 482 (2013)

a						
Two-qubit geometric CNOT gate						
Initial state	0, ↑⟩	0, ↓⟩	 1, ↑ ⟩	1, ↓⟩	$ 0\rangle(\uparrow\rangle+ \uparrow\rangle)$	$ 0\rangle (\uparrow\rangle + i \downarrow\rangle)$
Ideal final state	1,↑⟩	0, ↓⟩	 0, ↑⟩	 1 , ↓⟩	$ 1, \uparrow\rangle + 0, \downarrow\rangle$	$ 1,\uparrow\rangle+i 0,\downarrow\rangle$
Measured fidelity	0.99(1)	0.97(1)	0.87(1)	0.94(2)	0.90(3)	0.86(4)

Extracted from: C. Zu et al, *Nature* **514**, 72 (2014)

NANYANG Geometric gate: Degenerated states or not

F. Wilczek and A. Zee PRL **52**, 2111 (1984)

M. V. Berry Proc. R. Soc. Lond. A 392, 45 (1984)

Non degenerated states

Degenerated states

 $|\psi(\mathcal{C})\rangle = e^{i\gamma}|\psi(0)\rangle$ $e^{i\gamma}e^{i\gamma\prime} = e^{i\gamma\prime}e^{i\gamma}$ Abelian transformation

 $UU' \neq U'U$: Path ordering sensitivity Non-Abelian transformation

NANYANG TECHNOLOGICAL UNIVERSITY Geometric gate: Degenerated states or not

Non degenerated states

 $\frac{|\psi(\mathcal{C})\rangle = e^{i\gamma} |\psi(0)\rangle}{e^{i\gamma} e^{i\gamma'} = e^{i\gamma'} e^{i\gamma}}$ Abelian transformation

$$U = \wp \exp\left(-\oint_C \vec{A} d\vec{\lambda}\right)$$

 $\vec{\lambda}$: parameters *C*: close loop

 \vec{A} : vector potential or Berry connection. \wp : path ordering operator. $\vec{\Phi} = \vec{\nabla} \times \vec{A} + \vec{A} \times \vec{A}$: Berry curvature.

Degenerated states

 $UU' \neq U'U$: Path ordering sensitivity Non-Abelian transformation

Tripod system

Implementation on a strontium ultracold gas

Interferometric measurement of the temperature

Content

Geometric quantum gate

Path sensitive measurement and non-Abelianicity

Conclusion and perspective for atomtronics

entre foi

chnoloaies

Diagonalization of the Hamiltonian

NANYANG TECHNOLOGICAL UNIVERSITY Tripod: SU(2) non-Abelian transformation

The non-Abelian structure appears in the $\{|D_1\rangle, |D_2\rangle\}$ subspace

We get:

$$\vec{A}_{11} = \hbar \left(\cos^2 \beta \vec{\nabla} \Phi_{23} + \sin^2 \beta \vec{\nabla} \Phi_{13} \right)$$

$$\vec{A}_{12} = \hbar \cos \alpha \left(\frac{1}{2} \sin(2\beta) \vec{\nabla} \Phi_{12} - i \vec{\nabla} \beta \right)$$

$$\vec{A}_{22} = \hbar \cos^2 \alpha \left(\cos^2 \beta \vec{\nabla} \Phi_{23} + \sin^2 \beta \vec{\nabla} \Phi_{13} \right)$$

In general the components of \vec{A} do not commute

Centre for Ouantum Technologies

Fermionic isotope on the ${}^{1}S_{0} - {}^{3}P_{1}$ intercombination line

Abelian or non-Abelian ?

We have: $\vec{A}_{11} = \hbar \left(\cos^2 \beta \vec{\nabla} \Phi_{23} + \sin^2 \beta \vec{\nabla} \Phi_{13} \right)$ $\vec{A}_{12} = \hbar \cos \alpha \left(\frac{1}{2} \sin(2\beta) \vec{\nabla} \Phi_{12} - i \vec{\nabla} \beta \right)$ $\vec{A}_{22} = \hbar \cos^2 \alpha \left(\cos^2 \beta \vec{\nabla} \Phi_{23} + \sin^2 \beta \vec{\nabla} \Phi_{13} \right)$ $\Phi_i = \vec{k}_i \vec{r} + \phi_i (t)$ $\Phi_{ij} = \Phi_i - \Phi_j$

 \rightarrow Abelian gauge field

Abelian or non-Abelian ?

We have: $\vec{A}_{11} = \hbar \left(\cos^2 \beta \vec{\nabla} \Phi_{23} + \sin^2 \beta \vec{\nabla} \Phi_{13} \right)$ $\vec{A}_{12} = \hbar \cos \alpha \left(\frac{1}{2} \sin(2\beta) \vec{\nabla} \Phi_{12} - i \vec{\nabla} \beta \right)$ $\vec{A}_{22} = \hbar \cos^2 \alpha \left(\cos^2 \beta \vec{\nabla} \Phi_{23} + \sin^2 \beta \vec{\nabla} \Phi_{13} \right)$ $\Phi_i = \vec{k}_i \vec{r} + \phi_i(t)$ $\Phi_{ij} = \Phi_i - \Phi_j$

 $\vec{\nabla}\beta = 0, \Phi_3$ is constant (pinned atom) Φ_1 and Φ_2 independent

 \rightarrow Non-Abelian transformation

Experimental platform: cold strontium atomic gas

The thermal energy dominates !!!

T. Yang, et *al*, Eur. Phys. J. D. **69**, 226 (2015) C. Chalony et *al*, PRL **107** 243002 (2011)

$$\overline{\langle 1|\psi(t)\rangle|^2} = f_1 - g_1 \cos\left(\frac{4}{3}\omega_R t\right) \exp\left[-\frac{4}{9}(k\bar{\nu}t)^2\right]$$
$$\overline{\langle 2|\psi(t)\rangle|^2} = f_2$$
$$\overline{\langle 3|\psi(t)\rangle|^2} = f_3 + g_3 \cos\left(\frac{4}{3}\omega_R t\right) \exp\left[-\frac{4}{9}(k\bar{\nu}t)^2\right]$$

For a thermal gas **v**: Thermal velocity

f_i and *g_i*depend on the Rabi frequencies.

Geometric transformation: Closed loop of the lasers phases

NANYANG TECHNOLOGICAL Geometric Q-Gate: Bare state populations

Geometric Q-Gate: Theory vs experiment

State Tomography

Chosen dark state basis
$$|D_1\rangle = \begin{pmatrix} \sin\beta e^{i\Phi_{31}} \\ -\cos\beta e^{i\Phi_{32}} \\ 0 \end{pmatrix} |D_2\rangle = \begin{pmatrix} \cos\alpha\cos\beta e^{i\Phi_{31}} \\ \cos\alpha\sin\beta e^{i\Phi_{32}} \\ -\sin\alpha \end{pmatrix}$$

 $|\psi\rangle_f = U |D_2\rangle = (|d_1||D_1\rangle + |d_2|e^{i\varphi}|D_2\rangle)e^{i\varphi_g}$

We measure the bare state population: $|\langle i|\psi\rangle|^2$

$$|d_2| = \frac{\sqrt{|\langle 3|\psi \rangle|^2}}{|\sin \alpha|}$$
 $|d_1| = \sqrt{1 - |d_2|^2}$

 $\cos \varphi = \frac{|\langle 1|\psi\rangle|^2 - |\langle 2|\psi\rangle|^2 + (d_1^2 - d_2^2 \cos^2 \alpha) \cos(2\beta)}{|d_1||d_2|\cos \alpha \sin(2\beta)}$

The sign of φ is missing The reconstruction does not give φ_g

Geometric transformation: Dark state manifold

Quenching of thermal dephasing if $\phi_{max} > k \bar{v} \Delta t \simeq 0.7 \pi$

Loop time: $\Delta t = 12 \ \mu s$

 $|\psi\rangle_f = U|\psi\rangle_i = \left(|d_1||D_1\rangle + |d_2|e^{i\varphi}|D_2\rangle\right)e^{i\varphi_g}$

The state tomography does not give φ_g *U* cannot be reconstructed

We use two initial (non orthogonal) states: $|\psi_a\rangle_f = U |\psi_a\rangle_i$ and $|\psi_b\rangle_f = U |\psi_b\rangle_i$

We use the decomposition: $U = \alpha_0 \text{Id} + i \sum_j \alpha_j \sigma_j$

 σ_i : Pauli matrices

The Frobenius distance: $d = \sqrt{\sum_{j} (\alpha_j(a) - \alpha_j(b))^2}$ d = 1.27 (25), d = 1.14 and d = 1.09

F. Leroux, K. Pandey, R. Rebhi, F. Chevy, C. Miniatura, B. Gremaud, DW, Nature Communications **9**, 3580 (2018).

We showed the path sensitivity on a non-Abelian transformation

O Universal geometric single Qubit gate
Geometrical quantum computing ?

We used the underlying Abelian gauge field as a thermometer

Synthetic non-Abelian gauge field in bulk ultracold gases
2D spin-orbit coupling
Manipulation of matter wave in non-Abelian gauge fields
Atomtronics

But we need to be colder, i.e. $T < T_R = \hbar^2 k^2 / 2k_B M = 230 \text{ nK}$

Evaporative cooling

Optical trap Atoms $N = 10^5$ T = 50 nK

Atomtronics = Flow of atoms in optical circuit

What we shall do

Coll with Rainer and Kwek Persistent Non-Abelian current ?

 \vec{A} : vector potential or a Berry connection.

Abelian case

 $\vec{\Phi} = \vec{\nabla} \times \vec{A}$: Berry curvature If translational invariance of \vec{A} , no force

Non-abelian case $\vec{\Phi} = \vec{\nabla} \times \vec{A} + \vec{A} \times \vec{A}$: Berry curvature If translational invariance of \vec{A} , a force exists

Anisotropic ballistic expansion

Form: Jacob et *al*, APB **89**, 439 (2007)

Anomalous reflection

Form: Juzeliunas et *al*, PRL **100**, 200405 (2008)

People

Centre for Ouantum Technologies

Frederic Leroux (2017)

Riadh

Rebhi

Hassan

Mehedi

Kwong **Chang Chi**

Chetan Sriram Madasu

Frederic Chevy (ENS, Paris)

Benoit Gremaud (Majulab)

Christian Miniatura(Majulab)

Funds: CQT/MoE Grant No. R-710-002-016-271

