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Proof of the elliptic estimate The target problem
The Carleman inequality Understanding the problem
Some final conclusions Statement of the main and auxiliary results
Contextualization

Theorem (Coron,Guerrero;2009)

Let Q C R? be a regular domain, w C Q a subdomain, T > 0 and
e € R2. Then, there is C > 0 such that for any y° € H(Q) there is
a scalar function f € L?((0, T) x w) such that the regular solution
of:

ye— Ay +Vp=rflye in(0,T)xQ,

V.y=0 in (0, T) x Q,
y=0 on (0, T) x 09,
y(0,:) =y° on Q,

satisfies y(T,0) = 0 and such that:

1120, 7)xw) < ClIY° Iz (-
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Our objective

Throughout this talk we study if we have null controllability
uniformly with respect to € for the following penalized Stokes
system:

yi — Ay +Vp® =fl,e inQ,

ept+V-y*=0 in Q,
ye=0 on Y,
y¥(0,)) = y° in Q.

We take Q C R?, Q := (0, T) x Q, ¥ := (0, T) x 9Q and

y% € L2(Q). We expect ¢ € L?((0, T) x w) such that there is
g0 > 0 and C > 0 such that [[£°[[ .20, T)xw) < C||y0\||_2(9) for

e € (0,e0]. The most interesting cases are y° € H(RQ), even if we
study the more general case y° € L%(Q).
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The observability inequality when e = (1,0)

Proving the null-controllability is equivalent to proving

L <c [[ e

(0,T)xw

for o any solution of the adjoint system:

- —Ap*+Vr* =0 inQ,

em*+V-p*=0 in Q,
£=0 on X,
e (T, )=¢" in Q,

for o7 € L?(Q). The equivalence is a consequence of the
Lax-Milgram theorem.
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The key point: the coupling

Let us take a closer look to the equations of ¢°:

—0tp] — Ouxp] — f?ayy‘»oi = flkgaxySogr

—0rp5 — T520f — Dy 5 = Tz 0w ¥4,

o5 =0.
The main difficulty is to make sure that 0,5 and (] small
implies 5 small (and to quantify it). If we had Ayj instead of

Oxy 5 it would be a well-known result and we would not need any
information at all from ¢J.
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An important difficulty: a negative case in a domain that is
just Lipschitz

Let € > 0. We have that the function

¢ (x,y) = <0, eM [sin (\/Xx) —sin ( 15:‘6),) >

is a solution of the adjoint system for €. limited by the lines:

X =/t

x = H_%y-i—%,
x:—\/H_IEy-i— \%
X =— H%y—\%.

In particular, for those rhombus there is ¢ > 0 such that the
penalized Stokes system is not controllable, even when w = Q.
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We suppose that Q C R? is a regular domain which satisfies the following

Let Q be a C2 domain, of boundary 9Q parametrized by functions o', for
(05)'(0) = 0, we have x'(9) # 0.

i=1,...,k. Foranyic{l,... k} and for any @ such that (o})'(8) =0 or

«A40)r «4Fr «=)r « o
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The assumption

We suppose that Q C R? is a regular domain which satisfies the following:
Hypothesis (1)

Let Q be a C? domain, of boundary &Q parametrized by functions o', for
i=1,...,k Foranyie€{l,...,k} and for any 6 such that (01)'(§) = 0 or
(03)'(6) = 0, we have x'(9) # 0.

Lemma

Let Q be a C? domain. Then, there is an orthogonal R2-endomorphism U such
that the domain Q := U(RQ) satisfies Hypothesis 1. In fact, if we denote Uy the
endomorphism characterized by e; := (1,0) — (cos(v), sin(v))) and

& = (0,1) — (—sin(v), cos(v)), then, for almost every ¢ in [—m,x], Uy(Q)
satisfies Hypothesis 1.

Since our system is invariant with respect to rotations, the previous lemma will
imply that for a given domain Q the penalized Stokes system is
null-controllable for almost every direction e.
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An elliptic estimate

Contextualization

The target problem

Understanding the problem

Statement of the main and auxiliary results

Let us consider the operator:

Lau = —a0xcu — Oyyu.

Theorem

Let Q be a C* domain that satisfies Hypothesis 1. Then, for
ao > 0 small enough, there is C > 0 such that for any function
u € H*(Q) N H(Q) and for any a € (0, ag] we have that:

10xull cogy < € (100 ull @) + [1Lautll o)) -

Jon Asier Barcena-Petisco
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An elliptic estimate

Let us consider the operator:

Lou = —alxcu — Oyyu.

Theorem

Let Q be a C* domain that satisfies Hypothesis 1. Then, for
ao > 0 small enough, there is C > 0 such that for any function
u € H*(Q) N H(Q) and for any a € (0, ag] we have that:

10xull cogy < € (100 ull @) + [1Lautll o)) -

We first prove it for Q strictly convex, and then we explain how to
generalize the proof to any domain that satisfies Hypothesis 1.
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The main result

Theorem

Let Q C R? be a regular domain satisfyig Hypothesis 1, w C Q a
subdomain and T > 0. Then, there is C > 0 and g9 > 0 such that
for any y° € L%(Q) and any € € (0,50) there is a scalar function
f€ € L2((0, T) x w) such that the regular solution of:

yi — Ay* +Vp® = (f°1,,0) inQ,

ep*+V-y*=0 in Q,
yc=0 onX,
y°(0,:) = ° in Q.

satisfies y*(T,0) = 0 and such that:

171120, 7y xw) < ClIY°llz()-
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Getting an equation on the boundary.

First of all, we consider that, using the definition of L, and
Dirichlet boundary conditions:

2 / /)2 /\3
— Ol + ADxutl = —Max u+ (02) L.u VO €10,109]].
K Y K

for

5(0) 5(0)

A) = 2 (@A) — alob(0))) = T2 (1= (2 +1)(04(0))).

We remark that A =0 if o5, = 0 or if 04 = (a4 1)"1/2.
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We define,

g(x,y) = —0xu(x,y) + A(On(x))Ixxu(x, y),
05(©n(x)) > 0.

for ©p(x) the value such that 01(©x(x)) = x and such that

40> «Fr « > « E = oA
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Defining an auxiliary function: the source of an ODE

We define,

g(x,y) = =0xu(x,y) + A(On(x))dxxu(x, ),
for ©p(x) the value such that 01(©x(x)) = x and such that
03(©h(x)) > 0. Using the equation on the boundary, we get for

any horizontal segment / C :

gl cogry + 110x&ll 2 (r,ax) < € (10ny tll 2y + ILat]| ran)) -
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Figure: Convex case: estimation in the right of o(6p)
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Let Q be a domain that satisfies Hypothesis 1. We have:

@ If oi(#) = 0 or if 0}(#) = 0, then, for some §(8) > 0, x' does not change
of sign in (0 — §(0),0 + &(6)).
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Let Q be a domain that satisfies Hypothesis 1. We have:

@ If oi(#) = 0 or if 0}(#) = 0, then, for some §(8) > 0, x' does not change
of sign in (0 — §(0),0 + &(6)).

@ The number of points on 99 with tangent vectors te; or te; is finite.
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The problem
Proof of the elliptic estimate Proof of the elliptic estimate when  is strictly convex
The Carleman inequality *Proof of the elliptic estimate in a general domain
Some final conclusions

*Immediate consequences of Hypothesis 1 (1)

Let ©2 be a domain that satisfies Hypothesis 1. We have:

@ If 0{(6) = 0 or if 04(#) = O, then, for some §(f) > 0, x' does not change
of sign in (0 — 46(0),0 + 6(0)).

@ The number of points on 9Q with tangent vectors +e; or te; is finite.

@ Given any ¢ € R, the number of points in 9Q N {x = c} orin
QN {y = c} is finite.
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*Immediate consequences of Hypothesis 1 (1)

Let ©2 be a domain that satisfies Hypothesis 1. We have:

@ If 0{(6) = 0 or if 04(#) = O, then, for some §(f) > 0, x' does not change
of sign in (0 — 46(0),0 + 6(0)).
@ The number of points on 9Q with tangent vectors +e; or te; is finite.
@ Given any ¢ € R, the number of points in 9Q N {x = c} orin
QN {y = c} is finite.
@ Given any c € R, there is §(c) > 0 such that:
e We have
(e =d(c),c+d(c)l xR)yn o = U o (1),
p=c'P(6p)€0QN{x=c}
for I, = (63, 03), for some 0 < 6, < 03.
@ In the set
(([c = 6(c), c+ ()] \ {c}) x R) N R,
we do not have p = /() with (¢/)(8) = Le.
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Proof of the elliptic estimate Proof of the elliptic estimate when  is strictly convex
The Carleman inequality *Proof of the elliptic estimate in a general domain
Some final conclusions

*Immediate consequences of Hypothesis 1 (2)

@ There is some 7 > 0 such that for all points p = o'(6, ) € 00 with
(6')(8,) = %e1, there exists a neighbourhood V, = o'(/,) C 9Q
(I, = (65, 03), for some 0} < 6, < 03) such that o5(65) = o5(63) and
such that |&'| > 7.

@ There existslao > 0 small enoqgh such that, for all a € (0, a), for each
point p = o'(0) € 9Q with (¢'(0))’ = *e; there is a neighbourhood

U, C 99 which has exactly a point of tangent vector £ (, [T/ ﬁ)
and exactly another one of tangent vector + (1 /135 —/ ﬁla)

Reciprocally, if p, = o/(8%) € 99 satisfies (o) (%) = (:I: .t 1+a)
then p; € Up, for U, one of the above defined neighbourhoods. Finally,
we can suppose that for some 1 > 0, |s'| > 7 on those neighbourhoods.
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*Decomposing in segments

We define I as the subset of 99 such that p = o/(#) € T if and
only if at least one of the following properties is satisfied:

° Hdo(p) >0:V0 € (0,50([))), p+de € Q.

o (/) (0) = +es.
Moreover, let (x,y) € Q. We define:

Pu(x,y) := (x,y)—Aes such that A := min{\ € R : (x,y)—\ex € T}.
Lemma

Let Q be a domain that satisfies Hypothesis 1. Then, there is a
subset S C Q such that:

e S is a finite union of horizontal segments I; := [x/, x!] x {y'}.
(] ]P’h(S) =1T.

e P, is continuous in the relative interior of each segment |;.
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Figure: A typical example on how to construct S.
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*Estimate at the left endpoint of each segment

It is just to consider that the left endpoint of each segment /; is
either a point p = o/(0) € T with (¢/)/(0) = +ey (the case of Al
in the previous figure) or it can be joined by a vertical segment
(including degenerated segments) inside Q2 with some other
segment /; such that x/ < x/ < x/.
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*Four different type of segments depending on Py(/)

2]

Phx(l;) is the intersection of ' with one of the neighbourhoods

Up.

Px(l;) has null intersection with all the neighbourhoods U,
and V.

Py(I;) is one of the neighbourhoods V,, which has a positive
curvature.

Pp(1;) is one of the neighbourhoods V), which has a negative
curvature.
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*Situation 2

We define in the segment a function g’ as before. Of course, we
have a function A’ as before. Due to our hypothesis in P;(/), there
is 0 > 0 such that |A/(/)| > . Consequently, we just get the
estimate by calculating explicitly the solution as a linear ODE and
then applying usual estimates.
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We remark that, on 09, for all t € [0, T):

{—8xx<pi 101 =

— 152002 — Oy

1 5
1+e 8’9’902'

1 £
1+e 28 ¥1
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We remark that, on 09, for all t € [0, T):

e € (0,eq]:

~Oup] — T2 0n ¥l = 100 ¥5
~ 152005 — Oyy5 =

T 0wl
Thus, there is C > 0 and g9 > 0 such that for all t € [0, T') and

1" (8 )lz) < CllOxy @™ (2, )lIne(e):
«40r 4F > «=)r « = = Q>
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We consider the following weights:

e2MM°lloe — gAn°
at,x) =

e’
xeQ

U R A e )
a*(t) = maxa(t, x),

§°(t) = min&(t, x),
xeQ
for n° an Imanuvilov's function.
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Some final conclusions Dealing with the local term

Weights and a Carleman estimate

We consider the following weights:
e2Alloe g AP
tX) =
@r oy Y
a’(t) = maxa(t,x),  £(t) = ming(t,x),

x€Q xeN

at,x) =

for n° an Imanuvilov's function. We have that:

515)\16 //Q —25a ( )15“0 |2 < CslS)\lGZ// —25a£15‘Dla P ’2.
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ue l? (0, T; Hl(ﬂ)), we have that.

2+r>\3+r // e—25a€2+r|u| <c
Q

Let Q € C* and r € R. Then, there is C > 0 and Ao > 1 such that if T > 0, A > X, s > CT?"
s

and

(0,7T)xwp

«0O>» «F» « > « = Q>

)\1+r// =20 |2 4 2N // —2sag2bry, 2
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Proof of the elliptic estimate
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Some final conclusions

The coupling estimate

*The first steps in the Carleman estimate
*Absorbing the trace term

Dealing with the local term

*Estimating with higher derivatives (1)

Lemma (Coron,Guerrero,2009)

Let Q € C* and r € R. Then, there is C > 0 and A\g > 1 such that if T > 0, A > Xg, s > CT?™ and

ueL? (0, T; Hl(Q)), we have that:

G2y 3Hr // e_25a§2+’|u|2 < c| st // e—25a§rlvu|2+52+r>\3+r // e—25a§2+r|u|2
Q Q

(0,7T)xwp

Applying this lemma seven times and using known bounds of the weights we

get that:

15A16 // —2sa™ (£ )15 E Z 19— 21)\20 2i // 72sa 19— 21|D axy |

7
<cC 53)\4// e—25a£3|D88Xy(p5|2+Z$19—2i>\20—2i // e—25a£19—2i‘Di8Xy(p5|2
Q =

Jon Asier Barcena-Petisco
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*Estimating with higher derivatives (2)

We use a technical result proven in the annex of the paper:
Proposition

Let Q be a C* domain, let & be an open subset Q such that wy C @ and let m > 8. Then, there is g > 0,
C>0and g > 1suchthatif T >0, e € (0,e), ¢! €LQ), h € H>®/2(L), A > A¢ and
s> eCANT™ + T2M), we have:

s/\4// s +s)\2// e |Vt

<c[s* / / el P + (1+ T) (Inhllfusags, + liblasrgs)) |-
0, T)x@

for n(t) == (s&*(t))l/brl/me*sa*(t), 7i(t) = (s.ﬁ*(t))73/4675‘1*(t) and @€ the solution of:

—pf — AP +Vr® =0 inQ,

en® +V - =0 in Q,
Ot —m€n=~nh onY,
(T, ) =o' in Q.
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Dsaxycpe:

Thus, applying the previous proposition with each term of

e / / gD,y "2 + SN° / / =g DRy o
Q Q
(0, T)x@

for h:= 0,D%p° + 7'V - D3p".

<c|[s'w e D%y 1P + (1 + T) (IInhllfs2is) + bl 2
() (%)
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*Estimating with higher derivatives (3)

Thus, applying the previous proposition with each term of
D88Xy<p5:

e / / e D00y o 4 SN / / e D0, |
Q Q

<c|sty // e D% o™+ (1 T) (Inhls ey + 1o |
(0, T)x@

for h := 0,D%p° + 7'V - D®p°. Using interpolation estimates we recall that:

[mhllyr1/2s) < € (H’?SDEHHW(Q) +el|v- (77‘:05)”H5>11(Q)) ,
[7ihllp2.s/25) < C (Hﬁ@EHHW(o) +e V- (ﬁ‘Pe)”Hlef‘(Q)) :
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*Using estimates on the Cauchy problem

Lemma

Leti €N, Q € C%. Then, there is ey > 0 and C > 0 such that if
T >0,¢e€(0,6) v° =0 and f € H~12-2(Q) satisfying
Omf(t,-) =0 forall me NN [0,/ — 2], we have that the solution
ve of the Penalized Stokes problem with Dirichlet boundary
conditions satisfies v¢ € H"?/(Q) with the estimate:

[V llwiaigg) + € HIV - V¥ lpi-rai-1(q) < CllF lmi-r2i-2(q).
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*Using estimates on the Cauchy problem

Lemma

Leti €N, Q € C%. Then, there is ey > 0 and C > 0 such that if
T >0,¢e€(0,6) v° =0 and f € H~12-2(Q) satisfying
Omf(t,-) =0 forall me NN [0,/ — 2], we have that the solution
ve of the Penalized Stokes problem with Dirichlet boundary
conditions satisfies v¢ € H"?/(Q) with the estimate:

[V llwiaigg) + € HIV - V¥ lpi-rai-1(q) < CllF lmi-r2i-2(q).

In particular, for any real-valued function g(t) that decays exponentially in T,
g° is the solution of the backwards penalized Stokes system of force g’(t)p°.
Consequently, by induction, we have that:

lg@llwiai(q) + IV - (9% li-12i1(q) < Cllg”¢ llz(q).
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So, after absorbing the trace term, we have that:

7
< C z :519—21)\20—21
i=0

_2sa§19_2i|Di8ny05|2 + 54)\5
(0,T)Xwp

(0,T)x@

«0O> «Fr «=>» 12N G4

9
s15)\16 // e_zsa*(é*)15|(pe|2+ZS19—2i>\20—2i // e—2sa£19—2i|Di6Xy(ps|2
Q i=0 Q

e—2sa§4|D88Xy(pE |2
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Leaving just 0,,¢° as a local term

We consider a cut-off function x > 0 satisfying supp(x) C w and
x =1 in w. We have that:

15)\16// —2sa™ (é- )15 e +Z$19 2i 20 2i // —2sa 19— 2I|D8 © |
+ZS28 31 29-3i // 4420 —25a 28— 3I|Da © |
0, T)xw
S CSZBAZQ // X4e_25a€28|axy@6|2-

(0, T)xw

Indeed, it is just integrations by parts and usual Cauchy-Schwarz.
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We can deal with the local norm of 0y, ¢f as before.
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Dealing with the local norm of 0,,¢°

We can deal with the local norm of 0y, ] as before. As for the
term 0Oy, 5, we have to consider that:

28A29 // 4 —2sa 28|8xy§02|

(0,T)Xw

$B\ / / X e, 5 (0ot — (14 £)Puips — ByioS).

0, T)xw

In order to deal with the term of €0y, 5 that appears after the
integration by parts, we have to consider that:

5atxy‘10§ = - (58xxxy@§ +(1+ 6)3nyy<p§ + 8xxyy‘Pi) -

For the other terms we deal as before.
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Summing up

Let Q be a regular domain that satisfies our Hypothesis, let w C Q
be an open set, and let m > 8. Then, there is g > 0, C > 0 and
Ao > 1 such thatif T >0, € € (0,20), A > Ao, and

s> e“MNT™ 4 T2™), we have:

15)\16 // —2sa* 15|§0 |2 < CS34/\35 // —2sa£34|(’0 |2

(0,T)xw

for ¢ the solution of the adjoint penalized Stokes problem
presented before.
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Summing up

Let Q be a regular domain that satisfies our Hypothesis, let w C Q
be an open set, and let m > 8. Then, there is g > 0, C > 0 and
Ao > 1 such thatif T >0, € € (0,20), A > Ao, and

s> e“MNT™ 4 T2™), we have:

15)\16 // —2sa* 15|§0 |2 < CS34)\35 // —2Sa£34|gp |2
(0,T)xw

for ¢ the solution of the adjoint penalized Stokes problem
presented before. From here we can get the observability inequality
through parabolic estimates in the Cauchy problem.

Jon Asier Bércena-Petisco Null controllability of a penalized Stokes problem



Open

The problem
Proof of the elliptic estimate Summing up
The Carleman inequality Open problems
Some final conclusions

problems

The analogue problem for Q C R3.
To remove the Hypothesis, at least for € small enough.

To study if the control obtained by the Riesz representation
theorem for the penalized Stokes system converges to the
control obtained by the Riesz representation theorem for the
Stokes system.

The study of the local null controllability of the penalized
Navier-Stokes system.
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Thank you for your attention!
Is there any question?
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