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The	processes	considered	by	the	coagulation	and
fragmentation	theory
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Applications	to	Coagulation-fragmentation
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More	complex	applications
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The	coagulation-fragmentation	equation
One	can	write	down	a	coagulation-fragmentation	equation	of	balance	of	mass:

d

dt
c (x, t) = QC (c)−QF (c) ,

QC (c) :=
1

2

x
∫

0

K (x− y, y) c (x− y, t) c (y, t) dy − c (x, t)

∞
∫

0

K (x, y) c (y, t) dy

QF (c) := β (x) c (x, t)−

∞
∫

x

c (y, t)
β (y)

y
B

(

x

y

)

dy

where β (x) is	the	fragmentation	rate	of	clusters	of	size x and B (u) is	the
daughter	fragments	distribution	kernel.
The	mass	depending	and	symmetric	operator K(x, y) is	known	as	the
coagulation	kernel	and	describes	the	rate	at	which	particles	of	the	given	size
coagulate.

Unfortunately, most	of	the	physically	interesting	models	correspond	to	equations
that	are	not	exactly	solvable.
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Pure	coagulation: the	Smoluchowski	equation

• It	has	been	possible	to	discover	analytical	solutions	exclusively	for
a	limited	number	of	kernels; the	principal	cases	include:
Kc(x, y) = 1, K+ (x, y) = x+ y, K× (x, y) = xy.

• For	more	general	kernels, studies	have	essentially	relied	on
numerical	methods.

• Existence, positivity	and	uniqueness	result	for	all	time	for	kernels
growing	at	most linearly.

interests:

• singularities in	finite	time	occur	for	some	Kernels: very
strong	coagulation	creates	infinitely	dense	clusters.

• self-similar	solutions.



Laplace transform:

Regularized Laplace transform:

Fractional Burgers equation:



Nonlocal transport equation: MAF, Eggers, to appear in Nonlinearity 2019

Existence of singularities: A. Córdoba, 

D. Córdoba, MAF, Ann. of Math. 2005

(Toy model for Euler eqn.)

Selfsimilarity of the second Kind (Barenblatt)
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Singularity	=	gelation

gelation:

Starting	 from	 an	 initial	 particle	 size	 distribution c0 = c (x, 0) such
that	all	its	moments Mi(0) =

∫

∞

0
xic0 (x) dx are	bounded, there	is	a

certain	time t∗ such	that	all	moments Mi(t) for i ≥ i0 diverge.

The	distribution c (x, t) develops	an heavy	algebraic	tail	in	finite	time.

Up	to t < t∗ total	conservation	of	mass	is	guaranteed, but	after t∗ the	first
moment M1 is	no	longer	conserved	and	starts	to	decrease.

This	phenomenon	is	called	finite	time	gelation	and	indicates	the	aggregation	of
the	particles	in	a	cluster	of	infinite	density	that	drains	mass	from	the	coagulating
system	with	finite x-mass.

An	interesting	problem	is	the	continuation	of post-gelling	solutions.
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Some	mathematical	well-posedness	results	I

case: hypothesis	and	setting: results: references:

pu
re
	c
oa
gu
la
tio

n

asymptotically
sub-linear	vs
asymptotically
sub-quadratic:

K(x,y)≤κ0(1+x+y),
or κ0(1+x+y)<K(x,y)≤κ1xy

∃!, T ∗=∞

∃!, T ∗<∞

(estimation)

Classic	reference:
e.g. Norris99

homogeneous
non-gelling
coagulation:

K(x,y)≤κ0(xλ+yλ), λ∈(−∞,1]
∃! weak	sense,
T ∗=∞

Fournier-Laurençot
2006

homogeneous
gelling
coagulation:

κ1(xy)
λ
2 ≤K(x,y)≤κ2(xyλ−1+xλ−1y),

with λ the	degree	of	homogeneity	of K
and λ∈(1,2]

∃! weak	sense,
T ∗<∞,
lower	bound

Fournier-Laurençot
2006

faster-growing,
singular	kernel:

various	formulations, for	example:
K(x,y)≥A((1+x)λ+(1+y)λ), λ>1

instantaneous
gelling	solutions

Carr	and	da	Costa
1992
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Some	mathematical	well-posedness	results	II

case: hypothesis	and	setting: results: references:

pu
re
	fr
ag
m
en
ta
tio

n

singular	rate
of	fragmentation:

β(x)=xλ, λ<0

”shattering”
critic	time	is
explicitly	known

McGrady–Ziff	87
Cheng–Redner	90

non-singular	case:
mass	conserving	distribution
∫ x
0 yb(y,x) dy=x

well-posed	in L1
xdx

mass-conservation
Lamb	2004

homogeneous	rate
with	infinite
fragments:

ν∈(−2,−1] and B(u)=(ν+2)uν well-posedness Cepeda	2014

finite	positive
moments	in	the
non-singular	case:

Mk(c0)<∞ for	all k∈N Mk<∞

Equicontinuous
semigroups	in
Fréchet	spaces:
Banasiak-Lamb	2014
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Some	mathematical	well-posedness	results	III

case: hypothesis	and	setting: results: references:

co
ag
ul
at
io
n-
fr
ag
m
en
ta
tio

n

fragmentation
dominates
over	coagulation:

K(x,y)≤κ1(xy)
λ,β(x)≥κ2x

γ,
λ∈[0,1],γ∈(−1,∞),2+γ>2λ

a	mass	conserving
solution	exists:
T ∗=∞

Many	strategies,
Escobedo	Laurençot
and	Perthame	2003

strong
fragmentation
and	weak
coagulation:

β(x)=xλ,B(u)=(ν+2)uν ,
ν∈(−1,0],0≤σ≤1,σ<λ, and
K(x,y)≤κ2((1+x)σ+(1+y)σ)

global-in-time
and	unicity

Banasiak, Lamb	and
Langer	2013

strong
fragmentation
and	strong
coagulation:

the	same	as	above	and
0≤σ≤τ<λ and
K(x,y)≤κ1(xσyτ+xτyσ)

local	solution
and	uniqueness

as	above

detailed	balance
condition:

let M∈L11be	a	non-zero	function
K(x,y)M(x)M(y)=b(x,y)M(x+y).

solutions	converge
to	an	equilibrium:
c[M1(0)] (x)

depending	only
on	the	initial	mass

Carr-daCosta	94,
Dubowski-Stewart	96

other	equilibria:
strong	fragmentation, small	initial	mass
(the	latter	is	a	technical	condition)

solutions	converge
to	an	equilibrium
c[M1(0)] (x)

L
2 exponential	trend

Fournier–Mischler
2004
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Smoluchowski	coagulation	equation	and	self-similarity

A relevant	feature	is	the role	of	the	self-similar	solutions.

The	long	term	regime	in	known	models	approaches	to	a	self-similar
profile.
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Self-similar	approach: gelling	case

• Homogeneus	multiplicative	kernel K (x, y) = (xy)
1−ε; for 0 ≤ ε < 1

2

we	are	in	gelation	regime. Possible	solutions	can	behave	asymptotically
as t→ t∗:

c (x, t) = (t∗ − t)
α
ψ
(

(t∗ − t)
β
x
)

• In	this	case, the	self-similar	solutions	have	not	been	determined	explicitly
and, more	remarkably, from	numerical	experiments, the	similarity
exponents	cannot	be	determined	from	simple	dimensional	considerations
(cf. Lee, 2001).

• So	they	seem	to	belong	to	the	class	of	the	so	called self-similarity	of	the
second	kind.

• Remember: when ε < 0, the	strong	coagulation	rate	yields instantaneous

gelation.
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Substituting:

−(β(3−2ε)−1)ψ(ξ)−βξψ′(ξ)=

= 1
2

∫
[0,ξ](ξ−y)

1−εψ(ξ−y) y1−εψ(y) dy−ξ1−εψ(ξ)
∫
R+ y1−εψ(y) dy.

where, again, α = (3− 2ε)β − 1, from	dimensional	considera-
tions.

We	have β < 0 in	non-gelling	cases	and β > 0 otherwise. Therefore,
we	study	the	self-similar	problem	for	all λ−multiplicative	kernels:

|β| T [ψ] + QC,λ [ψ] = 0
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The	results	on	coagulation

A visual	overview
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Picture: self-similarity	exponents
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Picture: gelling	solutions	profiles

The	solutions	are	multiplied	times ξ3−2ε− 1
β . Two	behaviors: (I) polynomial

expansion	at	the	origin, (II) quasi-exponential	decay	at	infinity.
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The	gelling	case	result: main	ingredients

Recall:

− (β (3− 2ε)− 1)ψ(ξ)− βξψ′(ξ) =

=
1

2

∫

[0,ξ]

(ξ − y)1−ε ψ (ξ − y) y1−εψ (y) dy−ξ1−εψ (ξ)

∫

R+

y1−εψ (y) dy.
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Laplace	transform

We	studied	the	s.-s. solutions	to	Smoluchowski	equation	close	to	the	product
kernel. Our	strategy	involves	a regularized	Laplace	transform:

• Transform: Φ(η) = −
∫

R+

(e−ηξ − 1)ξψ (ξ) dξ.

• Inverse	transform: ψ (ξ) = 1
2πi

1
ξ2

∫ i∞

−i∞
eηξΦ′ (η) dη.

one formally derives a new problem:

− ((1− 2ε)β − 1)Φ (η) + βηΦ′ (η) =
1

2

d

dη

[

D−ε
η Φ(η)

]2
,

with:

D−ε
η Φ(η) = −

∫

R+

(e−ηξ − 1)ξ1−εψ (ξ) dξ.
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The	explicit	case
If ε = 0, we	can	deduce	previously	known	results:
Laplace	variable	equation	reduces	to	a	first	order	ordinary	differential	equation,
and	we	can	easily	obtain	the	implicit	expression:

η(Φ) = kΦ
β

β−1 +Φ

With	the specific	election	of β = 2, this	equation	is	a	second	order	poly-
nomial; we	can	find	its	zeros	and	obtain	two	possible	solutions, but	we
only	consider	the	one	giving	a	positive ψ:

Φ0 (η) = 2π

(

−1 +

√

1 +
η

π

)

, ψ (ξ) =
1

ξ
5
2

e−πξ.

We	can	also	study	the	equation	for	different	values	of β, but	the	inverse
transform ψ presents	algebraic	tails.
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Small	perturbation	of	the	product	Kernel

Starting	from	an	explicit	solution, we	look	for	a	branch	of	solutions
perturbatively.

β (ε) = 2 + ελ (ε)

Φ (η) = Φ0 (η) + εΦ1 (η)

where Φ1 should	be	controlled	in	a	suitable	norm	and	the	decay
properties	of Φ permit	studing	the	decay	properties	of ψ
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The	first	fixed	point	theorem
Theorem. B.	and	Fontelos

There	exists	an ε0 > 0 and	a	function

λ(ε) = 2 +O(ε)

such	that	for	any 0 < ε < ε0 and	with β(ε) = 2 + ελ(ε) there	exists	a
unique	solution	to	Smoluchowski’s	self-similar	equation	(up	to	rescaling)
satisfying:

∞
∫

0

ξ
7
2
− δ

2ψ (ξ) dξ <∞

for	any 0 < δ ≪ 1.

Both	the behaviour	of Φ for η ∼ 0 and	at	infinity	must	be	controlled. Then, decaying	properties
of Φ give	estimates	on	moments	like	the 7

2
-th	above.
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Setting	of	the	nonlinear	problem

Let Φ(η) = Φ0 (η) + εΦ1 (η). We	get	the	Laplace	self-similar	equation
for Φ1:

Φ1 − 2η
d

dη
Φ1 +

d

dη
(Φ0Φ1) = F0(η) + εLΦ1 + εQ(Φ1,Φ1)

Linear	and	quadratic	terms	in Φ1 are O (ε), so, calling N [Φ1] the	right
hand	side, we	define	a	mapping	that	assigns	to	a	given Φ1 the	solution	to

Φ1 − 2η
d

dη
Φ1 +

d

dη
(Φ0Φ1) = N

[

Φ1

]

this	is	done	in	the	following.
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Steps

• Establish	a	Hardy-like	inequality:
Mγ ≤

∫∞

−∞
(W (|k|))2 |Φ′ (ik)|2 dk;

• this	gives	a	functional	space Y to	look	for	a	solution Φ (η).

• The	solution	must	be	close	(a	sphere	of	small	radius)	to	a	suitable
function h (η);

• and	its	behavior close	to	zero determines	the	decay	of ψ (ξ) at
infinity. We	want ψ to	decay	faster	than	some	power.

• An	analyticity	condition	on h (η) -that	is: eliminating	an η2 log η
term-	fixes	the	value	of β and	makes ψ decay	faster	than	such
power.

• Now	use	a	fixed-point	theorem	(the	tricky	part	is	to	deal	with h at
the	same	time).

• Finally, use	the	moment-equation	to	obtain	the	strong	result: all
higher	moments	are	also	bounded.
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Analysis	of	the	expansion:

1. Given Φ1(η) = a1η − 1
π
a1η

2 + o(|η|2) one	can	compute
(

NΦ1

)

(η) = b1η + b2η
2 +O(|η|3) as η → 0;

2. Consider ρ(η) = b1η+b2η
2

1− η2

2

and

h(η) ≡ (
√

1+ η
π
−1)

2

√
1+ η

π

∫ η

η0

√
1+w

π

(
√

1+w
π
−1)

2

ρ(w)
Φ0(w)−2wdw;

3. Then, integrating	the	differential	equation	for Φ1,

Φ1 (η)−h(η) =
(√

1 + η
π
− 1
)2

√

1 + η
π

∫ η

0

√

1 + w
π

(√

1 + w
π
− 1
)2

(

NΦ1

)

(w)− ρ(w)

Φ0 (w)− 2w
dw;

4. Then Φ1 − h is	a o
(

η2
)

and	we	can	compute	explicitly

h(η) = b1η −
1

π
b1η

2 −
(

b2 +
3

4π
b1

)

η2 ln η +O(|η|3 log |η|).
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The	analyticity	condition
The	presence	of	the η2 ln η logarithmic	term	in	the	Laplace	solution	implies
that	the	corresponding	inverse	transform	presents	an	algebraic	decay:

ψ (ξ) ≃ξ→∞

sin (|ε|π)
ξ4+O(ε)

.

For	a faster	decay,

b2 +
3

4π
b1 = 0

which	fixes β (ε) = 2 + 2ε+O
(

ε2
)

. Higher	orders	can	be	also explicitly
computed imposing	more	terms	in	the	expansion	of Φ1. This analyticity
condition characterizes	the	self-similar	problem	as	one	of	the second	kind.
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The	norm
We	obtain	estimates	of (Φ1 (η)− h (η)) in	terms	of
J(η) ≡

(

N
[

Φ1

]

(η)− ρ(η)
)

in	an	appropriate	functional	space:

Definition
Let X be	the	space	of	functions f such	that:

∥f(k)∥X ≡
∞
∫

−∞

(

1

|k|3
+

1

|k|
3
2

)2

|f(k)|2 dk <∞.

Let Y be	the	subspace	of X whose	functions	are	such	that:

∥f (k)∥Y ≡ ∥f (k)∥X +

∥

∥

∥

∥

k
d

dk
f (k)

∥

∥

∥

∥

X

<∞.
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How	to	obtain	the 7
2 − th moment

By	Banach’s	fixed-point	theorem, we	find	the	solution	to	the	nonlinear
problem	such	that ∥Φ1 (ik)− h (ik)∥Y <∞ and	hence:

∞
∫

−∞

(

1

|k|2
+

1

|k|
1
2

)2
∣

∣Φ′
1 (ik)− h′ (ik)

∣

∣

2
dk <∞.

To	conclude	the	theorem, we	employ

∫

R+

ξ(γ+2) |ψ (ξ)| dξ < C

∫

R

∣

∣Φ′ (k)
∣

∣

2
(

|k|1−2γ−δ + |k|1−2γ+δ
)

dk

with γ = 3
2 − δ

2 and 0 < δ ≪ 1.



Introduction IIº	kind	self-similarity: coagulation Iº	kind	self-similarity: fragmentation Extra	contents

Faster	decay	for	the	self-similar	solution

Theorem. B.	and	Fontelos

Under	the	previous	hipotesis, we	can	conclude	that	for	any |ε| <
ε0 and	with	 the	 same β(ε) = 2 + ελ(ε) found	before, there
exists	a	unique	solution	(up	to	rescaling)	with	all	its	moments Mα

(α ≥ 2)	bounded.

Remarkably, no	further	restriction is	placed	upon ε0 or β.
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We	multiply	the	s.s. Smoluchowski	equation	at	both	sides	by ξα with α > 5
2

and	integrate	to
obtain:

(

α− 2 + 2ε+
1

β

)

Mα =
1

2β

∫

R+

∫

[0,ξ]

((ξ − y) + y)α (ξ − y)1−ε y1−εψ (ξ − y)ψ (y) dydξ

−
1

β
Mα+1−εM1−ε

and	we	use:

(ξ − y)α + yα + C1

(

(ξ − y)α−1 y + yα−1 (ξ − y)
)

≤ ((ξ − y) + y)α ≤

≤ (ξ − y)α + yα + C2

(

(ξ − y)α−1 y + yα−1 (ξ − y)
)

.

Using	the	preceding	inequalities, we	can	bound:

C1

β
Mα−εM2−ε ≤

(

α− (−2ε+ 2) +
1

β

)

Mα ≤
C2

β
Mα−εM2−ε
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We	consider	now	the pure	fragmentation	equation.

Recall...

→֒
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The	original	equation:

d

dt
c (x, t) = −β (x) c (x, t) +

∞
∫

x

c (y, t)
β (y)

y
B

(

x

y

)

dy

with β (x) = γxγ , and γ ≥ 0 (non-shattering	case).
B : [0, 1] → R

+ is	the relative	fragmentation	rate and	verifies	the
normalization	property:

1
∫

0

uB (u) du = 1.
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Getting	the	self-similar	fragmentation	equation
We	seek	a	function	like (t′)α φ

(

x

(t′)β

)

such	that	the	mass	moment M1, and	also	all	the

other	moments	are	conserved.

Such	symmetry	requirement	permits	determining	the	self-similar	formulation	so	that	the

similarity	problem	does	actually	belong	to	the first	kind	self-similarity.

a self-similar problem of the first kind:

c (x, t) = t
2

γφ (ξ) ,

with ξ = xt
1

γ . Imposing	in	the	evolution	equation, we	get:

2φ (ξ) + ξ
d

dξ
φ (ξ) = −γξγφ (ξ) +

∞
∫

ξ

φ (η) γηγ−1 B

(

ξ

η

)

dη

that	can	be	also	written:

T [φ] (x) = QF [φ] (x)
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A general	well-posedness	result

Both	 existence, uniqueness	 and	 convergence	 to	 the	 self-similar
profiles	can	be	obtained	under	general	conditions	as	it	has	been
done	 in	 the	work	 of	 Escobedo, Mischler	 and	Rodriguez	Ricard
(2005).
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The	Mellin	transform	approach

• Consider	the	transform Φ(z) =
∫

∞

0
xz−1φ (x) dx.

• We	also	define Θ(z) =
∫

1

0
uz−1B (u) du.

The	new	problem

(2− z) Φ (z) = (Θ (z)− 1) γΦ(z + γ) ,

We	are	interested	in	evaluating Φ at z = is in	order	to	apply	the
inverse	Mellin	transform:

φ (x) =
1

2πi

∫ i∞

−i∞

x−zΦ(z) dz.
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The	Carleman	problem
Some	references	to	Wiener-Hopf	methods	and	how	to	solve	this	class	of	problems	can

be	found	in	Escobedo	Velázquez	(2010).

First	of	all, we	introduce	the	new	variable ζ = e
z·2πi· 1

γ and	define
f (ζ) = Log (Φ (z)), T (ζ) = Θ (z).
The	Carleman	problem	now	reads:

f (ζ + 0·i)− f (ζ − 0·i) = Log

(

γ
T (ζ)− 1

2− γ
2πi

Logζ

)

= Logγ + Log (T (ζ)− 1)− Log
(

2−
γ

2πi
Logζ

)

,

where f is	analytic	in C \ R+.
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The	typical	strategy	and	a	variation

This	problem	belongs	to	the	general	class	of	problems	of	the	form:

f (ζ + 0·i)− f (ζ − 0·i) = G(ζ)

with	solution

f (ζ) =
1

2πi

∞
∫

0

G(s)
ds

s− ζ
,

provided G(s) decays	sufficiently	fast	at	infinity	so	that	the	integral	is
well	defined.
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Properties	of	the	self-similar	solution φ

The	self-similar	solution φ (ξ) given	as	the	inverse	Mellin	transform	of Φ
verifies:

∞
∫

0

eξ
γ φ (ξ) dξ

ξ1+µ−τ + ξ1+µ+τ
< ∞

for	any 0 < τ < min {µ, γ}.
Moreover, Mα =

∫∞
0 ξαφ (ξ) dξ < ∞ for	each α > −µ − 1. The

solution	has	the	following regularity	property: for	all l > −µ+ n,

dn

dξn

(

ξlφ (ξ)
)

≤ 1

2π

∫
∞

−∞
|(n−is)(n−1−is)···(1−is)||Φ(is+l−n)|ds < ∞,

or	also
∣

∣

∣

∣

dn

dξn
φ (ξ)

∣

∣

∣

∣

≤ Cnξ
µ−n−δ, with δ > 0, δ ≪ 1.



  

Reddy, Banerjee, 2017

McKinley et al, 2016
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Conclusions: Smoluchowski	equation

We	propose	a general	scaling	hypothesis for	coagulation:

• A first	existence	and	uniqueness	theorem	for	rapidly	decaying
self-similar	solutions	in	the	gelling	range.

• Asymptotic	and	analytical	results	in	wide	ranges	of	homogeneity λ
degree.

• Different	techniques	to	compute β.

• Numerical	evidences.

Our	works	on	this	subject:

• Breschi-Fontelos, Nonlinearity	2014. Self-similar	solutions	of	the	second	kind	representing
gelation	in	finite	time	for	the	Smoluchowski	equation.

• Breschi-Fontelos. On	global	in	time	self-similar	solutions	of	Smoluchowski	equation	with
multiplicative	kernel. (in	PhD theses, to	submit).
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Conclusions: fragmentation	equation

We	employed	Wiener-Hopf’s	techniques	in	the	complex	plane	to
achieve:

• explicit	formulas;

• control	on	asymptotic	behaviors	of	the	self-similar	solution;

• regularity	properties	(under	the	hypothesis	of	continuous
fragmentation	kernel);

• new	unexpected	asymptotics	for	the	compact	support	case	(as	well
as	a	different	explicit	formula	for	the	Mellin	transform).

Still	many	interesting	problems	to	study! An	important	one: what	about
non-continuous	kernels?


