Controllability of perturbed porous medium flow

Borjan Geshkovski

8th Workshop on PDE, Optimal Design and Numerics Benasque, 23 August, 2019

Scope

Let T>0 and $\omega=(a,b)\subsetneq (-1,1)$ be non-empty.

Null-controllability problem: for "any" y_0 , find u=u(t,x) such that the solution y to

$$\begin{cases} \partial_t y - \rho^{-\sigma} \partial_x (\rho^{\sigma+1} \partial_x y) = u \mathbf{1}_\omega + \mathcal{N}(y, \partial_x y) & \text{ in } (0, T) \times (-1, 1) \\ (\rho^{\sigma+1} \partial_x y)(t, \pm 1) = 0 & \text{ in } (0, T) \\ y(0, \cdot) = y_0(\cdot) & \text{ in } (-1, 1) \end{cases}$$

satisfies $y(T, \cdot) = 0$ in (-1, 1). Here

- $\sigma > -1$.
- $\mathcal{N}(y, \partial_x y) = \rho \mathbf{F} \rho^{-\sigma} \partial_x (\rho^{\sigma+1} x \mathbf{F}),$ $\mathbf{F}(y, \partial_x y) = \frac{(\partial_x y)^2}{1 + y + x \partial_x y}.$

Motivation

For m > 1,

$$\partial_t h - \partial_z^2(h^m) = 0,$$

 $h \ge 0$ is a gas density or height of thin film.

• Nonlinear, degenerate diffusion:

$$h = 0 \implies \partial_z(h^{m-1}\partial_z h) = 0.$$

• Finite speed of propagation \Longrightarrow free boundary $\partial \{h(t) > 0\}$.

Figure: Linear (fast) versus nonlinear (slow) diffusion.

Motivation

Figure: A droplet spreading along a solid surface.

Motivation

We wish to control the solution and its interface to those of the Barenblatt self-similar solution:

$$h_B(t,z) = (t+1)^{-\frac{1}{m+1}} \left(1 - \frac{m-1}{2m(m+1)} \frac{z^2}{(t+1)^{\frac{2}{m+1}}}\right)^{\frac{1}{m-1}} \quad \text{ in } \{h_B > 0\}$$

It is more convenient to consider the problem in self-similar coordinates and pressure variable:

$$\partial_t v - v \partial_z^2 v - (\sigma + 1)((\partial_z v)^2 + z \partial_z v) - v = 0$$
 in $\{v > 0\}$

- Barenblatt is now the parabola $\rho(z) = \frac{1}{2}(1-z^2)$ in $\{\rho > 0\}$.
- Lagrangian-like change of variables (von-Mises transform, Koch '99, Seis '15) to fix the moving domain to $\operatorname{supp}(\rho) = (-1,1)$.
- C^1 -diffeomorphism for $C_t^{0,1}C_x^{0,1}$ solutions
- Controllability to Barenblatt in moving domain ←⇒ controllability to zero in fixed.

Setting

For T>0, consider the linear degenerate-parabolic equation

$$\begin{cases} \partial_t y - \rho^{-\sigma} \partial_x (\rho^{\sigma+1} \partial_x y) = f & \text{in } (0,T) \times (-1,1) \\ (\rho^{\sigma+1} \partial_x y)(t,\pm 1) = 0 & \text{in } (0,T) \\ y(0,\cdot) = y_0(\cdot) & \text{in } (-1,1). \end{cases} \tag{1}$$

• For $k \geq 0$, weighted Sobolev \mathcal{H}^k consists of all $f \in L^1_{\mathrm{loc}}(-1,1)$ s.t.

$$||f||_{\mathcal{H}^k}^2 := \sum_{j=0}^k \int_{-1}^1 \rho^{\sigma+j} (\partial_x^j f)^2 dx < \infty.$$

- Hence $\mathcal{H}^0 = L^2((-1,1), \rho^{\sigma} dx)$.
- $C^{\infty}([-1,1])$ are dense subspaces w.r.t. the above norm.
- Null-controllability works for similar problems considered by Cannarsa, Martinez, Fragnelli, Vancostenoble, . . .

The linear differential operator

Well-posedness of the linearized problem will follow from semigroup theory after analysis of the operator $\mathcal{A}=-\rho^{-\sigma}\partial_x(\rho^{\sigma+1}\partial_x)$.

Lemma

Let $k \ge 1$, $\ell \ge 0$ and $\alpha \ge \frac{\sigma + 1 + \ell - k}{2}$ with $\alpha > 0$. Then

$$\|(1-x^2)^{\alpha}\partial_x^{\ell}f\|_{C^0([-1,1])} \lesssim_{k,\alpha} \|f\|_{\mathcal{H}^{k+\ell}} \quad \text{ for all } f \in C^{\infty}([-1,1]).$$

True for $\alpha = \sigma + 1$, $\ell = 1$ and k = 1 in particular, whence any $f \in \mathcal{H}^2$ satisfies $(\rho^{\sigma+1}\partial_x y)(\pm 1) = 0$.

Proposition

The operator $\mathcal{A}:\mathcal{H}^2\to\mathcal{H}^0$ is self-adjoint, nonnegative, and has compact resolvents.

Well-posedness

In view of what precedes, $\mathcal{A}:\mathcal{H}^2\to\mathcal{H}^0$ generates an analytic semigroup on \mathcal{H}^0 , and thus

Corollary

For every $y_0 \in \mathcal{H}^0$ and $f \in L^2(0,T;\mathcal{H}^0)$, there exists a unique weak solution

$$y \in L^2(0, T; \mathcal{H}^1) \cap C^0([0, T]; \mathcal{H}^0)$$

to Problem (1). If moreover $y_0 \in \mathcal{H}^1$, the unique solution y is a strong solution and

$$y \in L^2(0,T;\mathcal{H}^2) \cap C^0([0,T];\mathcal{H}^1).$$

Controllability of linear equations

Let X,U be two Hilbert spaces, $A:\mathcal{D}(A)\to X$ generates a strongly continuous semigroup $\{e^{tA}\}_{t\geq 0}$ on X and $B\in\mathcal{L}(U,X)$. Consider

$$\begin{cases} \dot{y}(t) = Ay(t) + Bu(t) & \text{in } (0,T) \\ y(0) = y_0 \in X. \end{cases}$$

Definition

For null-controllable (A, B), we call *control cost* the quantity

$$\kappa(T) = \sup_{\|y_0\|_{X}=1} \inf_{u} \|u\|_{L^2(0,T;U)}.$$

Controllability of linear equations

Lemma (Fattorini-Russell)

Assume A self-adjoint, non-negative operator, with an ONB of eigenfunctions $\{\varphi_k\}_{k=0}^{\infty}$ and decreasing sequence of eigenvalues $\{-\lambda_k\}_{k=0}^{\infty}$ satisfying

$$\inf_{k \ge 0} (\lambda_{k+1} - \lambda_k) > 0$$
$$\lambda_k = rk^2 + O(k)$$

for some r>0 as $k\to\infty.$ Assume U separable Hilbert space and there exists $\mu>0$ such that

$$||B^*\varphi_k||_U \ge \mu$$

for all k > 0. Then (A, B) is null-controllable in any time T > 0.

Recall that we are interested in proving the null-controllability of the linearized problem

$$\begin{cases} \partial_t y - \rho^{-\sigma} \partial_x (\rho^{\sigma+1} \partial_x y) = u \mathbf{1}_{\omega} & \text{in } (0, T) \times (-1, 1) \\ (\rho^{\sigma+1} \partial_x y)(t, \pm 1) = 0 & \text{in } (0, T) \\ y(0, \cdot) = y_0(\cdot) & \text{in } (-1, 1). \end{cases}$$
 (2)

Theorem

For any $y_0 \in \mathcal{H}^0$, Problem (2) is null-controllable. That is to say, there exists $u \in L^2((0,T) \times \omega)$ such that $y \in C^0([0,T];\mathcal{H}^0)$ satisfies

$$y(T, \cdot) = 0$$
 in $(-1, 1)$.

Theorem (Angenent '90, Seis '14)

The spectrum of $\mathcal A$ consists of simple nonnegative eigenvalues $\{\lambda_k\}_{k=0}^\infty$, given by

$$\lambda_k = \frac{k^2}{2} + \frac{k}{2}(1+2\sigma)$$

for $k \geq 0$. The corresponding eigenfunctions $\{\varphi_k\}_{k=0}^{\infty}$ are of the form

$$arphi_k(x)={}_2F_1\Big(-rac{k}{2},\,\sigma+rac{k}{2}+rac{1}{2},\,rac{1}{2},\,x^2\Big)$$
 if k is even

and

$$\varphi_k(x) = {}_2F_1\Big(-\frac{k-1}{2}, \, \sigma + \frac{k}{2} + 1, \, \frac{3}{2}, \, x^2\Big)x$$
 if k is odd

for $x \in (-1, 1)$.

In particular, $\lambda_0 = 0$ with associated eigenfunction $\varphi_1(x) = 1$ since constants are in the domain of A.

Controllability in spite of the source term

Now consider

$$\begin{cases} \partial_t y - \rho^{-\sigma} \partial_x (\rho^{\sigma+1} \partial_x y) = u \mathbf{1}_\omega + f & \text{in } (0, T) \times (-1, 1) \\ (\rho^{\sigma+1} \partial_x y)(t, \pm 1) = 0 & \text{in } (0, T) \\ y(0, \cdot) = y_0(\cdot) & \text{in } (-1, 1) \end{cases}$$
(3)

for non-zero source terms f.

- To keep the controllability result from the homogeneous problem, we will need f with decay quick enough near the final time compared to the control cost in small time.
- Let $\theta_{\mathcal{F}}, \theta_0 : [0,T] \to [0,\infty)$ be two continuous, non-increasing functions s.t. $\theta_{\mathcal{F}}(T) = \theta_0(T) = 0$, constructed from the control cost.
- Consider

$$\begin{split} \mathcal{F} &= \Big\{ f \in L^2(\mathcal{H}^0) \colon \frac{f}{\theta_{\mathcal{F}}} \in L^2(\mathcal{H}^0) \Big\} \\ \mathcal{U} &= \Big\{ u \in L^2(L^2(\omega)) \colon \frac{u}{\theta_0} \in L^2(L^2(\omega)) \Big\}. \end{split}$$

The source-term method

Theorem (Liu, Takahashi, Tucsnak (COCV '13))

There exists $C_T > 0$ and a continuous linear map $\mathfrak{L}: \mathcal{H}^1 \times \mathcal{F} \to \mathcal{U}$ s.t. for any $y_0 \in \mathcal{H}^1$ and $f \in \mathcal{F}$, the solution y of (3) with control $u = \mathfrak{L}(y_0, f)$ satisfies

$$\left\| \frac{y}{\theta_0} \right\|_{C^0([0,T];\mathcal{H}^1)} + \left\| \frac{y}{\theta_0} \right\|_{L^2(0,T;\mathcal{H}^2)} + \|u\|_{\mathcal{U}} \le C_T (\|f\|_{\mathcal{F}} + \|y_0\|_{\mathcal{H}^1}).$$

Since θ_0 is continuous and $\theta_0(T) = 0$, this yields $y(T, \cdot) = 0$.

Has since been adapted by Le Balch '18, Beauchard - Marbach '18 . . .

The nonlinear problem

With only an $L^2(L^2(\omega))$ -regular control, we cannot ensure that $y\in C^{0,1}([0,T]\times[-1,1])$ so to control the denominator in

$$\mathcal{N}(y, \partial_x y) = \rho F - \rho^{-\sigma} \partial_x (\rho^{\sigma+1} x F), \qquad F(y, \partial_x y) = \frac{(\partial_x y)^2}{1 + y + x \partial_x y}.$$

What can be done?

- Let $\chi:[0,\infty)\to [0,1]$ be a smooth cut-off function, supported on [0,2) with $\chi(x)\equiv 1$ on [0,1].
- Fix $\varepsilon, \delta > 0$ with $2(\varepsilon + \delta) < 1$ and for $p, q \in \mathbb{R}$ set

$$F_{\varepsilon,\delta}(p,q) = \chi\left(\frac{p^2}{\delta^2}\right)\chi\left(\frac{q^2}{\varepsilon^2}\right)F(p,q),$$

The cut-off is inactive whenever y is small enough in $C^{0,1}([0,T]\times[-1,1]).$

The nonlinear problem

We consider:

$$\begin{cases} \partial_t y - \rho^{-\sigma} \partial_x (\rho^{\sigma+1} \partial_x y) = \rho F_{\varepsilon, \delta}(y, \partial_x y) + u \mathbf{1}_\omega & \text{in } (0, T) \times (-1, 1) \\ (\rho^{\sigma+1} \partial_x y)(t, \pm 1) = 0 & \text{in } (0, T) \\ y(0, x) = y_0(x) & \text{in } (-1, 1). \end{cases}$$

$$(4)$$

Theorem

Let $\sigma \in (-1,0)$. There exists r>0 such that for every $y_0 \in \mathcal{H}^1$ satisfying $\|y_0\|_{\mathcal{H}^1} \leq r$, there exists a control $u \in L^2(0,T;L^2(\omega))$ for which the unique solution $y \in L^2(0,T;\mathcal{H}^2) \cap C^0([0,T];\mathcal{H}^1)$ of (4) satisfies

$$y(T, \cdot) = 0.$$

Key ingredients in proof:

- $\frac{\theta_0^2}{\theta_{\mathcal{F}}}$ is continuous on [0,T]
- $\|\sqrt{\rho} \, \partial_x y\|_{C^0[-1,1]} \lesssim_{\sigma} \|y\|_{\mathcal{H}^2}$ for $\sigma \in (-1,0)$.

Perspectives

Recap: This is the most we can do with L^2 -regular controls.

- Existence of a regular control (L^{∞} at least) in order to ensure the required regularity (if we have maximal $L^p(L^q)$ regularity) of the state to remove the cut-off and control the full nonlinear problem;
- The Lipschitz regularity is also sufficient to invert the transformation and deduce a controllability result for the free boundary problem;
- Higher dimensional problem will likely require a Carleman estimate.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765579.

Thank you for your attention.

