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Problem Description

Motivation : Blood flow in large arteries. Viscous fluid interacts with a
thin elastic structure located on one part of the fluid domain.
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Figure: Reference and deformed configuration of the domain

e The fluid domain depends on the structure displacement. We have
a free boundary value problem.



Problem Description

e The reference configuration:

Q= {(21,22,23) €ER? |z €(0,L),\/22+ 22 < 1}

I's is the lateral boundary, which is deformable. I';, and Ig,; are
inflow and outflow boundaries respectively.

e Current configuration : Let 7(2?, -) displacement of the shell from
the reference configuration I's. Displacement is only in the radial
direction. Thus 7(1&,21,0) =n(t,z1,0)e (6).

Qn(t) = {(Zl,va) € R3 ‘ 71 € (Oa L)’ \% x? +y2 <1 +77(t7)} ’

o) == {(21,X7Y) €ER¥ |z €(0,L),\/x2+y2=1 +n(t,-)}'



Governing equations

Fluid equation : The fluid is Newtonian, viscous and incompressible.
The fluid velocity u and pressure p satisfy

pf(Oru+u-Vu)—dive(u, p) =0, divu=0 in(0,T)xQyw,

where o(u,p) = (Vu+Vu)" — pl.

Boundary conditions :

o(u,p)n=0o0on [ Ul oy

Structure equation : 7 satisfies viscoelastic cylindrical nonlinear
Koiter shell equation :

Oeen) + Lomemn + DI — 20 = H(u, p,n) on T,

P
n= a*Z —0on 9 U oye.



Interface conditions

Coupling between the fluid and the structure is expressed through the
kinematic and dynamic lateral boundary conditions:

e Continuity of the velocity (the no-slip condition) at the interface I',,
u=0me on Ty
e Balance of the contact forces at the interface
H(u, p,n) = —J(o(u, p)N)lr, - €,

n is the unit normal to I,.

Goal : To study existence and uniqueness of strong solutions in L2
framework.



State of the art

e Strong Solution and 2D/1D model :

e Structure equation : 0uN + QO0xext — BOxN — Y0uxn) = H.
e fluid boundary conditions at the inlet and outlet.

e Local in time existence : Lequeurre (11 and 13), Casanova (18),
Grandmont, Hilariet and Lequeurre (18), Badra and Takahashi (19),
Djebour and Takahashi (19),...

e ~ =0 and periodic boundary condition at the inlet/outlet.
e v >0, Dirichlet / pressure boundary conditions.

e Global in time existence : Grandmont and Hilariet (2016) , v > 0,
a > 0 and periodic boundary conditions.

Our result : Local in time existence with v > 0, « > 0 and Neumann
boundary condition at the inlet/outlet.
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Monolithic approach:

Rewrite the system in the fixed domain : Lagrangian or Geometric
change of variables.

System in fixed domain

Z'(t) = Apsz(t) + N(z), z(0) = z.
Linearized FSI system in a suitable space X

Z'(t) = Apsz(t) + f(t), 2(0) = z.

Regularity of linear system.

Fixed point argument. (local in time or global in time for small
initial data)



Linearized problem in 2D /1D setting

Q=(0,L) x(0,1), s =(0,L) x {1}, I';, = {0} x (0,1) and
Fowe = {L} x (0,1)
Owu— Au+Vp=1f,divu =0, in Q,
u = 0mer on [,
o(u,p)n=0 on Tin U oy,
Ot + Owox) — Opo) = plr, +h in T

o The linear fluid-structure operator generates an analytic semigroup.

e The fluid operator (with homogeneous BC) and the structure
operator generates analytic semigroup.

e The coupling can be seen as compact perturbation.



Remove pressure from the fluid and structure equation.

Use Leray projector to remove the pressure from fluid equation.
0:Pu = ArPu+ Bo:n.

The pressure can be written as

0
Ap =0, a—’; =—0un+Au-nonTls, p=c(u)n-non oy

Thus p = No(Own) + Ni(u).
The structure equation becomes:

(I + ,YSNO)attT] —As = stNl(U)-

The operator (I + vsNp) is known as “added mass” operator and is
invertible in L2(I).



The fluid-structure operator

The system can be written as

d Pu Pu
|l m= Afrs | m1 | + source term .
2 2
/ Ar 0 B
Afps = / 0 0o I

(I +vsNo)"t ) \Ny(u) —A2 A

X = [2(Q) x H?([5) x L2(T)
D(Afps) ~ H3/2He0 x HY(Ts) x H3(T)

Loss of regularity for fluid due to mixed boundary condition and the
angle of Dirichlet-Neumann junction is 7 /2.

Study the weak form of Ny(u) and to show it is a compact operator.

(U7771a772) € L2(07 TvD(AFS)) N H1(07 T; X)



Outline

© Main results



Main result

Theorem (DM, J.-P. Raymond, A. Roy)
Let n(0) = 0, (up, 9:n(0)) € HY(Q) x HY(w) with compatibility
conditions. Then there exists a T > 0, depending only on the initial data
such that the system admits a strong solution
u € L2(0, T; H3/2T0(Q,))) N HX(0, T; L2(Qy()) N C([0, TT; H ().

p € L2(0, T; HY/?1(Q,(,)), div o(u, p) € L*(Qr),

n € L2(0, T; H*(w)) N H*(0, T; L*(w)),
1+n(t,-)>0, ,te[0,T]

for some gg € (0,1/2).



LP — L9 regularity

e We look for solutions of fluid and structure in LP(0, T; L9).

e The idea is the same : LP — L9 regularity of fluid and structure with
compactness of the fluid-structure coupling.

e [P — [9 regularity is no longer characterised by analyticity of the
linear semigroup. We need to show R-sectoriality of the resolvent
operator.

Theorem (DM, T. Takahashi )

The reference domain is smooth. Let us assume that + + % < % For
suitable initial data with compatibility conditions, we have local in time
existence of strong solutions :

u € LP(0, T; W29) n WhP(0, T; L)

n € LP(0, T; WH9) n W2P(0, T; L9).
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Future direction of work

In the 3D case, can we remove the viscosity of the structure.
Wave or damped wave.
Global existence in 2D, without the damping term.

Other fluid models : Compressible Navier-Stokes-Fourier.



Thank you very much.
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