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General presentation

Microswimming

Definition

Swimming is the ability of moving in a fluid with suitable body
deformation.

@ At microscale, many natural organisms are able to swim
(bacterias, spermatozoids...).

@ Try to mimic the form and motion of them : Biomimetics.

@ Medical applications : drug delivery, minimized invasive
microchirurgical operations.

@ One "non-intrusive” method : magnetized robot that deforms
itself under the application of an exterior magnetic field.
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General presentation

Low Reynolds number and time-reversibility

The Navier-Stokes equation

p(Oru+ (u.V)u)) —vAu+Vp =0, divu=0.

@ Size of robots : ~ 1um.

@ Water viscosity : ~ 1m?/s.

e Water density : ~ 1kg/m?.

o Characteristic speed : ~ 10um/s.

@ = Reynolds Number ~ 107° at this scale, very low.
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General presentation

Low Reynolds number and time-reversibility

The Navier-Stokes equation

p (0 Vu)) —vAu+Vp=0, divu=0.

Size of robots : ~ 1um.

Water viscosity : ~ 1m?/s.

°

°

e Water density : ~ 1kg/m?.

@ Characteristic speed : ~ 10um/s.
°

= Reynolds Number ~ 107 at this scale, very low.

Fluide-structure interaction given by the Stokes equation, which is
time-reversible, leading to some different phenomena than usual at
the macroscopic scale.
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General presentation

Low Reynolds number and time-reversibility (2)

Time-reversibility of the Stokes equation

BRI > D o —
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General presentation

Life at low Reynolds number

Obstructions to swimming because of the time-reversibility : the
scallop theorem (Purcell'77).

The Scallop Theorem

A self-propelled micro-swimmer with one degree of freedom cannot
move, because it only makes time-reversible movements !

Not true anymore as soon as the swimmer can do non-time
reversible movements.

N

~ 55

Figure — Non-reversible movement
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General presentation

Life at low Reynolds number (2)

The scallop theorem
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Magnetic Microswimmers

Scallop Theorem not true anymore for magnetic microswimmers
(Giraldi-Pomet'17, IEEE TAC).

@ Swimmer which is made of 2 magnetized segments, subject to
a uniform magnetic field, with elastic joint (2-link magnetic
swimmer).

@ One can move it and even control it locally around its
equilibrium states (straight positions).

Main goal of the talk

Study a 2-link and a 3-link magnetic swimmer.

Long-term goal

Study a N-link magnetic swimmer, with N “very large”
(discretization of a continuous model), pass to the limit.
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(Incomplete) state of the art

@ Dreyfus et al.’05 (Nature) : study of artificial swimmer that
possesses a head plus a magnetic flexible tail. Control of velocity
and position, numerical study.

@ Gadelha'13 (Reg. and Chao. Dyn.) : numerical study of the optimal
form of a magnetic head plus elastic tail system.

@ Gutman-Or'14 (Phys. Rev. E) : study of a two-link model. Optimal
controls to maximize displacement per cycle and average speed.

@ Alouges et al."15 (Soft Rob.) : discretization of the filament into
magnetized segments. Prescription of a direction by sinusoidal
magnetic field, numerical study.

@ Giraldi-Pomet'17 (IEEE TAC) : theoretical study fo the 2-link
swimmer. Proof of a “weak” STLC result.

@ Alouges et al."17 (IFAC) : focus on the Purcell (3-link) swimmer.
Prescription of a direction by sinusoidal magnetic field, theoretical
study (asymptotic analysis).



The 3-link swimmer
©0000000

The 3-link swimmer
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The 3-link swimmer

Parametrization

Figure — Parametrization of the 3-link microswimmer
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The 3-link swimmer

Computation of the net force (1)

Elastic forces
e Torque T¢ on S, given by TS = kase, ;
o Torque T§ on S3 given by TS = ke, ;

Steady states : (x, y,6,0,0) with (x,y,6) € R3.

Magnetic forces

@ Uniform magnetic field H(t).

@ Magpnetic torque on S; :

Tfn = M,-e,-7|| x H.

Magnetic moments M, assumed to be nonzero.
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The 3-link swimmer

Computation of the net force (2)

Hydrodynamic effects

@ Hydrodynamic coefficients &; and 7;.

@ Approximation : Resistive Force Theory (Gray-Hancock'55,
Journal of Experimental Biology).

o Force Ff’ on S; :
Fh = / fi(s)ds,
Sy
where
fi(s) = —&iu; e — mivi L€ 1.

@ Torque generated by S; at point xg :

T?,xo = /S-(X,'(S) — Xo) X f,'(S)dS.
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The 3-link swimmer

Equations of the model

@ We apply the second Newton law successively to
{51 + S, + 53}, {52 + 53} and {53} :

Fo'+F)+F} =0

T+ T, +Th, +TP+T9+TY =0

TS+ Ths +T9 +T7 + T4 =0

L + T +  TY 0
- S—_— ~~

hydrodynamic terms magnetic terms elastic terms
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The 3-link swimmer

Equations of the model (2)

We denote by Z = (x y 0 a1 az)T. System can then be
rewritten as _
M(a1,a2)R9Z =Y,

with
cosf  sinf
Ry = —sinf cosf
0 | 15
and
0
0
Y = H) (M2 sin a3 +Ms sin (a1 +a2))—H (M1+Mz cos az+Ms cos (a1 +az))

7na1+HH (M3 sin g +Ms3 sin (g +az))—H | (M2 cos avg +Ms3 cos (g +az))
—K(az)-%—HH M3 sin (g +az)—H| M3 cos (a1+az)
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The 3-link swimmer

Equations of the model (3)

@ Ry depends only on the shape parameters (aq, ).

@ Equilibrium states when there is no control : (x,y, 6,0,0) with
(x,y,0) € R3.

M is invertible, hence we obtain a control system of the form
R,QZ. = Fo(al,ag) + HJ_(t)F]_(OC]_, 042) + HH(t)Fg(al, CMQ)

Fo,F1 and F> : linear combinations of the last three columns of
M1 (X3, X4 and X5)
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The 3-link swimmer

Equations of the model (4)

Fo = 7%(&1)(4 + (az)Xs)
Fi= —MiXs3— (Mz cos a1 + M3 cos (041 + az))(X3 + X4) — M3 cos (a1 =+ az)X5
Fz = (Mz sin Q1 —|— M3 sin (a1 —|— az))(X3 —|— X4) —|— M3 sin (a1 —|— az)Xs.

@ Hj and H, are the controls.

@ 2 controls for 5 states (x,y, 0, a1, az). The controls does not
appear in the two first equations (indirect controllability).

o Affine control system with drift.

@ We have F>(0) = 0. Hence, the parallel control acts “less” that
the orthogonal control.

Can we prove a positive controllability result ? I
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The 2-link swimmer
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The 2-link swimmer

Small-time local controllability
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Small-time local controllability
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The 2-link swimmer

Small time local controllability for non-linear systems

Definition

Let (y°,u®) € R" X R™ an equilibrium of the control system y = f(y, u). This
system is small time locally controllable around the equilibrium (y®, u®) (STLC)
if for any € > 0, there exists n > 0 such that for any

(v°, ¥") € B,(y®) x By(y®), there exists a L function u : [0,¢] — R™ such
that

(1) vVt €[0,¢], |u(t) — u®| < ¢
(i) y=Ff(y,u), (y(0) =y° = (y(e) = y").

Here, we assume that we have smallness in time and in control (as
in Coron'07).

STLC is ensured for instance by the linear test (Kalman rank
condition).
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The 2-link swimmer

What happens for the 2-link swimmer?

Giraldi-Pomet'17 (IEEE TAC) : same modelization with two links.
Goal : obtain local controllability results around the equilibriums
without smallness assumptions on the control (even for small
displacements !)

@ We cannot control with only one of the controls.

@ The Kalman rank condition at the equilibrium points does not
hold. Cannot use the standard linearization method.

@ The Sussman conditions on the bad and good Lie brackets
(1987) do not hold.

= Use of the return method of Coron'92, MCSS.
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The 2-link swimmer

A remark

The control created does not lead STLC! Indeed, the control H |
can be as small as we want, but Hj in this construction is such that

This leads to the following definition.
Definition (STLC(q))

Let g > 0. The control system y = f(y, u) is STLC(q) at (Ve, ue) if
and only if, for every ¢ > 0, there exists n > 0 such that, for every
Y0, y1 in the ball centered at y. with radius 7, there exists a
solution (y(-), u(+)) : [0,€] — R™™ such that y(0) = z,

y(g) = z1, and, for almost all t in [0, €],

lu(t) — vell < g +e.
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The 2-link swimmer

A strange behaviour

Theorem (Giraldi-Lissy-Moreau-Pomet'18 (IEEE TAC))

Assume My + My £ 0. If € £ 1, My # My and My + M» # 0, then
the two-link swimmer is not STLC at O (but it is STLC(q) for
some q > 0).

Proof : “by hand”, using a contradiction argument.
In fact, we have now an optimal result.

Theorem (Moreau'19, IEEE L-CSS, Giraldi-Lissy-Moreau-Pomet'19)

Assume My # 0, My # 0, My + My # 0. Then, the two-link
swimmer is STLC(M) but not STLC(q) for g < 26|My+Ma|

My M| M1 M|

The positive result can be proved by making an adequate
translation in time of the system and using already known criterium.
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Lie Brackets

Definition

Let

X =(XL,... X") € CP(QLR"), Y = (YL,...,Y") € C®(Q,R")
The j-th component of the Lie Bracket [X, Y] is

X, YP =) (06, X7) YE = XK (0, V7).
k=1

Principal interest from control theory point of view : enables to
reach new directions. For affine control systems without drift

d
x' = Z uifi(x),
i=1

we have the Chow-Rashevskii-Hormander Theorem : we have STLC
if (and only if, in case of analytic vector fields) Lie(f1,...fy) = R".
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Conclusion

Lie brackets for x = uyfi(x) + upfa(x)
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Lie brackets for x = uyfi(x) + upfa(x)




STLC with 2 controls
00®00000000

Conclusion

Lie brackets for x = uyfi(x) + upfa(x)

x(2¢)

z(3¢)

(u1,u2) = (0,n2)

(ur,u2) = (0, —1n2)

x(4e)
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Lie brackets for x = uyfi(x) + upfa(x)

x(2¢)

z(3¢)

(u1,u2) = (0,n2)

(ur,u2) = (0, —1n2)

z(4e) =~ a+ mpe?[f1, f2)(a)

(u1,u2) = (m1,0)
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Necessary conditions of STLC with 1 controls (1)

Let us recall a well-known necessary condition for affine control for
affine control system with scalar control of the form

y' = foly) + n1fi(y). (Affine-1-Cont)

Let k € N*. We introduce Sy the span of the Lie brackets of f and
fi that contains only f; less that k times, and Sx(0) its value at
t=0.

Theorem (Sussman, 1983 (SICON))

Assume fp(0) = 0 and [f, [fo, f1]](0) & S1(0). Then (Affine-1-Cont)
is not STLC(q) for no g > 0.
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Necessary conditions of STLC with 1 controls (2)

This is exactly the first obstruction on the following sufficient
condition :

Theorem (Sussman, 1983 (SICON))

Assume fp(0) = 0, Lie(fy, f1)(0) = R" and Sy12(0) C Sak+1(0) for
any k € N. Then (Affine-1-Cont) is STLC.

Other works by Sussman, Kawski, Krastanov, Stefani,
Beauchard-Marbach'17 JDE (in fact, non-STLC in W% norm,
higher obstructions in higher Sobolev spaces).

Natural question

Find necessary conditions for STLC with 2 controls ?
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Necessary conditions of STLC with 2 controls (1)

We introduce R; the span of Lie brackets of fy, fi, f» where f;
appears only one time. R;(0) : value at 0.

Theorem
Assume that fo(0) = 0, £(0) =0 (so that (0,0, u35?) is an

equilibrium for all u3?), and [f1, [fo, A1]](0) € R1(0). Then, if
f1, [fo, f1]](0) € Span(R1(0), f1, [f2, f1]](0) and 5 € R is such that

[f1, [0, A]](0) + B[f1, [2, A]](0) € R1(0),

system is not STLC at (0,0, uy?) for u5? # 3. Notably, the system
is not STLC(q) for q < |B| around (0,0, 0).
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Necessary conditions of STLC with 2 controls (2)

Proof : based on Chen-Fliess series (Chen'57 (Annals), Fliess'78
(CRAS)) in the spirit of Sussman'83 (SICON). Choose of a good ¢,
real-valued, such that ¢(0) = 0 and ¢(x(T)) = 0 for all control.
This prevents controllability of states x7 verifying ¢(x") < 0. We
have to ensure that such states exist (it is the case if d¢(0) # 0).



STLC with 2 controls
0000000e000

Conclusion

Necessary conditions of STLC with 2 controls (3)

We can write

s =3 ' w) (5)0),

I : multi-index (i1, ... i) with k € N*, j € {1,... k}, ij € {0,1,2}.
foT u, : iterated integral

fo . U,k(Tk) vy (m)dTi ... dmy. o fifi, o fi . The
product to be understood in terms of composition of differential
operators associated to the f; = (f1,...,f") :

ka On, H(x

One has to understand how to choose ¢, isolate 6 different types of
terms in the series, find the dominant one, and compare the others.
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Back to the three-link

We have many examples of application of this result, notably the
3-link swimmer (and also the 2-link swimmer).

Theorem (Moreau'19, IEEE L-CSS, Giraldi-Lissy-Moreau-Pomet'19)

Under some assumptions on the coefficients, the three-link
swimmer is STLC at (Ogs, (0,7)) with

. 17m — 16M
—7M22 + 9Mom — 5M; M5

’y:

but not STLC at (Ogs, (q,0)) for g # ~. Notably, it is not STLC(q)
for g < |7y| around (Ogs, (0, 0)).

v

The positive result is obtained through a clever change of
unknowns and applications of positive results by Sussman.
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Going further

In the spirit of Beauchard-Marbach, we also investigated higher Lie
Brackets, in order to prove some non-STLC results in higher
Sobolev norms. Many technical difficulties appear in the treatment
of the Chen-Fliess series, preventing us to obtain similar results as in
their article. Still, we are able to obtain non STLC-results in W1
norm for the first control and L norm for the second control.
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Perspectives

o Replacing the Resistive Force Theory by the Stokes equation ?
(coupling between ODEs and PDEs)

@ More links 7 Convergence to a continuous model ?

@ Other shapes of microswimmers?
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