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The semilinear damped wave equation

∂2
ttu + γ(x)∂tu = ∆u − f (x , u)

γ > 0

Ω is a smooth compact manifold of
dimension d = 2 with Dirichlet
boundary conditions.

the damping γ is in L∞(Ω), γ(x) ≥ 0

f is smooth and of degree p

|f (x , u)|+ |f ′x(x , u)| ≤ C (1 + |u|)p

|f ′u(x , u)| ≤ C (1 + |u|)p−1

f is of the sign of u:

f (x , u)u ≥ 0



Notations

∂2
ttu + γ(x)∂tu = ∆u − f (x , u)

Set X = H1
0 (Ω)× L2(Ω) and

U =

(
u
∂tu

)
A =

(
0 Id
∆ −γ(x)

)
F (U) =

(
0

−f (x , u)

)

⇒ eAt is a dissipative semigroup on X .

⇒ Since f is of degree p <∞ and Ω is of dimension d = 2,
F : X −→ X is defined and Lipschitz on the bounded sets.

We consider in X the equation

∂tU = AU + F (U) U(t = 0) = U0 ∈ X



The gradient dynamics

Set V (x , u) =
∫ u

0 f (x , ξ) dξ. The energy

E(U) =

∫
Ω

1

2
(|∇u|2 + |∂tu|2) + V (x , u) dx

is non-increasing along the trajectories since

∂tE(U(t)) = −
∫

Ω
γ(x)|∂tu|2 dx

⇒ Global existence of solutions



Motivations

The linear equation is dissipative and any solution goes to zero

‖eAtU‖X −−−−−−−−−→
t−→+∞

0 .

Do we still have stabilization of the nonlinear problem?
At which rate?

γ > 0

∂2
ttu = ∆u



Motivations

The linear equation is dissipative and any solution goes to zero

‖eAtU‖X −−−−−−−−−→
t−→+∞

0 .

Do we still have stabilization of the nonlinear problem?
At which rate?

γ > 0

∂2
ttu = ∆u − u3



Motivations

Also possible to consider convergence to less trivial dynamics by
assuming that f is only asymptotically of the sign of u

∀|u| ≥ R , f (x , u)u ≥ 0 .

Existence of global attractor with gradient structure?
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A historic result

∂2
ttu + γ(x)∂tu = ∆u − f (x , u)

Assume:

γ(x) ≥ α > 0 in Ω

f is of degree p <∞
f (x , u)u ≥ 0

γ > 0

Theorem – J.K. Hale (1985) and A. Haraux (1985)

With the above assumptions, any solution u(t) of the damped wave
equation converges to 0 in X = H1

0 (Ω)× L2(Ω). Moreover, the
convergence is uniform in bounded sets of X .



A historic result

Step 1: the trajectories are bounded.

If f (x , u)u ≥ 0 and f is of degree p, then the energy is well defined,
non-negative and bounded on bounded sets.

1

2
‖U‖2

X + minV ≤
∫

Ω

1

2
(|∇u|2 + |∂tu|2) +V (x , u) dx ≤ K (‖U‖X ) .

Since E is non-increasing, the trajectories of bounded sets are
bounded.



A historic result

Step 2: the asymptotic compactness.

The linear semigroup is stabilized:

∀t ≥ 0 , ‖eAt‖L(X ) ≤ Me−λt

Moreover, if f is of degree p, then

F :
(

u
v

)
∈ H1

0 (Ω)× L2(Ω) 7−→
(

0
−f (x , u)

)
∈ H1

0 (Ω)× L2(Ω) is

compact.

U(t) = eAtU0 +
∫ t

0 eA(t−s)F (U(s))ds

⇒ the bounded sets admits compact ω−limit sets.



A historic result

Step 3: a unique continuation property.

It is sufficient to show that the ω−limit sets consists of equilibrium
points. By Lasalle’s principle, the trajectories U(t) = (u, ∂tu) in the
ω−limit sets have constant energy. So we have

∂tE(U(t)) = −
∫

Ω
γ(x)|∂tu|2 dx = 0 .

Since γ(x) ≥ α > 0, we have ∂tu ≡ 0 and thus u is an equilibrium
point. Due to the sign assumption, we finally obtain u ≡ 0.



A historic result

Asymptotic compactness ⇔ high frequencies are not really
modified by the nonlinearity

Unique continuation ⇔ classify low-frequency solutions

Key arguments where we use γ positive:

1 ‖eAt‖L(X ) ≤ Me−λt has finite integral on [0,+∞)

2 if E(U(t)) is constant, then
∫
γ(x)|ut |2 = 0 and u(t) is constant.
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A standard extension

What happens when γ(x) may vanish?



The decay of the linear semigroup

Theorem – J. Rauch and M. Taylor (1974)
C. Bardos, G. Lebeau and J. Rauch (1992)

‖eAt‖L(X ) ≤ Me−λt

⇐⇒
Any long enough geodesic meets the support of the damping γ



The unique continuation property

If U∞(t) belongs to an ω−limit set,

∂tE(U∞(t)) = −
∫

Ω
γ(x)|∂tu∞|2 dx = 0 .

So v(t) = ∂tu∞(t) vanishes in ω the support of γ. Thus, we have

v ≡ 0 in ω × R and ∂2
ttv = ∆v − f ′u(x , u∞(x , t))v .

To conclude that v ≡ 0 everywhere,
we need to use a unique continua-
tion property.
Basically, we may extend the zone
where v ≡ 0 through convex sur-
faces.

v ≡ 0
convex surface

extension of v ≡ 0

[N. Lerner and L. Robbiano, 1985], [L. Hörmander, 1985], [Tataru, 1996]



The unique continuation property

The stabilization holds for the domain with zero or one hole



A classic result

∂2
ttu + γ(x)∂tu = ∆u − f (x , u)

Assume:

Ω is a two dimensional convex compact
domain with or without a convex hole

γ(x) ≥ α > 0 in a neighborhood of the
exterior boundary of Ω.

f (x , u)u ≥ 0 and f of degree p

Theorem

With the above assumptions, the semilinear damped wave equation is
stabilized. More precisely, there exists λ > 0 such that, for any R > 0,
there exists MR such that

‖(u0, u1)‖H1
0×L2 ≤ R

=⇒ ‖(u, ∂tu)(t)‖H1
0×L2 ≤ MRe

−λt −−−−−−−−→
t−→+∞

0 .
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Without the geometric control condition

In some cases, the geometric control condition does not hold, but very
few geodesics miss the support of the damping.

‖eAtU0‖H1×L2 ≤ Me−λt
1/3 ‖U0‖H2×H1

[N. Burq, 1993]
[N. Burq and M. Zworski, 2004]
[R.J. and C. Laurent, 2018]



The disk with two holes

∂2
ttu + γ(x)∂tu = ∆u − f (x , u)

Assume:

Ω is a convex compact domain of
dimension 2 with two convex holes

γ(x) ≥ α > 0 in a neighborhood of the
exterior boundary of Ω.

f (x , u)u ≥ 0 and f of degree p <∞

Theorem – R.J. and C. Laurent (2018)

With the above assumptions, the semilinear damped wave equation is
semi-stabilized. More precisely, ‖(u, ∂tu)(t)‖H1

0×L2 −−−−−−−−→
t−→+∞

0.

Moreover, there exists λ̃ such that, for any R and σ ∈ (0, 1], there
exists CR,σ such that

‖(u0, u1)‖H1+σ×Hσ ≤ R =⇒ ‖(u, ∂tu)(t)‖H1
0×L2 ≤ CR,σe

−σλ̃t1/3
.



The disk with two holes

Main arguments:

‖eAtU0‖H1×L2 ≤ Me−λt
1/3‖U0‖H2×H1

U(t) = eAtU0 +
∫ t

0 eA(t−s)F (U(s))ds



The disk with two holes

The basic idea to obtain the estimate is the following.

Assume f (u) = u3, for u small in H1+σ(Ω), we have

‖f (u)‖H1 ≤ δ‖u‖H1+σ with δ small .

Thus,

eσλt
1/3

U(t) = eσλt
1/3

eAtU0 + eσλt
1/3
∫ t

0
eA(t−s)F (U(s))ds

and

max
t∈[0,T ]

‖eσλt1/3
U(t)‖X

≤ C + δ max
s∈[0,T ]

‖eσλs1/3
U(s)‖X

∫ T

0
eσλ(T 1/3−s1/3)e−λ(T−s)1/3

ds .
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The disk with three holes

If there are three holes or more, with additional technical assumptions,
we still have the decay

‖eAtU0‖H1×L2 ≤ Me−λt
1/3 ‖U0‖H2×H1

But the unique continuation property of
Lerner-Robbiano-Hörmander-Tataru cannot be used:

inaccessible zone for
the unique continuation property



An analytic unique continuation property

Theorem – L. Robbiano and C. Zuily (1998) L. Hörmander (1997)

Assume ω 6= ∅ and v(t) = ∂tu(t) solves

v ≡ 0 in ω × R and ∂2
ttv = ∆v − f ′u(x , u(x , t))v .

Assume moreover that t 7→ f ′u(x , u(x , t)) is analytic then v ≡ 0
everywhere.

[J.K. Hale and G. Raugel, 2003] let us hope that if f (x , u) is analytic
in u, then a function u in the attractor should be analytic in time and
thus f ′u(x , u(x , t)) is also analytic.



An analytic unique continuation property

In the proofs of [J.K. Hale and G. Raugel, 2003], a global solution u is
split between the low-frequencies Pnu and the high-frequencies
Qnu. It is used that

‖eAtU‖X ≤ Me−λt‖U‖X =⇒ ‖eQnAQntQnU‖X ≤ Ne−µt‖QnU‖X .

In our case, we would like to obtain

‖eAtU‖X ≤ Me−λt
1/3‖U‖D(A) =⇒ ‖eQnAQntQnU‖X ≤ h(t)‖QnU‖D(A) .

=⇒ we adapt the ideas of [J.K. Hale and G. Raugel, 2003] but several
technical problems have to be overcome.

[C.J.K. Batty and Th. Duyckaerts, 2008], [A. Borichev and Y. Tomilov, 2010],

[N. Anantharaman and M. Léautaud, 2014]



The disk with three holes

∂2
ttu + γ(x)∂tu = ∆u − f (x , u)

Assume:

Ω is as opposite and the holes are not
aligned and small enough

f (x , u) is analytic in u

f (x , u)u ≥ 0 and f of degree p <∞

Theorem – R.J. and C. Laurent (2018)

With the above assumptions, the semilinear damped wave equation is
semi-stabilized. More precisely, ‖(u, ∂tu)(t)‖H1

0×L2 −−−−−−−−→
t−→+∞

0.

Moreover, there exists λ̃ such that, for any R and σ ∈ (0, 1], there
exists CR,σ such that

‖(u0, u1)‖H1+σ×Hσ ≤ R =⇒ ‖(u, ∂tu)(t)‖H1
0×L2 ≤ CR,σe

−σλ̃t1/3
.
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Additional results

Other geometries are possible

The peanut of rotation

‖eAtU0‖H1×L2 ≤ Me−λ
√
t‖U0‖H2×H1

[E. Schenck, 2011]

[H. Christianson, E. Schenck, A.

Vasy and J. Wunsch, 2014]

The torus with degenerated damping

γ(x) ∼ |x1|β

‖eAtU0‖H1×L2 ≤ C
(1+t)1+2/β ‖U0‖H2×H1

[M. Léautaud and N. Lerner, 2015]

Higher dimension
In dimension d = 3, assume that f is Sobolev-subcritical, that is of

degree p with p < 3. It should also be possible to go to f

energy-subcritical, that is of degree p with p < 5 by using Strichartz

estimates, see [B. Dehman, G. Lebeau and E. Zuazua, 2003], [R.J. and C.

Laurent, 2013]



Open problem

Global control? At least approximate global controllability?

The problem is the local controllability close to zero.



Open problem

U(t) = eAtU0 +
∫ t

0 eA(t−s)F (U(s))ds

Main open question:

How important is the integrability of the linear decay?

For example, if the linear decay is simply

‖eAtU0‖H1×L2 ≤
C

ln(2 + t)
‖U0‖H2×H1

does the asymptotic compactness hold?



Thanks

Thanks for your attention!
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