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Scope

Let T > 0 and ω = (a, b) ⊊ (−1, 1) be non-empty.

Null-controllability problem: for "any" y0, find u = u(t, x) such that
the solution y to

∂ty − ρ−σ∂x(ρ
σ+1∂xy) = u1ω +N (y, ∂xy) in (0, T )× (−1, 1)

(ρσ+1∂xy)(t,±1) = 0 in (0, T )

y(0, ·) = y0(·) in (−1, 1)

satisfies y(T, ·) = 0 in (−1, 1). Here
σ > −1,

ρ(x) = 1
2

(
1− x2

)
,

N (y, ∂xy) = ρF − ρ−σ∂x(ρ
σ+1xF ), F (y, ∂xy) =

(∂xy)
2

1+y+x∂xy
.
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For m > 1,
∂th− ∂2

z (h
m) = 0,

h ≥ 0 is a gas density or height of thin film.
Nonlinear, degenerate diffusion:

h = 0 =⇒ ∂z(h
m−1∂zh) = 0.

Finite speed of propagation =⇒ free boundary ∂{h(t) > 0}.

Figure: Linear (fast) versus nonlinear (slow) diffusion.
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Figure: A droplet spreading along a solid surface.
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Motivation

We wish to control the solution and its interface to those of the
Barenblatt self-similar solution:

hB(t, z) = (t+1)−
1

m+1

(
1− m− 1

2m(m+ 1)

z2

(t+ 1)
2

m+1

) 1
m−1

in {hB > 0}

It is more convenient to consider the problem in self-similar coordinates
and pressure variable:

∂tv − v∂2
zv − (σ + 1)((∂zv)

2 + z∂zv)− v = 0 in {v > 0}

Barenblatt is now the parabola ρ(z) = 1
2 (1− z2) in {ρ > 0}.

Lagrangian-like change of variables (von-Mises transform, Koch ’99,
Seis ’15) to fix the moving domain to supp(ρ) = (−1, 1).
C1-diffeomorphism for C0,1

t C0,1
x solutions

Controllability to Barenblatt in moving domain ⇐⇒ controllability
to zero in fixed.
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Setting

For T > 0, consider the linear degenerate-parabolic equation
∂ty − ρ−σ∂x(ρ

σ+1∂xy) = f in (0, T )× (−1, 1)

(ρσ+1∂xy)(t,±1) = 0 in (0, T )

y(0, ·) = y0(·) in (−1, 1).

(1)

For k ≥ 0, weighted Sobolev Hk consists of all f ∈ L1
loc(−1, 1) s.t.

∥f∥2Hk :=
k∑

j=0

∫ 1

−1

ρσ+j(∂j
xf)

2dx < ∞.

Hence H0 = L2((−1, 1), ρσdx).
C∞([−1, 1]) are dense subspaces w.r.t. the above norm.
Null-controllability works for similar problems considered by
Cannarsa, Martinez, Fragnelli, Vancostenoble, . . .
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The linear differential operator

Well-posedness of the linearized problem will follow from semigroup
theory after analysis of the operator A = −ρ−σ∂x(ρ

σ+1∂x).

Lemma

Let k ≥ 1, ℓ ≥ 0 and α ≥ σ+1+ℓ−k
2 with α > 0. Then

∥(1− x2)α∂ℓ
xf∥C0([−1,1]) ≲k,α ∥f∥Hk+ℓ for all f ∈ C∞([−1, 1]).

True for α = σ + 1, ℓ = 1 and k = 1 in particular, whence any f ∈ H2

satisfies (ρσ+1∂xy)(±1) = 0.

Proposition

The operator A : H2 → H0 is self-adjoint, nonnegative, and has compact
resolvents.
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Well-posedness

In view of what precedes, A : H2 → H0 generates an analytic semigroup
on H0, and thus

Corollary

For every y0 ∈ H0 and f ∈ L2(0, T ;H0), there exists a unique weak
solution

y ∈ L2(0, T ;H1) ∩ C0([0, T ];H0)

to Problem (1). If moreover y0 ∈ H1, the unique solution y is a strong
solution and

y ∈ L2(0, T ;H2) ∩ C0([0, T ];H1).
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Controllability of linear equations

Let X,U be two Hilbert spaces, A : D(A) → X generates a strongly
continuous semigroup {etA}t≥0 on X and B ∈ L(U,X). Consider{

ẏ(t) = Ay(t) +Bu(t) in (0, T )

y(0) = y0 ∈ X.

Definition

For null-controllable (A,B), we call control cost the quantity

κ(T ) = sup
∥y0∥X=1

inf
u

∥u∥L2(0,T ;U).
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Controllability of linear equations

Lemma (Fattorini-Russell)

Assume A self-adjoint, non-negative operator, with an ONB of
eigenfunctions {φk}∞k=0 and decreasing sequence of eigenvalues
{−λk}∞k=0 satisfying

inf
k≥0

(λk+1 − λk) > 0

λk = rk2 +O(k)

for some r > 0 as k → ∞. Assume U separable Hilbert space and there
exists µ > 0 such that

∥B∗φk∥U ≥ µ

for all k ≥ 0. Then (A,B) is null-controllable in any time T > 0.
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Recall that we are interested in proving the null-controllability of the
linearized problem

∂ty − ρ−σ∂x(ρ
σ+1∂xy) = u1ω in (0, T )× (−1, 1)

(ρσ+1∂xy)(t,±1) = 0 in (0, T )

y(0, ·) = y0(·) in (−1, 1).

(2)

Theorem

For any y0 ∈ H0, Problem (2) is null-controllable. That is to say, there
exists u ∈ L2((0, T )× ω) such that y ∈ C0([0, T ];H0) satisfies

y(T, ·) = 0 in (−1, 1).
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Theorem (Angenent ’90, Seis ’14)

The spectrum of A consists of simple nonnegative eigenvalues {λk}∞k=0,
given by

λk =
k2

2
+

k

2
(1 + 2σ)

for k ≥ 0. The corresponding eigenfunctions {φk}∞k=0 are of the form

φk(x) = 2F1

(
− k

2
, σ +

k

2
+

1

2
,
1

2
, x2

)
if k is even

and

φk(x) = 2F1

(
− k − 1

2
, σ +

k

2
+ 1,

3

2
, x2

)
x if k is odd

for x ∈ (−1, 1).
In particular, λ0 = 0 with associated eigenfunction φ1(x) = 1 since
constants are in the domain of A.
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Controllability in spite of the source term

Now consider
∂ty − ρ−σ∂x(ρ

σ+1∂xy) = u1ω + f in (0, T )× (−1, 1)

(ρσ+1∂xy)(t,±1) = 0 in (0, T )

y(0, ·) = y0(·) in (−1, 1)

(3)

for non-zero source terms f .
To keep the controllability result from the homogeneous problem, we
will need f with decay quick enough near the final time compared to
the control cost in small time.
Let θF , θ0 : [0, T ] → [0,∞) be two continuous, non-increasing
functions s.t. θF (T ) = θ0(T ) = 0, constructed from the control
cost.
Consider

F =
{
f ∈ L2(H0) :

f

θF
∈ L2(H0)

}
U =

{
u ∈ L2(L2(ω)) :

u

θ0
∈ L2(L2(ω))

}
.
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The source-term method

Theorem (Liu, Takahashi, Tucsnak (COCV ’13))

There exists CT > 0 and a continuous linear map L : H1 ×F → U s.t.
for any y0 ∈ H1 and f ∈ F , the solution y of (3) with control
u = L(y0, f) satisfies∥∥∥∥ y

θ0

∥∥∥∥
C0([0,T ];H1)

+

∥∥∥∥ y

θ0

∥∥∥∥
L2(0,T ;H2)

+ ∥u∥U ≤ CT

(
∥f∥F + ∥y0∥H1

)
.

Since θ0 is continuous and θ0(T ) = 0, this yields y(T, ·) = 0.

Has since been adapted by Le Balch ’18, Beauchard - Marbach ’18 . . .
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The nonlinear problem

With only an L2(L2(ω))-regular control, we cannot ensure that
y ∈ C0,1([0, T ]× [−1, 1]) so to control the denominator in

N (y, ∂xy) = ρF − ρ−σ∂x(ρ
σ+1xF ), F (y, ∂xy) =

(∂xy)
2

1 + y + x∂xy
.

What can be done?
Let χ : [0,∞) → [0, 1] be a smooth cut-off function, supported on
[0, 2) with χ(x) ≡ 1 on [0, 1].
Fix ε, δ > 0 with 2(ε+ δ) < 1 and for p, q ∈ R set

Fε,δ(p, q) = χ

(
p2

δ2

)
χ

(
q2

ε2

)
F (p, q),

The cut-off is inactive whenever y is small enough in
C0,1([0, T ]× [−1, 1]).
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The nonlinear problem

We consider:
∂ty − ρ−σ∂x(ρ

σ+1∂xy) = ρFε,δ(y, ∂xy) + u1ω in (0, T )× (−1, 1)

(ρσ+1∂xy)(t,±1) = 0 in (0, T )

y(0, x) = y0(x) in (−1, 1).

(4)

Theorem

Let σ ∈ (−1, 0). There exists r > 0 such that for every y0 ∈ H1 satisfying
∥y0∥H1 ≤ r, there exists a control u ∈ L2(0, T ;L2(ω)) for which the
unique solution y ∈ L2(0, T ;H2) ∩ C0([0, T ];H1) of (4) satisfies

y(T, ·) = 0.

Key ingredients in proof:
θ2
0

θF
is continuous on [0, T ]

∥√ρ ∂xy∥C0[−1,1] ≲σ ∥y∥H2 for σ ∈ (−1, 0).
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Perspectives

Recap: This is the most we can do with L2-regular controls.

Existence of a regular control (L∞ at least) in order to ensure the
required regularity (if we have maximal Lp(Lq) regularity) of the
state to remove the cut-off and control the full nonlinear problem;
The Lipschitz regularity is also sufficient to invert the transformation
and deduce a controllability result for the free boundary problem;
Higher dimensional problem will likely require a Carleman estimate.
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Thank you for your attention.
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