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In a metric space (X, d) for a given x0 ∈ X
and A ⊂ X we denote

dist(x0,A) = inf
{
d(x0, y) : y ∈ A

}
.

We consider:

• X the space of Borel probabilities µ on Rd
with a finite p-moment (1 ≤ p < +∞ is
fixed), metrized by a Wasserstein distance;

• x0 = µ an element of X;

• A a subset of X consisting of measures which
are singular with respect to µ.
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In other words, we consider the problem

W (µ,A) = inf
{
W (µ, ν) : ν ∈ A

}
where W denotes the p-Wasserstein distance
and A is a suitable class of Borel probabil-
ities ν that are singular with respect to µ,
that is µ is concentrated on E and ν is con-
centrated on Rd \E for a suitable set E. We
will discuss several possible choices for the
admissible class A.

W (µ, ν) = min
( ∫

Rd×Rd
|x− y|pdγ : γ ∈ P (µ, ν)

)1/p

P (µ, ν) = transport plans between µ and ν.
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Problems of this kind arise in some models
of biological bilayer membranes, for which we
refer for instance to:

M.A. Peletier, M. Röger: Arch. Rational
Mech. Anal. (2009)

L. Lussardi, M.A. Peletier, M. Röger: J.
Fixed Point Theory Appl. (2014)

and references therein. Here we consider
only the mathematical issues, that appear to
be very rich, together with some numerical
simulations.
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About the terminology:

• µ is concentrated on A if µ(E) = µ(A ∩E)

for every E.

• µ and ν are singular if there exists a set A

such that µ(A) = ν(Ac) = 0; notation µ ⊥ ν.

• µ is absolutely continuous with respect to

ν if ν(E) = 0 implies µ(E) = 0; notation

µ � ν. By Radon-Nikodym theorem this is

equivalent to say that µ ∈ L1(ν).
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The first remark is that, if we consider the

entire class of all measures which are singular

with respect to µ

A = µ⊥ =
{
ν ∈ P : ν ⊥ µ

}
the optimization problem above is indeed triv-

ial, as the following proposition shows.

Proposition. For every µ ∈ P we have

W (µ, µ⊥) = inf
{
W (µ, ν) : ν ⊥ µ

}
= 0.
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Proof. This is easy when µ ∈ L1(Rd); it is
enough to take a sequence of probabilities

νn =
∑
k∈N

an,kδxk

with xk suitably chosen in a way that νn
∗
⇀ µ.

For a general µ the xk have to be taken in
Rd\N where N is the Lebesgue null set where
the singular part µs of µ is concentrated.

In the next step, we consider the class

A = µ⊥ ∩ L1 =
{
ν ⊥ µ, ν � Ld

}
where Ld is the Lebesgue measure.
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Proposition. For every µ ⊥ Ld we have
W (µ, µ⊥ ∩ L1) = 0.

Proof. Let N be a Ld-negligible set where
µ is concentrated. We can find

νn =
∑
k∈N

an,kδxk

with xk ∈ Rd \ N suitably chosen in a way
that νn

∗
⇀ µ. It is now enough to take ρn ∈

L1 such that W (νn, ρn) ≤ 1/n and we have
ρn ⊥ µ with

W (µ, ρn) ≤W (µ, νn) +W (νn, ρn)→ 0.
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The situation becomes more interesting when

µ is not singular with respect to Ld, that is

the absolutely continuous part µa of µ with

respect to the Lebesgue measure does not

vanish.

Proposition. Assume there exists δ > 0

such that the set {µa ≥ δ} contains an open

set. Then W (µ, µ⊥ ∩ L1) > 0.
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Proof. Let A be an open set contained in
{µa ≥ δ} and assume by contradiction that
there exists ρn ∈ µ⊥ ∩ L1 with ρn

∗
⇀ µ. Then

we have∫
A
ρn dx ≤

1

δ

∫
{µa≥δ}

ρnµa dx ≤
1

δ

∫
ρnµa dx = 0

which is impossible, since

δLd(A) ≤ µa(A) ≤ µ(A) ≤ lim inf
n

∫
A
ρn dx.

Corollary. If µa is (or coincides a.e. with)
a lower semicontinuous function and µa 6= 0,
then W (µ, µ⊥ ∩ L1) > 0.
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The quantity W (µ, µ⊥ ∩ L1) can be better

characterized in some cases.

Theorem. For every µ ∈ P there exists ν ∈
P such that

W (µ, µ⊥ ∩ L1) = W (µ, ν).

If S = sptµ is Lipschitz the measure ν is

concentrated on ∂S. Moreover, if µ ∈ L1 we

have that ν is unique and given by

ν = T#µ where T = id− d∂S∇d∂S
being d∂S is the distance function to ∂S.
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Proof. (sketch). Let ρn ∈ µ⊥ ∩ L1 be such

that

W (µ, µ⊥ ∩ L1) = lim
n
W (µ, ρn);

we may assume that (up to a subsequence)

ρn → ν weakly*, so that

W (µ, µ⊥ ∩ L1) = W (µ, ν).

Heuristically, in order to achieve the minimal

Wasserstein distance, every point on S has

to be transported out of S in the shortest

way. Hence ν has to be concentrated on ∂S.
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In addition, if µ ∈ L1 the transport is achieved

by a transport map T which maps a.e. point

x into the closest point of ∂S following the

direction of ∇d∂S, hence

T (x) = x− d∂S(x)∇d∂S(x).

If µ is singular no uniqueness, for instance

if µ = LdbB + δ0 any ν = 1
dH

d−1b∂B + η is

good, for every probability η on ∂B.

Here are two pictures to illustrate the behav-

ior of the optimal measure ν.
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The measure ν when µ = 1Q with Q a rectangle
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The measure ν when µ = 1Q with Q a half circle
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We now fix a nonnegative integrable function
φ with

∫
φ dx > 1 and consider the class

Aφ = µ⊥ ∩ L1
φ =

{
ρ ∈ P ∩ L1, ρ ⊥ µ, ρ ≤ φ

}
.

Theorem. For every µ ∈ P there exists a
set A with µ(A) = 0 and such that

W (µ,Aφ) = W (µ, φ1A).

The set A is unique when µ ∈ L1. In other
words the optimization problem

min
{
W (µ, ν) : ν ∈ µ⊥ ∩ L1

φ

}
has a solution of the form ν = φ1A.
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In particular, for every fixed B, the problem

min
{
W (A,B) : |A| = |B|, |A ∩B| = 0

}
has a unique solution. In general the set A
can be very irregular (no finite perimeter).

......

µ =
∑
n
n−2δxn or small disks instead of Dirac masses

Per(A) = 2
√
π
∑
n
n−1 = +∞.
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However, if µ is “good” the set A is more
regular.

Theorem. Let p = 2 and φ = 1. Assume
that µ ∈ P ∩ BV and that the set Sµ ={
µ(x) > 0

}
has a finite perimeter. Then the

set A above has a finite perimeter and

Per(A) ≤
∫
|∇µ|+ 2 Per(Sµ).

In particular, when µ = 1B dx, with B of fi-
nite perimeter, the optimal set A satisfies the
inequality

Per(A) ≤ 3 Per(B).
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An interesting question then rises: for a smooth
(finite perimeter is enough) set B let AB be
the corresponding optimal set A given by the
theorem above. Find the best constant C
such that

Per(AB)

Per(B)
≤ C.

Is the best constant achieved when B is a
ball? In that case we would have

C = 1 + 2(d−1)/d ,

in agreement with the (non-sharp) evalua-
tion C ≤ 3 of the theorem.
Below some numerical outputs for the set A.
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The set A when µ = 1Q with Q a rectangle
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The set A when µ = 1Q with Q a half-circle

21



1

The set A when µ = 1Q with Q a triangle
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The set A when µ = 1Q with Q a pacman-like set
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The set A when µ = 1Q with Q a disconnected set
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We now consider the minimum problem

min
{

Per(B)+kW (B,A) : |A∩B| = 0, |A| = |B| = 1
}

where we minimize both with respect to A

and to B. For simplicity we assume that all

the competing domains A,B are contained

in a fixed bounded set D.

Theorem. There exists an optimal pair A,B.

In the two-dimensional case d = 2, we can

take D = R2.
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Let (Bn, An) be a minimizing sequence. Since

P (Bn) are bounded and Bn ⊂ D, possibly

passing to subsequences we may assume that

Bn → B∗ strongly in L1. Analogously, we

may suppose to have 1An ⇀ θ̄ weakly* in L∞

for a suitable θ̄ with 0 ≤ θ̄ ≤ 1, and∫
B∗
θ̄ dx = lim

n

∫
Bn

1An dx = 0.

By the theorem above with µ = 1B∗ and φ =

1, the minimization problem

min
{
W (B∗, θ) :

∫
θ dx = 1, 0 ≤ θ ≤ 1,

∫
B∗
θ dx = 0

}
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admits a solution θ̄ which is the characteris-

tic function of a set A∗, that is θ̄ = 1A∗. By

the minimality of A∗ we have

W (B∗, A∗) ≤W (B∗, θ̄) = lim
n
W (Bn, An).

We may now conclude by the lower semicon-

tinuity of the perimeter with respect to the

strong L1-convergence, so that

P (B∗)+kW (B∗, A∗) ≤ lim inf
n

(
P (Bn)+kW (Bn, An)

)
,

which concludes the proof.
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Even if we expect that a result similar to

the one above holds for every dimension,

our proof uses the fact that for a connected

set its diameter is bounded by its perimeter,

which only holds in dimension two.

It would be interesting to find an alternative

proof valid for every dimension d.

Circles are stationary. Are the solutions cir-

cles when k is small? Solutions are discon-

nected when k becomes large.
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More generally, we may consider the shape
optimization problem

min
{

Per(B) + kFα(B) : B ⊂ D, |B| = 1
}

where, for α > 0

Fα(B) = min
{
Wα(A,B) : |A∩B| = 0, |A| = 1

}
.

Thanks to the theory of quasi-minimizers of
the perimeter the optimal domains B are
such that, denoting by ∂∗B the reduced bound-
ary, ∂∗B∩D is a C1,1/2 hypersurface and the
Hausdorff dimension of (∂B \ ∂∗B) ∩D is at
most d− 8.
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