Controllability of multi-d scalar conservation laws in the entropy framework and with a simple geometrical condition.

Vincent Perrollaz

Institut Denis Poisson, Université de Tours

Benasque, 20th August 2019

Outline of the talk

The simplest toy example

Controllability to trajectories

1 The simplest toy example

2 Controllability to trajectories

The case of the transport equation

Evolution :

$$\begin{cases} \partial_t y + c \partial_x y = 0, & (t, x) \in (0, T) \times (0, L) \\ y(t, 0) = 0, & t \in (0, T). \end{cases}$$

Method of characteristics ⇒

$$y(t,x) = \begin{cases} y_0(x-ct) & \text{if } x > ct, \\ 0 & \text{otherwise.} \end{cases}$$

• Conclusion : $t > \frac{L}{c}$ \Rightarrow y(t, .) = 0.

A Family of Lyapunov Functionals

• Definition (for $\nu > 0$):

$$J_{\nu}(t):=\int_0^L y^2(t,x)e^{-\nu x}dx.$$

Formally (at least) :

$$\begin{split} \dot{J}_{\nu}(t) &= \int_{0}^{L} 2y_{t}(t, x)y(t, x)e^{-\nu x} dx \\ &= \int_{0}^{L} -2cy_{x}(t, x)y(t, x)e^{-\nu x} dx \\ &= [-cy^{2}(t, x)e^{-\nu x}]_{0}^{L} - c\nu J_{\nu}(t) \\ &\leq -c\nu J_{\nu}(t). \end{split}$$

Gronwall ⇒

$$J_{\nu}(t) \leq e^{-c\nu t} J_{\nu}(0).$$

Return to the L^2 norm

Norm equivalence

$$\forall t \geq 0, \qquad e^{-\nu L} ||y(t,.)||_{L^2(0,L)}^2 \leq J_{\nu}(t) \leq ||y(t,.)||_{L^2(0,L)}^2.$$

• Inequality on L^2

$$||y(t,.)||_{L^2(0,L)}^2 \le e^{-\nu c(t-\frac{L}{c})}||y_0||_{L^2(0,L)}^2,$$

Conclusion :

$$t > \frac{L}{c}, \quad \nu \to +\infty \qquad \Rightarrow \qquad y(t,.) = 0$$

Remarks

- Can be adapted to general "transport" type equations.
- Good for robustness estimate and perturbation :

$$y_t + cy_x = \epsilon g(y),$$

$$y_t + cy_x = \epsilon y_{xx}$$
.

(Systems and source term : Gugat, P., Rosier 2018)

• In certain cases, useful for exact controllability to trajectory.

The simplest toy example

Controllability to trajectories

Short tour on controllability and entropy solutions

- Why: Robustness, interesting trajectories, sampled controls, global results...
- Results: Ancona-Marson (98), Horsin (98), Bressan-Coclite (2002), Ancona-Coclite (2005), Glass-Guerrero (2007) Glass (2007, 2014), Leautaud (2012), Perrollaz (2012), Adimurthi-Ghoshal-Gowda (2014), Andreianov-Donadello-Ghoshal-Rasafizon (2015), Corghi-Marson (2016), Andreianov-Donadello-Marson (2017), Li-Yu (2017).
- Techniques :
 - No linearization possible!
 - Boundary conditions are tricky!
 - Lax-Hopf formula.
 - Generalized characteristics.
 - Wave front tracking.
 - Vanishing viscosity.
- **Restrictions**: 1d and convex flux (or genuinely nonlinear families for systems)

Kruzkov definition

Consider $\Omega \in \mathbb{R}^d$ a domain, and $f : \mathbb{R} \to \mathbb{R}^d$ a \mathcal{C}^1 function. A function $u \in L^{\infty}((0, +\infty) \times \Omega)$ is an entropy solution of

$$\begin{cases} \partial_t u + \operatorname{div}(f(u)) = 0 \\ u(0, x) = u_0(x), \end{cases}, \quad x \in \Omega$$

when for any $k \in \mathbb{R}$ and any positive function $\phi \in \mathcal{C}^1_c(\mathbb{R} \times \Omega)$ we have

$$\int_{\mathbb{R}^{+}\times\Omega} |u(t,x) - k| \partial_{t}\phi(t,x) + \operatorname{sign}(u(t,x) - k) \langle f(u(t,x)) - f(k)| \nabla \phi(t,x) \rangle dxdt$$
$$+ \int_{\Omega} |u_{0}(x) - k| \phi(0,x) dx \geq 0$$

A "simple" geometric condition

Definition

Let I be a segment of \mathbb{R} . We say that it satisfy the replacement condition in time T > 0 if there exists a vector $w \in \mathbb{R}^d$ and a positive number c such that

$$L:=\sup_{\mathbf{x}\in\Omega}\langle\mathbf{w}|\mathbf{x}\rangle-\inf_{\mathbf{x}\in\Omega}\langle\mathbf{w}|\mathbf{x}\rangle<+\infty.$$

$$\forall u \in I, \qquad \langle f'(u)|w \rangle \geq c,$$

and $T = \frac{L}{c}$.

and its "simple" corresponding result

Theorem (Donadello, P.)

• Let $v \in L^{\infty}((0, +\infty) \times \Omega)$ be an entropy solution to

$$\partial_t u + \operatorname{div}(f(u)) = 0$$

and u_0 be a function in $L^{\infty}(\Omega)$.

- Suppose that both u_0 and v take value in a segment I such that Ω , I and f satisfy the replacement condition in time T.
- Then for any times T_1 and T_2 greater than T we have an entropy solution u of the previous equation satisfying

$$u(0,x) = u_0(x),$$
 $u(T_1,x) = v(T_2,x)$ for almost all $x \in \Omega$.

Idea of the proof

- Kruzkov formulation with boundary condition (Amar, Carillo, Wittbold 2006).
- Trace result of Vasseur for the boundary of the reference trajectory (Vasseur 2001).
- Doubling variable trick of Kruzkov with test function (Kruzkov 1970).
- Conclusion with Lyapunov functions.

Remarks

- No technical restriction on the flux (compared with the Cauchy-Problem).
- 1-d or n-d not different.
- Many reusable steps for the proof.
- Geometric condition clearly too restrictive, see controllability of Euler for further ideas?

THANK YOU FOR YOUR ATTENTION