

NON-EQUILIBRIUM ULTRACOLD ATOMS: DISSIPATIVE JUNCTIONS, QUENCHES AND COUPLED RINGS

NICK PROUKAKIS

8

Envisaged Aim: (Longer term) Atomtronic "Conveyor Belt"

* How to best model?

THEORETICAL CHALLENGES:

* How to prepare initial state?

* How to link up?

8

Envisaged Aim: (Longer term) Atomtronic "Conveyor Belt"

* How to best model?

[Part I]

Coherent Effects(Gross-Pitaevskii)Dissipation(Thermal DynamicFluctuations(Stochasticity: Sto

(Gross-Pitaevskii) (Thermal Dynamics: Boltzmann / ZNG ?) (Stochasticity: Stochastic GPE ?)

B

Envisaged Aim: (Longer term) Atomtronic "Conveyor Belt"

* How to best model? [Part I]

THEORETICAL CHALLENGES:

* How prepare initial state? [Part II] Not to (?)

→ Quenched Growth to Equilibrium (Phase Transition Crossing)

Liu *et al.*, Comms. Phys. (Nature) 1, 24 (2018) Comaron *et al.*, PRL 121, 095302 (2018) Comaron *et al.*, arXiv/1905.05263

8

Envisaged Aim: (Longer term) Atomtronic "Conveyor Belt"

* How to best model? [Part I]

THEORETICAL CHALLENGES:

* How to prepare initial state? [Part II]

* How to link up?

... I will discuss interesting physics in all above cases ... (... but not in an integrated manner yet ...)

TALK SUMMARY

Comaron *et al.,* PRL 121, 095302 (2018) Comaron *et al.,* arXiv:1905.05263

$\underline{MODELLING ULTRACOLD ATOMS BEYOND T = 0}$

Different, yet complementary, approaches to partially condensed (T > 0) Systems

Kinetic Approaches (explicit BEC separation) Stochastic Approaches (no explicit BEC separation)

BEC + Dynamical Thermal Cloud with full self-consistent coupling

NON-BEC

BEC

Modes up to a cut-off described in a unified manner (classical field) coupled to a Heat Bath

Collective Modes/Dynamics Full BEC – Thermal Coupling

(far from critical region)

Random (shot-to-shot) Fluctuations Quenches / Low-D & Universality (high-lying modes "unaffected")

SPONTANEOUS PERSISTENT CURRENTS IN RING TRAPS

Preparation of Desired "Initial Atomtronic State"

→ First Thoughts: Brute Force Numerical Generation (Stochastic GPE) [This is a numerical Quench!]

Growth without Persistent Current

Growth with Persistent Current

See e.g Das, Sabbatini & Zurek, Scientific Reports (2012) & references therein

Liu *et al.*, Comms. Phys. (Nature) 1, 24 (2018) Comaron *et al.*, PRL 121, 095302 (2018) Comaron *et al.*, arXiv:1905.05263

PHYSICAL PROBLEM

Initial Ultracold Atomic State to be generated (on rapid timescale?) within an "Atomtronic Circuit" ???

CONDENSATE GROWTH EXPERIMENTS

Early Growth Experiments (1998 – 2007)

Time after shock cooling (ms)

CONDENSATE GROWTH EXPERIMENTS

"2nd Generation" Growth Experiments (2008 –)

Experimentally also Characterised in a 3D/2D Box-like Trap

CAMBRIDGE: Science 347 (2015) ; LKB: Nat. Comm. (2015)

MODELLING SCHEME

Simulations based on Stochastic Gross-Pitaevskii Equation for typical Trento experimental parameters

$$i\hbar \frac{\partial \Phi(x,t)}{\partial t} = \left(1 - i\gamma\right) \left[-\frac{\hbar^2 \nabla^2}{2m} + V_{TRAP} - \mu + g \left| \Phi(x,t) \right|^2 \right] \Phi(x,t) + \eta(x,t)$$

Quench protocol: (T, μ) (T, μ) (

Results supposed to be interpreted after suitable 'trajectory' averaging In a <u>Statistical</u> Sense:

Single numerical realisation $\leftarrow \rightarrow$ Single Experimental Run

Dynamical Equilibration Across a Quenched Phase Transition in a Trapped Quantum Gas

I.-K. Liu^{1,2}, S. Donadello³, G. Lamporesi³, G. Ferrari³, S.-C. Gou², F. Dalfovo³, N. P. Proukakis^{1*}

 ¹Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
 ²Department of Physics and Graduate Institute of Photonics, National Changhua University of Education, Changhua, Taiwan
 ³INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, Trento, Italy

Date: 23th October 2017

Initial particle number: 22×10^6 Final particle number: 6.6×10^6 Energy cutoff: $56.3h\omega_{\perp}$ Linear Quenches over $\tau_{R} = 18 \text{ ms}$

Noise Sequence 1

Temperature: $T_i = 790 \text{ nK} \rightarrow T_f = 210 \text{ nK}$

Chemical Potential: $\mu_i = -22\hbar\omega_{\perp} \rightarrow \mu_f = 22\hbar\omega_{\perp}$

Growth Parameter: $\gamma = 0.005$

Trap frequencies: $(\omega_x, \omega_\perp) = 2\pi \times (13, 131.4)$ Hz

INO ISTITUTO NAZIONALE DI OTTICA

Liu *et al.*, Comms. Phys. 1, 24 (2018) arXiv:1712.08074

To compare & contrast *Atom Number* & *Coherence* Evolution, we scale out intrinsic system dynamics, through the

Scaled Time from the Effective Transition

... so that all BEC Growth Curves Overlap with each other

Liu, Donadello, Lamporesi, Ferrari, Gou, Dalfovo, NPP, Comms. Phys. (Nature) 1, 24 (2018)

DELAYED DYNAMICAL GROWTH (\hat{t})

System's Dynamical Response Probed through key Observables

To understand entire Dynamical Non-Equilibrium Process, Introduce:

$$\delta l_{coh}(t) = \frac{l_{coh}^{equil}(\mu(t), T(t)) - l_{coh}^{dyn}(t)}{l_{coh}^{equil}(\mu(t), T(t))}$$

DELAYED DYNAMICAL GROWTH (\hat{t})

System's Dynamical Response Probed through key Observables

To understand entire Dynamical Non-Equilibrium Process, Introduce:

$$\delta l_{coh}(t) = \frac{l_{coh}^{equil}(\mu(t), T(t)) - l_{coh}^{dyn}(t)}{l_{coh}^{equil}(\mu(t), T(t))}$$

COHERENCE vs. NUMBER GROWTH

DEFECT EMERGENCE & "SCALING"

SPONTANEOUS PERSISTENT CURRENTS IN RING TRAPS

SPONTANEOUS PERSISTENT CURRENTS IN RING TRAPS

8

Trap Potential

CONNECTING MULTIPLE RING TRAPS

How to Connect 2 Rings ?

Tunneling ???

Many Talks in this Meeting

Well Understood at Single-Particle Level

Role of Interactions ?

First Discuss Isolated Weak Link

Linked Densities ?

What is Preferred Flow ?

Investigate Density-Coupled States

Aside 2: Phase Slips (Junctions)

Xhani et al., arXiv:1905.08893

A THIN JOSEPHSON JUNCTION (LENS Experiments)

- Weak-link geometry between Fermi superfluids

 + tuneable Josephson junction
- Critical superflow and dissipation mechanisms
 Valtolina et al., Science 350 (2015)
 Burchianti et al., Phys. Rev. Lett. 120 (2018)

[From Francesco Scazza's Talk in this Meeting]

Distinguish 2 Regimes:

Josephson Oscillations

A THIN JOSEPHSON JUNCTION (LENS Experiments)

A Close Inspection shows "kinks" in the Population Imbalance Evolution ("Quantum Phase Slips")

Experiment leads to a "Vortex Gun" (in dissipative regime)

[From Francesco Scazza's Talk]

"BEST" KINETIC THEORY ("ZNG")

IDENTIFYING ROLE OF QUANTUM PHASE SLIPS

CONNECTING MULTIPLE RING TRAPS

How to Connect 2 Rings ?

Tunneling ???

Many Talks in this Meeting

Well Understood at Single-Particle Level

Role of Interactions ?

First Discuss Isolated Weak Link

Linked Densities ?

What is Preferred Flow ?

Investigate Density-Coupled States

Can have a whole "zoo" of winding number combinations ! Some Examples:

Different Flows Far From Overlap Region

Winding number

(In Preparation, 2019)

CONNECTED vs. SEPARATED RING DYNAMICS

Spatially-Separated Rings vs.

Connected Rings

No Detectable Difference In Winding Number Combinations

CONNECTED vs. SEPARATED RING DYNAMICS

Connected Rings

WHERE NEXT ?

Combine State Preparation, Connected Rings & Controllable Barriers

WHERE NEXT ?

Have Analysed

Possible Initial States Dissipation Across Weak Links Dynamics in Single/Connected Rings

> Envisaged Aim: Atomtronic "Conveyor Belt"

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

UNIVERSAL THEMES OF

Shih-Chuan Gou (Changhua Uni Taiwan)

Luca Galantucci

Carlo Barenghi

UNIVERSITY OFTRENTO Franco Dalfovo Gabriele Ferrari

Giacomo Lamporesi

Andrea Trombettoni

(Boris Malomed)

Elettra Neri Francesco Scazza Alessia Bruchianti Matteo Zaccanti Giacomo Roati

PostDoc / 5-Year Fellowships & Academic Positions Available (Theory & Experiment)