
Control of quantum states by quasi-adiabatic

motions of walls

Romain JOLY
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The ideal model

In 2016, D. Turaev proposes a smart way to permute eigenstates on
the segment.

Consider the operators Hα,a defined by

Hα,au = −∂2xxu on (0, a) ∪ (a, 1).

on
{u ∈ H2((0, a) ∪ (a, 1)) such that u(0) = u(1) = 0,

u(a−) = u(a+) and αu(t, a) + (1− α)(u′(a+)− u′(a−)) = 0}

Could be seen as

Hα,au = −∂2xxu +
α

1− α
δx=a



An adiabatic theorem

Apply adiabatic theory to i∂tu = −∂2xxu + α(t)
1−α(t)δx=a(t) ?

Theorem – Bornemann (1998)

Let H(t) be a family of positive self-adjoint operator on X with same
domain such that H(t) : D(H1/2(t))→ D(H−1/2(t)) is of class C2.
Let t ∈ [0, 1] 7→ λ(t) be a continuous curve of simple isolated
eigenvalue of H(t) with an associated family of orthogonal projections
P ∈ C1([0, 1],L(X ))
For any initial data u0 ∈ X 1/2 with ‖u0‖X = 1 and for any sequence
ε→ 0, the solutions uε ∈ C0([0, 1],X 1/2) ∩ C1([0, 1],X−1/2) of

i∂tuε(t) = H(εt)uε(t) uε(0) = u0

satisfy after a time T = 1/ε

〈P(1)uε(1/ε)|uε(1/ε)〉X −−−−−−→
ε−→0

〈P(0)uε(0)|uε(0)〉X



Permutation of quantum states

Consider a potential wall

V (x , t) = I (t) ρη(t)(x − a(t)),

with ρη = η ρ(η · ) being an approximation of the Dirac distribution,
and the Schrödinger equation{

i∂tu(t, x) = −∂2xxu(t, x) + V (t, x)u(t, x) x ∈ (0, 1), t ∈ (0,T ],
u(t, 0) = u(t, 1) = 0, t ∈ [0,T ]

generating a unitary propagator Γt
s in L2((0, 1),C).

Theorem – A. Duca, R.J. & Dmitry Turaev (2019)

Let σ : N→ N be any permutation realizable by the ideal model of
Dmitry Turaev and let N ∈ N. Then there exists paths η(t), a(t) and
I (t) such that for all k ≤ N, there exists αk ∈ C with |αk | = 1 such
that ∥∥ ΓT

0 sin(kπx) − αk sin(σ(k)πx)
∥∥
L2
≤ ε .



Approximate controllability

Consider several potenial walls

V (t, x) =
J∑

j=1

Ij(t)ρηj (t)(x − aj(t))

and the Schrödinger equation{
i∂tu(t, x) = −∂2xxu(t, x) + V (t, x)u(t, x) x ∈ (0, 1), t ∈ (0,T ],
u(t, 0) = u(t, 1) = 0, t ∈ [0,T ]

generating a unitary propagator Γt
s in L2((0, 1),C).

Theorem – A. Duca, R.J. & Dmitry Turaev (2019)

Let ε > 0 and let ui and uf in L2((0, 1),C) with ‖ui‖L2 = ‖uf‖L2 .
There exist J ∈ N, T > 0 and smooth functions
{ηj}j≤J , {Ij}j≤J ⊂ C∞([0,T ],R+) and {aj}j≤J ⊂ C∞([0,T ], (0, 1))
such that

‖ΓT
0 ui − uf‖L2 ≤ ε .


