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PRELIMINARIES




The controlled heat equation

QcRY, T>0 wcQ
Vi— Ay =vx. InQ=Qx(0,T)
y=0 on 9 x (0, T) o
y(x,0) =y°(x) inQ

v = v(x,t) is a control function

Null controllability

System (1) is said to be null-controllable at time T if, for any yo € L2(Q).
there exists a control v € L?(w x (O, T)) such that the corresponding

solution satisfies
y(nT)=0 inQ.



The observability inequality

Consider the adjoint equation
—qr—Aq=0 inQ=Qx(0,T)
g=0 on o2 x (0,T) )
qx,T)=q"(x) InQ

Then, (1) is null-controllable if and only if there exists Cops > O such
that the following observability inequality holds

1
2
19(0)[r2(0) < Cobs (// |C]|2dxdt) , Vagre LE(Q).
wx(0,T)

In 1996, Fursikov & Imanuvilov used global Carleman estimates
which readily yield the observability inequality.



TIME-DISCRETE SETTING




Discrete framework

For any given M € N*, we set At = T/M and introduce the following
discretization for the time variable

O:to<t1<...<t/v/:7—,

with t, = nAt and n € [0, M]. We also introduce trs = (the1 +tn)/2,
forn e [O,M]
ook fu-y tuey P =(to)nerom
O=to 4 L twr tm=T  D=(t,1)nefom

Figure: Discretization of the time variable and its notation.



Time-discrete heat equation

For any time discrete control sequence v = {v*2 Fnegom—1y C L3(Q),
consider the sequence y = {y"} cjom C L2(Q) verifying

n+1l _ \,n
%—Ay’”’lzxwvnﬁ»%’ ng[[O7M71ﬂ7
Ve =0, nefom-1, @
¥° =Yo.
where y" (resp. V1+3) denotes an approximation of y (resp. v) at time
t, (resp. tn+%).

e System (3) is precisely an Implicit Euler discretization of the
heat equation.

e For fixed At and each n, this system can be regarded as a
system of controlled elliptic equations.



What about null controllability...

As in the continuous case, we can formulate the notion of
null-controllability: is it true that for any yo € L?(Q) there exists a

control sequence {V”+%}ne[o,/\471]] such that the corresponding
solution of the time-discrete heat equation satisfies

yWM=0 7



What about null controllability...

As in the continuous case, we can formulate the notion of
null-controllability: is it true that for any yo € L?(Q) there exists a

control sequence {V”+%}ne[o,/\471]] such that the corresponding
solution of the time-discrete heat equation satisfies

yWM=0 7

THEOREM. (C. ZHENG, 08)

Assume that w cC Q. For any given At > O, the time-discrete heat
equation is neither null or approximately controllable.



The observability inequality fails

e The (time-discrete) observability inequality does not hold,
except for the trivial case w = Q, this is, having an observability
inequality like

1/2

M—1
|q%\L2(Q) <C <Z At/ |qn+%|2>
n=0 w

where q = {q"*?},c[o.m) Solves the adjoint system

n—3 _ an+i
T —-aqi-0 nelLM,
_1
e = O n e [L,M],
q"+3 =qr.

is, in general, FALSE!



Relaxation of the problem and previous results

e C.Zheng (08) relaxed the null-controllability by considering the
projection of the solution over a class of low frequency Fourier
components. More precisely, consider

Ck = span {¢r associated to Ay s.t. Ay < K(AL)™"}

for any fixed r € (O, 2), some positive constant K = K(r, T, Q, w)
and where (¢, \r) are the eigenfunctions and eigenvalues of
the Dirichlet Laplacian.

Then, there exists a control v = {v’”% Fnetomy (uniformly
bounded w.r.t. Af) such that

Me, yM = 0.




Relaxation of the problem and previous results (cont.)

e Later, Ervedoza & Valein (2010) proved that any controllable
parabolic equation is also controllable after discretization in
time by an appropriate filtering of high frequencies. In fact, they
proved an observability inequality of the form

M-1

1 1
g2 |EZ(Q) <C Z At/ Q"2 7 + Co( AP |12,
n=0 w

where Cy,C, > O are uniform w.rt to Atand g > O is a fixed
constant. This inequality in turn implies that

W2y < VCa(A)2lyoliz()-

e Some other (similar) results for wave-like, KdV, and Schrodinger
equations in Ervedoza, Cheng & Zuazua '08, D. Xu 19 and
Zhang, Zheng and Zuazua '09.
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Old vs. New

The results from Cheng and Ervedoza & Valein rely (heavily) on
spectral analysis techniques. This fact allow us only to consider
linear systems and time-independent coefficients.

In Ervedoza & Valein, they assume that the system under study is
controllable at the continuous level and are devoted to estimate the
‘difference" between continuous and discrete case.

OUR APPROACH

To derive a Carleman estimate for the time-discrete parabolic
operator. This will enable us to study the controllability of more
general kind of systems and problems.



CARLEMAN ESTIMATES




A Carleman inequality in the continuous framework

A Carleman estimate is a weighted energy estimate of the form

//6279¢T9‘vq|2+// 827999(7_9)3‘6”2
Q Q
S C (// eZTOcplF‘Z_'_// 627099(7_9)36”2)
Q wx(0,T)

for the solutions to
—q: — Aq = F(x, 1), inQ
q=0 on 9 x (O, T) 4)
q(x, T)=qgr(x) inQ.

The weight e7¢ is a function composed by: a parameter = > O and

e an x-dependent function
pi) = —eM <0, K> |gllem, A>0

e a time-dependent function

(T —1) 13



A Carleman inequality in the continuous framework

Theorem. (Fursikov & Imanuvilov '96)

For A > 1sufficiently large, there exists C > O and 7o > 1depending
on ©, w and A such that

// eZTOgoTGIVq'Z_i_// 827090(7_9)3|q‘2
Q
< C <// 27’9g0|F|2 // 27’9@( 9) |q|2>
wx(0,T)

for all 7 > 70(T + T2) and all solutions g to the equation (4).

PROOF.

The proof relies on:
e A suitable change of variables.
e |dentifying some dominant terms.
e A LOT of integration by parts.

14



The change of variables

.|
Continuous case

The change of variable is

1
(T -1

z(x,t) = e™W¢Mq(x,t), where 0(t) =

The starting point is to obtain the equation satisfied by

e (0i(e ™" z) + A(e~T%%Z)) = —eTU¥F,
Z('v O) = Z('v T) =0.
Then, after a long procedure that involves integration by parts

several times in time and space, we can obtain the desired
inequality.



Our main goal is to obtain a time-discrete Carleman a la Fursikov &
Imanuvilov.

We will try to follow their strategy as close as possible. Obviously,
time-discretization introduces additional difficulties that need to be
taken into account.

Here, we will only focus on the selection of the Carleman weight
and the change of variable.
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Some useful definitions and tools

For functions u = {u"},efo,m and v = {v”*é}n[[o,w we may define

e Discrete integrals
T M T M—1 .
/ u::ZAtu” and ]£ v::ZAtv”*?.
0 n=1 0 n=0
e Time-discrete derivatives

urtt — — Vias Y b
= d D) i= ————
At and  (Bw) At

Nl

(Dtu)nJr

e Time-discrete integration by parts

]g/Q(Dtu)v =—(O v

Nl

T .
| _
)iz + (UM VT2 2 ) — /O/Q(DtV)U
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The change of variables in the discrete case

.|
Discrete case

In the discrete case, we cannot exploit the fact that the function 6
blowsupast— Oandt— T. We need to change to
1

0= mm =g With 0<i<12

With this new function, we can propose the change of variable
P B TE N SR (WY

where we recall that g = {q”+%} solves the equation

n—%i _ nti

T T —agi=Ft neM],
_1

q?@ﬂz = O’ ne [[17 MH7

9+ =qr.



The change of variables in the discrete case

Following the methodology of the continuous case, we shall look
for the equation verified by

ned _ ned 1 n+l 1 1
eT@ 2 (Dt(e—‘re 2gazn+§)+A(e—7'9 2¢Zn+2)) — _e79¢Fn+§

Lemma. (Time-discrete derivative of the weight)

Provided (T%f;z) < k, we have

T 7'2

_ 1 Tn_l Tn—l
Die™%% = rpf""2e™0 ¥ 4 Ate™ 2¢(5374 547’6) Oxr(1)




A time-discrete Carleman estimate

Theorem. (F. Boyer & V. H.-S. '19)

For A > 1 sufficiently large, there exists C > O, 70 > 1, and ¢ > O
depending on ©, w and A such that

T T
7[/ 627‘9<p7_6|vq|2+7£/ 627‘9<p(7_0)3|q|2
0JQ 0JQ
T T
< C(][/ eZTchlF‘Z_’_][/ 827'6;,9(7_0)3|q|2)
+C(AY)” (/j e’%q /] em0eq)M*z +/((e79¢vq)m%
Q

forall T > 7o(T 4 T2), and for all At > O and O < § < 1/2 satisfying

)

At
64 min{T3, TG} -



CONTROLLABILITY RESULTS



Heat equation with potential

Consider the system

yn+1 _yn 1
N _ Ayn+1 + an+1yn+1 _ Vn+§7 ne [[07/\4 _ 1ﬂ’
e =0, nelo,M—1], ®)

Theorem. ¢(At)-controllability (F. Boyer & V. H.-S. '19)
Let us consider T > 0 and At sufficiently small. Then, for any yo € L2()

and any function ¢ verifying

I 0

" e ragrs >
there exists a time-discrete control v such that

€
YK/ v < C|y0|fZ(Q):
0Jw

and the associated solution y to (5) verifies

U/M|L2(Q) < CVo(AY)Yoliz()

where the positive constant C depends only on ¢, T and ||0||co. s



Sketch of the proof

The controllability result is achieved in two steps:

o First step: controllability in H .
\X/e choose some To < T and set My = LKOJ Consider the adjoint
system
Qg
At

_1
q‘”m2 =0, n e [1,Mo],

Mo+ _
gtz =qr.

- Aq”’% + cr”q”’% =0, nefL,Mo,

Applying our Carleman estimate with F = —a”q”’% , we can prove the
relaxed observability inequality of the form

1 To 5 __% 5 3
G2 l2() < Cobs (]L/|CI| +e <A”1/4|VCIT|L2(Q>> :
0 Jw

With this, we can readily prove a controllability result in H71, i,

V"R 1) < Cre a7 ol With 7[/\\4 < Clyolf2(q)
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Sketch of the proof (Cont.)

e Second step: do nothing!
We set V"2 = Oforn € [Mo, M — 1] and consider the uncontrolled

system
yn+1 _ yn
T _ AynJrl + an+1yn+l 7 ne [[Mo,M _ 1]]’
Visa =0, neMom-1, ©
yMO+1 yl\/lo.

from which we can obtain the energy estimate
VAt |yMO+1‘H10(Q) < oy
We can iterate for indices n € [Mo + 1, M] to deduce that

M2 —&/(an)}
IV 2@ < Ce 2/ |y |L2
d(AL)
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Controllability of a semilinear heat equation

Using the previous result, we can also prove the controllability of the system

n+l _
% — AT =y, neo,M—1],

yfgé:Q ne[o,M—1],
y° = Yo.

where f € C}(R) is a globally Lipschitz function with f(0) = O.

The proof is classical and follows well-known results (for instance, C. Fabre,

J.P. Puel & E. Zuazua, '95).
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Controllability of coupled systems

n+1

i_—yn -V

A Y ey =V, ne [OM -]
)’Ml -3 yn+1 +1yn+1 +1yn+1 OM_1
NI +ay + 0z ne[o,M—1]

Y1O = Y10, yz =Y2,0,

Theorem.

Assume that for wo C w, the coefficient ax; verifies

a5 >ado >0 or —a% >do>0 Vx€Ewo, n e [L,M].
Then, there exists constants C and C, such that

M+1
\Ch |L2 +|qZ |L2(m <C<7£/ lqiP+e @ 1/5 [|VC71 +h |EZ(Q) +|Vay 2 |E?(Q)D
for the solutions to the adjoint system

n—1 n n—1 n n—%
At Aq, °+anq; °+aaq, * =0, n e [1,M],
n—% _ n+31 . . .
%—Aqg 2 4 dbqy 2+anqy 2=0, nel,M],
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SOME PERSPECTIVES



Work in progress and open problems

e Other control problems as insensitizing controls can be addressed.
e Fully discrete Carleman estimates ? Doable
e Controllability of slightly super linear case ?

e Our approach works for internal control. For boundary controllability of
a single equation: OK.

e For boundary controllability of coupled systems, we need to change
the approach: time-discrete moment method (work in progress).
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