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Problems Considered in this Talk

Assumptions and Notations (throughout this talk)

Assumptions on the input datum: � 2W 1;1
loc (R);  2W 1;1((�1; 1); R�0); � 2 R>0

De�nition nonlocal operator: W [q](t; x) := 1
�

R x+�
x ( y�x

�
)q(t; y) dy; (t; x) 2 (0; T )� R

Nonlocal conservation laws

For q0 2 L1(R) we consider the nonlocal conservation law

@tq(t; x) = �@x
�
�
�
W [q](t; x))q(t; x)

�
(t; x) 2 (0; T )� R

q(0; x) = q0(x) x 2 R

and discussfor specific cases whether and in which sense the solution converges to the
corresponding solution of the local conservation law when � ! 0.

Nonlocal delay conservation laws

Given � 2 R>0 and q0 2 C
�
[��; 0];L1(R)

�
\ L1((��; 0);L1(R)) we investigate whether

qt(t; x) + @x
�
�(W [q](t� �; x))q(t; x)

�
= 0 (t; x) 2 (0; T )� R

q(t; x) = q0(t; x) (t; x) 2 (��; 0]� R

possesses a solution and converges to the non-delayed solution for � ! 0.
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Motivation

Convergence Nonlocal – Local

Justifies the broad application of nonlocal modelling also as a reasonable approximation of
local and well-studied/well-known models.

Provides another way for defining the proper (Entropy) solutions for local conservation laws
as limits of weak solutions to nonlocal conservation laws (which are unique without any
Entropy condition).
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Convergence for Monotone Initial Datum and Proper Velocity

Nonlocal traffic flow PDE on R
Recall for � 2 R>0 the weak solution q� of the nonlocal conservation law (for traffic flow) on R

qt(t; x) = �@x
�
�
�
W [q; � ]

�
(t; x)q(t; x)

�
q(0; x) = q0(x)

W [q; � ](t; x) := 1
�

Z x+�

x
(x�y

�
)q(t; y) dy

and its local counter-part q as weak Entropy solution of

qt(t; x) = �@x (�(q(t; x))q(t; x))

q(0; x) = q0(x)

Theorem (Convergence Nonlocal – Local)

Given monotone initial datum q0 and monotone decreasing � (and assumptions on ), we obtain

lim
�!0
kq � q�kL1

loc
((0;T )�R) = 0:
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Nonlocal to Local Limit { Numerical Example Tra�c Flow
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Figure 1: qt ( t; x ) +

 
�

1 � 1
�

Z x + �

x
 ( y � x

� )q( t; y ) d y
�

q( t; x )

!

x

= 0 ; q(0 ; x ) = 1
4 + 1

2 � ( � 0 : 5 ; 0 : 5) (x )

Top: Solution q� for � 2 f 0:1; 0:01; 0:001g from left to right where the rightmost �gure represents the
analytical entropy solution of the local conservation law (right). Bottom : Solutions at time t 2 f 1; 2; 3g from
left to right.
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