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Motivation

@ The Korteweg-de Vries (KdV) equation:

Oy + 0py + oy + yOyy = 0,

Figure: Solitary-type waves.



Motivation

@ In last years, a lot of works have studied controllability properties for
the Korteweg-de Vries equation.
The control of systems of partial differential equations is interesting
because it appears in many physical models and there are very
challenging problems.

@ Question:

Can you control one system if you have N coupled PDE, what is
the minimum number of controls?



Previous Works

The control of the KdV equation in a bounded domain has been studied
for different authors:

e (Rosier, 1997)

e (Coron & Crépeau, 2004)

o (Cerpa, 2014).

In last years some authors have proposed models using the KdV equations
on a finite star shaped network. For example in (Ammari & Crépeau,
2017) the exact controllability results are proven for N+1 controls.
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Figure: Star-Shaped Network



Korteweg-de Vries on a Star-Shaped Network

The system is the following:

at’U,j + 8Iuj + uj&,;uj + aguj =0
u] (t’ 0) = uk (ta 0)7

Z] 1831”(1?,0) = - %(ul(tao>)2 +g(t)7

Where o > N/2.

c (O,Zj)ﬂf > 0,
t>0,5,k=1,---,N,
t>0,7j=1,---N
t>0,j=1,---,N
t>0,7=1,-- 7]\7

€ (0’lj)7j—17



Previous Result
(Ammari & Crépeau, 2017). The Korteweg-de Vries equation on a finite
star-shaped network is exactly controllable.

Goal
We want to show the controllability without control g at the central node
for the system of IV Korteweg-de Vries equations.




Problem

For the system of N Korteweg-de Vries equations:

( 6tu]' + axuj' + ujaxu]' + ag’uj =0, vz € (0, lj),Vt >0,
Uj(t,O):uk(t,O), Vt>0,j,k:1’---7]\77
SV 02u;(t,0) = —aur (£,0) — ¥ (u(,0)) Vi >0,j=1,---N,
uj(t,1j) =0 Vt>0,j=1,---,N,
Opu;(t,15) = 9;(t), Vt>0,j=1,---,N,
u; (0, 2) = uj(z), Vo € (0,1;),j=1,--,N.

Where a > N/2.



We define
N
HL2 (0,1), C3([0,T]) = ] ¢5 ([0, 1)),

H;(0,1;) = {v e H*(0,l;), (da:) v(l;) = 0,1 <i < s},

N

H(T) = {u = (u1,--- ,un) € [ B0, 15), u;(0) = ur(0), V4, k = 1,

j=1
and the space

B := C([0,T), L*(T)) N L*(0, T; HL(T)).

10

N},
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Controllability of the linear system
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Observability Inequality

Proposition [H. Brezis. Analyse fonctionnelle. Théorie et applications]

Let E, F be two Banach spaces and A: F — F a closed operator with
D(A) dense in E. Then, we have:
e A(E) = F if and only if there exists a constant C' > 0 such that:

[vllp< C ] A*(v) || 5=
for every v € D(A*).
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Theorem 1. [E. Cerpa, E. Crépeau, C. Moreno.] IMA J. of Math. Control and Inf.

Let (I;)j=1..n € (0,+00)" such that L = _77’1};0/le]' is sufficiently small. Then
3=1,.,

exist a, C' > 0 such that for a < T, and ¢ € L?(T) we have:

N

le(T, 32y < CD 1005t 1) I320.7)- (1)

j=1

For the backward adjoint problem:

(Bepj + Oup; + ;) (t,2) =0, Yz e (0,1;),Vt>0

©;(t,0) = ¢ (t,0), V¢>0,5,k=1,--N
SN 020i(t,0) = (o — N)gy(t,0), Vt>0,j=1,---N
p;(tl;) = VtE>0,5=1,.N
&n@j(t, l) = 0, VE>0,j=1,.N

wj(T,x)zwf(m), VZ’E(O,lj),j:].,-'-N.
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Proof steps.
Multiplying the linear adjoint system by ¢;¢; and integrating by parts in
[s,T] % [0, 1;].

Q g¢i(t,x)=t, s=0,

Q g;(t,z) =1,
0 yt.a) — Bl
For L = max [; and [ = min/; and the Poincaire inequality we deduce:
N
cp(T,x)H%g(T)dx < TZHa:cSDj(ta l)”%?(o,T)a
j=1

where -
2L LT T(1+ 357)(2a —

3 l) (200 — )Jrzjl

M= T2 Yo
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We want to study for C' = L /7 the sign of discriminant given by

).

A_(l_Li_ 200 — N o 2(2a— N) (2L3
i (2a=N)+ 0Lk (20 = N) + 3L, & 37
The discriminant is positive if and only if:
L3 20 — N 2 20 — N L3
(- s 1) ey 1)
P Ga-N+EL | Ca-N X g

this is true for L sufficiently small. Therefore, for a < T' < b we have the
controllability of the system.



Controllability Nonlinear System

We also study the local exact controllability for the nonlinear system:

(atu]' + @Euj + Ujaxuj' + 8;E°’uj)(t, .T) =0, Vx € (0, lj),Vt > 0,
uj(t,O):uk(t,O), vt >0,5,k=1,---N
S 02u(t,0) = —ou (£,0) — F(ur(£,0))%, VE>0,j=1,---N
ut,1;) =0, Vt>0,j=1,---N
8xu(t, l]) = gj(t), Vi >0,7=1,..N
J

u;(0,z) = ud(x), Vz € (0,0;),5=1,---N.
(3)
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Theorem 2. [E. Cerpa, E. Crépeau, C. Moreno.|] IMA J. of Math. Control
and Inf. Accepted.

Let (1;)j=1,...n € (0,400)" and a > N/2. There exist Lo, Tinin > 0 such
that if

L= max l; <Ly and T > Tyin, (4)

7j=1,..,N

then the nonlinear control system (3) is locally exactly controllable. This
means that there exists ¢ > 0 such that for any states u € L?(T") and
u? € LA(T) with [|[u®|l2(ry <& and  [Ju”[|2(r) < € there exists some
controls g = (g1, - - ,gN) 6 L?(0,T)N such that the solution
u=(ug, - ,uyn) € B of (3) satisfies

u (T, =ud, w(T,)=ud, -, un(T, ) = uk.
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Proof

Let u® € IL?(T) such that for ¢ > 0 sufficiently small, ||u°|] < ¢ and
|[uT|| < €, for the Theorem 1 there exists a unique solution u. We can
decompose this solution into u' + u? + u3, where u! is solutions of

(8tu31~ + amu} + 6271})(75,1‘) =0, Vxe(0,l;),Vt>0,
uj(t,0) = wu(t, 0), Vt>0,5,k=1,---N
S 02uk(t,0) = —aul(t,0), Vt>0,j=1,--N
uj(t,1;) = 0, Vt>0,j=1,---N
dpuj(t,1;) =0, Vt>0,j=1,---N
u}(O,a:):u?(x), Vo € (0,1;),j=1,---,N.
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u? is solution of

(Bpu? + Dpul + 2u?)(t, ) = —u;0,uy,

u?(tﬂ 0) = ui(tﬂ 0),
SN 023 (t,0) = —aud(t,0) — B (u (1.0

and u? is solution of system

Va € (O,Zj)7Vt>07
VEs 0,5, k=1, N
VE>0,j=1,---N
VE>0,j=1,.N
VE>0,j=1,---N
Ve € (0,0;),j=1,---N,
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(Ol + 0pud + Bud)(t,2) = 0, Yz € (0,15),Vt > 0,
A
S B (E,0) = —aud(,0), ¥t >0,5=1N
uj(t, 1) =0, Vt>0,j=1,.N
Oxi (t, 1) = g;(t), VE>0,j=1,---N
uj(0,2) =0, Vo€ (0,1;), =1, N.

j
Where g = (g1,,9n5) € L*(0,T)" is a control such that
u3(T, ) = ol —u}(T,) — (T, -).
We consider the map:
M:uecB—u' +u?+u’cB.

We want to find a fixed point u € B of the operator II.
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Let R > 0 we define
B(0,R) = {u € L*(0,T,H'(T)) : ull 207,11 (1) < R}
From previous computation we get
T (w)llz < CilluollL2(ry + Collu(T) 2o,y + Callull 20,2 (1)),

with R and e small enough so that (C; + C2)e + C3R? < R, we have that
II(B(0,R)) C B(0, R). Furthermore, Yu,v € B(0, R):

| TL(u) — H(v) [|B< 2C4 R || w — v || 20,75 (1))

and then for R, ¢ small enough, C4R € (0, 1), thus, we obtain that IT is a
contraction in B(0, R) C B, which ends the proof of Theorem 2.
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Other control poblems for system

We study the following Hirota-Sutsuma system, with 7" > 0 and
Q@ =(0,T) x (0,L):

Ut — iuxxx = 3uug, — 6vv, + wa’ (t’ I‘) < Q7
v + %szm = —3vvy, (t,7) € Q, (5)
wy + %wxzx = —3uwg (t,$) < Q

with the initial and boundary condictions:

u(t,0) =0, u(t,L) = 0, uz(t,0) = hi(t), te(0,7),
v(t,0) =0, v(t,L) =0, vy (t, L) = ha(t), te(0,7), (6)
w(t,0) =0, w(t,L) =0, wy(t, L) = hs(t), te€ (0,7

(0,2) =
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Problem 1.

Given T > 0, (ug, vo, wo) € (L2(0,L))? and (u', v, w!) € (L?(0,L))3
does there exist h; for i = 1,2,3 in certain spaces such that the
corresponding solution (u,v,w) of (5) - (6) satisfies:

w(T, z) = ut(z), v(T,z) =o' (z), w(T, z)=w(x)?



Finally, we study the Kuramoto - Sivashinsky (KS) system with T' > 0, a
bounded domain Q of R and w a nonempty open subset Q. In (0,7) x Q
the system is described by the following equation:

Ut + Ugprrx + a(x)uwmv + b(x)u:vw = Ug + g1 (:B)U + fl (I)UI + 92(x)u + lwhv
Ut + Vpzzx + C(‘r)’ULJ,L + d('r)vau, = Uy + 93(‘1:)“ =+ fg(l')vw + g4($)’U.

(7)
with the initial and boundary condictions:
u(t,0) = u,(¢,0) =0, w(t,L) =u,(t,L)=0, te(0,T),
v(t,0) = v,(¢,0) =0, o(t, L) =v.(t, L) =0, te€(0,T), (8)
uw(0,2) =up(x), v(0,2) =wvo(x). x €,

24
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Problem 2. Let T' > 0, (ug, vo) € (L?(0,L))? and (ul,v') € (L?(0, L))?
does there exist h in certain spaces such that the corresponding solution
(u,v) of (7) - (8) satisfies: u(T,z) =v(T,x) = (0,0)?
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