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PROBLEM SETTING

Let Q ¢ R? be a connected, bounded and open domain.
The eigenvalue problem for Laplace Operator is

{ —Au=\u in Q,

u=20 on 0. (1.1)

The eigenvalues of the self adjoint, positive operator —A in
Q are denoted by

O< M <A< Apeee

The first eigenvalue has variational form. For any open
D c Q, the first eigenvalue \¢(D) given by

I Vu(x)Pdx

n ———s-

ueHy(D) [plu(x)[2dx -
u#0

M(D) =
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* Given a bounded open set Q  R?, a partition of Q is a
family of disjoint, open and connected subsets {€;}7 ,
Laplace Operator SUCh th at

QUDBU---UQCQ,  QNnQ=0 fori#j
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PROBLEM A

* Given a bounded open set Q  R?, a partition of Q is a
family of disjoint, open and connected subsets {€;}7 ,
such that

QUDBU---UQCQ,  QNnQ=0 fori#j

e By ©, we mean the set of all n-partition of Q.
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PROBLEM A
Given a bounded open set Q C R?, a partition of Q is a
family of disjoint, open and connected subsets {€;}7 ,

such that

QUDBU---UQCQ,  QNnQ=0 fori#j

By ©, we mean the set of all n-partition of Q.
We are looking for a partition which minimize

(@)= T @) (12)
i=1

among all possible partitions.
Such partition is called optimal partition.
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PROBLEM B

¢ Problem B: For a any arbitrary partition
D =(Q4,...,2n) € Dp, we define

/\(@):max)\1(Q,), i:17'”7n'
]

¢ Define £,(2) as follows:

€(Q) = inf A(D)

* Known fact: £,(Q) = \2(Q). This means if (3, Q%) be
an optimal bi-partition then

2a(Q) = A1(€]) = A (Q5).
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CONJECTURE BY CAFFARELLI AND LIN

For problem A, when n tends to infinity then for the optimal
partition {Q*}7,

1 . M(H)
ZA1 Q) \QI

where H is the regular hexagon of area 1 in R2. Far from
the boundary a tiling by regular hexagons of area ‘Q‘ is
asymptotically close to the optimal partition.

For problem B the conjecture is

jim <282 _ M(H)
n—oco N ‘Q’
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’ Problems (A) can be written as minimization of
Laplace Operator Z fQ ‘vul ’ dx
— o lui(x)2ax

Over the class of
{(ut, ... un) Uy € HY(Q), ui(x) - yj(x) = 0,x € Q,i # j}.

¢ The functional is weakly lower semi-continuous
e The constraint is locally weakly compact

e Existence follows from direct methods in calculus of
variation.

e Letting Q; = {x € Q: uj(x) > 0} we find a solution for
Problem (A).
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PROPERTIES OF OPTIMAL PARTITIONS

Theorem
There exists (4, . .., Qn) minimizing the given functional in Problem (A).
Furthermore, if ¢4, - - - , &n are corresponding eigenfunctions normalized in Lo,

then, there exist a; € R such that the functions u; = a;¢; verify in Q the differential
inequalities (in distributional sense)

o —Au; < )\ (Q,‘)U,‘, a.e, in,
o =AU — 3 U) = MU — 305 M ().
Here Q; = {x € Q: uj(x) > 0}.

Note that the same theorem is true for problem (B) where A\{(Q;),i=1,--- ,nis
replaced by £,.

@ L. A. Caffarelli, F.-H. Lin, An optimal partition problem for eigenvalues. J. Sci. Comput. 31 (2007), no.
1-2, pp. 5-18.

@ M. Conti, S. Terracini, and G. Verzini, An optimal partition problem related to nonlinear eigenvalues. J.
of Funct. Anal. 198 (2003), no.1, pp. 160-196.
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GENERAL CASE AND EXTENSION
Let

1
nq(Q |€nfn Z)q Q)CI a,
e g=1;£,,: Problem (A),
® g=00; Ly = £y : Problem (B).
Extension to other operators:

e p-Laplace operator :

mf *ZM p; Q)

e p=1:Honeycomb conjecture
® p = oo : Spherical packing problem
e Schrédinger operator H = —A + V.
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e For 1 < p < o, the first eigenvalue of the p-Laplace operator
is given by
P
Laplace Operator . _ - fQ |Vu|pdx _ . ||VUHP
M(p Q) = inf —=——— = i 5
Eigenvalues uc W(; P(Q) fQ ‘U|de ue WS«P(Q) HUHP
of p-Laplace U0 us£0

se power

Second Eigenvalue
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EIGENVALUES OF p-LAPLACE OPERATOR

e For 1 < p < o, the first eigenvalue of the p-Laplace operator

is given by
Vupdx VUp
@)= o dalTePOC_ L VUl
wew @) Jo|UPdX— uewr@) [l
U0 u#0

¢ The corresponding Euler-Lagrange equation is given by
—Apu=AulP2u in Q,
u=20 on 0f.

Here Apu = div(|Vu|P~2Vu) which for p = 2, we have
Laplace operator.
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e For 1 < p < o, the first eigenvalue of the p-Laplace operator
is given by
p
Laplace Operator . _ - fQ |Vu|pdx _ . ||VUHP
MpP; Q)= inf S—— = 5
Eigenvalues UEW(;’p(Q) fQ ‘U|de ueWOL"(Q) HUHP
of p-Laplace u#£0
Inverse power
Algorithm

u#0

Second Eigenvalue

® The corresponding Euler-Lagrange equation is given by

—Apu=AulP2u in Q,
u=20 on 0Q.

Here Apu = div(|Vu|P~2Vu) which for p = 2, we have
Laplace operator.

@ J. Benedikt, P. Girg, L. Kotrla, and P. Tak&c, Origin of the
p-Laplacian and A. Missbach. Electronic Journal of
Differential Equations, 16, (2018), 1-17.

[§ P. Lindqvist, Notes on the p-Laplace equation. Lecture notes.
httos://folk.ntnu.no/lavist/p-laplace.pdf:
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First define Krasnoselskii genus of a set A C Wg P(Q) by

Laplace Operator

of L aplace ~v(A) = min{k € N|3f : A— Rk \ 0, f continuous and odd}.

For k € N define
Mk :={AC Wg P(Q), symmetric, compact and y(A) > k}.
Then the eigenvalues of the p-Laplace are

o Jo [Vu(x)[Pdx
Mep(D) = i sup ) Pax
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e Step k : Given v > 0 and u* = 0 on 99Q, scale by

Laplace Operator ~ Uk
k= 7.1
luklle,
Inverse power
Algorithm
:;[?.f,‘.d:h;m.m.,‘, set )\k — fQ |VEIk(X)‘de, then solve :

u=20 on 0f2.

e Set Uy, 1 = m and calculate
M1 = Jo [ Vis1(x)[Pdx.
if ‘)\/(4_1 — )\k’ > ¢ then

\ Set k = k + 1 and go to previous step;
end

e Result: g, M\

{ —Apu= NPT in Q
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Let up € LP(Q2) be as the first step in Algorithm 1 and define

the sequence {Uk}72 ; inductively according to

~ Uy
Ug = 7oy,
| Ukl Lp ()

where uy is the solution to

(2.2)

Note that in the equation (2.2) if we rewrite it in term of uy

then we have ’

Akf‘l == ~7_1'
|| Uk —1 ||FL)P(Q)
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Introduction,
problems A . . . .
and B ﬁ R. Biezuner, G. Ercole, E. Martins, Computing the first
Laplace Operator . . . .
- eigenvalue of the p-Laplacian via the inverse power method.
Eigenvalues . .
of p-Laplace Journal of Functional Analysis, (2009).

Inverse power

e o [§ M. Caliari, S. Zuccher, The Inverse Power Method for the
Graph p(x)-Laplacian Problem, J Sci Comput (2015).

p-Laplace

[§ F Bozorgnia, Convergence of Inverse Power Method for First
Eigenvalue of p-Laplace Operator. Numerical Functional
Analysis and Optimization (2016).

[M R. Hynd, E. Lindgren, Approximation of the least Rayleigh
quotient for degree p homogeneous functionals. Journal of
Functional Analysis (2017).
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e D o N\ < M1 forevery k > 1.
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Convergence

Lemma
Let \x and ux be as above. Then

Ak < Ag—1 forevery k > 1.

lim i, = u where u is the first eigenfunction.

k— oo
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Convergence

Lemma
Let \x and ux be as above. Then
® A\ < M\k—y forevery k > 1.

e |im iy = u where u is the first eigenfunction.

k— oo

Proof:

* Multiply the equation by ux and integrate

/ Uy div (|Vuk\p’2Vuk) dx = A1 / well ] dx.
Q Q
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Convergence

Lemma
Let \x and ux be as above. Then

® A\ < M\k—y forevery k > 1.

e |im iy = u where u is the first eigenfunction.

k— oo

Proof:
* Multiply the equation by ux and integrate

/ Uy div (|Vuk\p’2Vuk) dx = A1 / well ] dx.
Q Q

® Next
/Q 90l < N Uileoiey B [y

Notice that by definition ||Tx—_1||e() = 1 SO

IV Ul < Al tklip-



Multiply the equation by T _1

Since Ak_1 = ||[Vik_1]|?,, we obtain

p—1
—1 e
Hvuk”fp > )\kf1 .
Inserting the inequality (2.4) into (2.3) we conclude

1
IVuklle < AF_qllukllee-
Dividing both sides by ||u||.p

Ak < Akt

«O>» «Fr «

2o ~ —1
Mt = /Q VU P~2 Vi1 - Vi dx < ||V 1]|1o | Vi % ",

(2.4)

DA
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2o ~ —1
Ak—1 :/ |VUk‘p 2VUk_1 -Vugdx < HVU;(_1||LpHVUk||lL)p s
Q

Laplace Operator

Since Ax_1 = ||Vik_1]|f,, we obtain
Inverse power
Algorithm

1

—1 —
HVUk”fp > NPy

Second Eigenvalue L2}
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Multiply the equation by & _ 1
Ak_q = A |VUk‘p72 Vik_1-Vugdx < ||Vik_4 ||LpHVUk||lL)p_17

Since Ax_1 = ||Vik_1]|f,, we obtain

p—1

—1 —
HVUk”fp > NPy

Inserting the inequality (2.4) into (2.3) we conclude

1
IVuklle < 20— lluklle-

(2.4)
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Multiply the equation by & _ 1
Ak—1 = /Q [VuP~2 Vi1 - Vug dx < || Vik_1 ||LPHVUk||fp_17

Since Ax_1 = ||Vik_1]|f,, we obtain

p—1

—1 —
HVUk”fp > NPy

Inserting the inequality (2.4) into (2.3) we conclude

1
IVuklle < 20— lluklle-

Dividing both sides by || uk|| e
Ak < Ak

(2.4)
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SECOND EIGENVALUE

¢ Note that )\ is isolated in the spectrum,
A2 = inf{\ : is eigenvalue and X > A1}
® Remind in the case p = 2 we have:

£2 = )\2 = (thlzgfezol max()\1 (Q1 )7 )\1 (Qg))

Lemma
There exists u € W(] P(Q) such that ({uy > 0}, {u_ > 0}) achieves
infimum in £,. Furthermore,

A({us > 0}) = M ({ue > 0}).

@ F. Della Pietra, N. Gavitone, G. Piscitelli On the second Dirichlet eigenvalue of some nonlinear
anisotropic elliptic operators. Bulletin des Sciences Mathématiques, 155, (2019), 10-32.
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SECOND EIGENVALUE

Initialization: Set k = 0, choose initial u% > 0 and u® > 0 having disjoint
supports and vanishing on the boundary, scale uoi in LP(Q).

Given uk = uk — uk where uk and uX are normalized in LP, with disjoint

supports, then obtain /\’jr and \X by
Af(m):/ IV Uk (x)2x, Af(nz):/ VU (x)2x,
Q Q

Solve

—Dpu = |uk|p2 (A’;uﬁ - A’Lu’i) in Q, 2.5)
u=20 on o Q.

Set uﬁ“ and u¥t! as positive and negative part of the solution of (2.5).

Update 4 and Q_ as the supports of u®*'! and u**".

Stop if for a given tolerance e the following holds:
@) - Af@h) <e

N @) - M) < e
Set k = k 4+ 1 and go to second step.
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SECOND EIGENVALUE

The main assumption is that domain €2 is symmetric such
that

WS o) = W5 llo()-

Lemma

Let MK (Q2+) and \¥ (Q_) be obtained by previous Algorithm.
Then

max (A’;(m), Ak (Q,)) < max (A'ﬁ (), \K— (Q,)) ,
forevery k > 1.
[§ F Bozorgnia, Approximation of the second eigenvalue of the

p-Laplace operator in symmetric domains.
https://arxiv.org/abs/1907.13390
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SECOND EIGENVALUE

Let Q@ = [—2, 2] X [—2, 2]. Then A\, = 3.084251375340425, Our approximate :

A0 _ 3.081432954134751.
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I T 7 H H T T
x

Loshape: Grid#8 p2 Nodes=118243 Cells=58672 RMS Err=3.¢-7
Mode 2 Lambda= 10339 Integral= 4063926

Second Eigenfunction of L-Shape 08051451119
exi .

(462:174,30)
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Algorithm 3 for £,

We know that:
£, = o

Algorithm for the minimal 3-partition will be as follows.

® |nitialization:
Let D° = (29,08, Q9) be a 3-partition of Q.
® Step (n):
For n > 1, we define the partition D" = (2], 23, 27) by
—1
Qf = Qg. , 3 . . .
(27, Q27) is the nodal partition associated to the second eigenfunction of
—Aon Int(Q2\ QF).



Q>
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Algorithm for n partitions

Given uf, with ||uk ., = 1 then obtain \f(Qy,). We iterate as
Fort=0,1,--- ,k
Form=1,---.n
Fori=1,---,ny

Forj=1,---,n,

(H‘U(Xl’yl) = max (Um( )(Xivy/)_

> T (%) - A#(ﬂm)’; Uty (%3, ), 0)
I#£m
End
End
End
End
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(9) Initial guess for n =3 (hy n=3
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Graph notation

Let G = (V, E) be an undirected graph with vertex set
V={vi, -+, vn}.

W denotes similarity or weight; each edge between two
vertices v; and v; carries a non-negative weight w;; > 0.
The weighted adjacency matrix of the graph is the
matrix W = (w) i,j=1,...,n.

G is undirected we require wj; = wj;. The degree of a
vertex v; € V is defined as

d,' = Z Wi
jeVv

The degree matrix D is defined as the diagonal matrix
with the degrees d;, ..., d, on the diagonal.
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Spectral clustering

Given some data and a notion of similarity

The task of partitioning the input data into maximally
homogeneous groups (i.e. clusters)

Given data points vq, - - -, vp, pairwise affinities w;
Find a low-dimensional embedding

Project data points to new space

(-} ’
@0 o [ \
... . (N
® 00g° — Low-dimensionz
e ®04 space
e ° ~

Data space ®
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Cheeger Cut

e Given graph (V, E) and a subset of vertex S C V the
Cut(S, S°) or ( the perimeter |0S| ) is defined by

Cut(S,8%:= > w
ieS,jeSe

¢ Ratio cut and Normalized cut for a partition of V into
C, C° are defined as

cut(C,C°)  cut(C, C°)

Rcut(C, C°) = +
(&= g
o cut(C,C°)  cut(C,C°)
NCut(C. %) = —sicey + ~voi(co)

Note that the minimum is achieved if |C| = |C°|.
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¢ Ratio Cheeger cut:

oy _Cut(C,C%)
ACCLe. O = Giner e
) ® key point: The cut obtained by thresholding the second
o Captace eigenvector of p-Laplace converges to optimal Cheeger

cutas ptendsto 1.

¢ Finding optimal ratio Cheeger cut RCC* = g’lcll’\} RCCis
NP-hard problem.

e Tight relaxation:(Tomas Bihler, Matthias Hein, 2009)

\o(Ay) = RCC*
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e Leti e V. Depend on the choice of inner product
Laplace Operator (Agf)l = Z WU (Zﬁp(f/ — f))?

jev
. [ J

Graph (Agf)/ = g Z W’/ ¢p(f’ - f/)
p-Laplace 1 jev

[ ]

¢p : R — Ris defined for x € R as

dp(x) = |x|P~" sign(x).

Ap is an eigenvalue for Ay if there exists a function
v: V — R such that

(Agv)i = /\p¢p(V;) | = 1’. -.n
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Graph p-Laplace
* The variational characterization define similarly the

functional F, : RV — R

Qu(f)
1715

Fo(v) =

where

1
Qo(f) =< f,A5f >= 5 > wylfi — £]P
i
* The functional F, has a critical point at v € RY if and
only if v is a p-eigenfunction of AJ . The corresponding
eigenvalue ), is given as

Ap = Fp(v)
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Thanks for your attention




	 Introduction, problems A and B
	Laplace Operator 

	Eigenvalues of p-Laplace
	Inverse power Algorithm 
	Second Eigenvalue

	Graph p-Laplace 

	anm0: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


