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The Neumann-Kelvin problem : setting
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Rankine body for the 2d Neumann-Kelvin problem

Numerical resolution of the shape optimization problem

The Neumann-Kelvin problem
The Green’s function and well-posedness
The wave resistance

A cylinder obstacle (i.e. a 2d flow) under water

The flow is inviscid, irrotational and incompressible

A steady state has been reached

A linear theory is used : potential flow and the condition on
the free boundary is linearized (Bernoulli + kinematic
condition).
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The Neumann-Kelvin problem reads: find Φ ∈ C 2(Ω+) such that







∆Φ = 0 , in Ω+ ,

∂2
11Φ+ ν ∂2Φ = 0 , for x2 = 0 ,

∂nΦ = −U∞n · e1 , on Γ ,

sup
Ω+

|∇Φ| < ∞ and |∇Φ| → 0 as x1 → −∞ ,

where ν = g/U2
∞

and Ω+ = R2
−
\ Ω−.



The Neumann-Kelvin problem reads: find Φ ∈ C 2(Ω+) such that







∆Φ = 0 , in Ω+ ,

∂2
11Φ+ ν ∂2Φ = 0 , for x2 = 0 ,

∂nΦ = −U∞n · e1 , on Γ ,

sup
Ω+

|∇Φ| < ∞ and |∇Φ| → 0 as x1 → −∞ ,

where ν = g/U2
∞

and Ω+ = R2
−
\ Ω−.

NB : V = ∇Φ̃ = U∞e1 +∇Φ is the velocity field (irrotational)
Φ̃ = U∞x1 +Φ is the unperturbed potential
div V = 0 = ∆Φ is the incompressibility condition
∂nΦ̃ = 0 on Γ is the no-slip condition on Γ.



The (stationary) Bernoulli equation reads

1

2
|V |2 +

1

ρ
P + gx2 = C in the water.

At the free surface, P = P0 (constant) and x2 = h(x1) is the free
surface elevation. Thus,

1

2

(
(U∞ + ∂1Φ)

2 + (∂2Φ)
2
)
+

P0

ρ
+ gh(x1) = C .

When x1 → −∞, we have ∇Φ → 0 and h(x1) → 0 so

1

2
U2
∞

+
P0

ρ
= C .

Using that |∇Φ| << U∞ and |h(x1)| is small, keeping only the
first order terms yields

U∞∂1Φ+ gh = 0 (1)



At the free surface, the no-slip condition reads V · N = 0 with
N = (−∂1h, 1)/

√

1 + (∂1h)2, i.e.

−(U∞ + ∂1Φ)∂1h + ∂2Φ = 0.

Keeping only the first order terms yields

− U∞∂1h + ∂2Φ = 0 (2)

Differentating (1) with respect to x1 yields

U∞∂11Φ+ g∂1h = 0.

Using (2), we obtain

U∞∂11Φ+
g

U∞

∂2Φ = 0 for x2 = 0,

that is the condition on the free surface.
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Numerical resolution of the shape optimization problem

The Neumann-Kelvin problem
The Green’s function and well-posedness
The wave resistance

The Neumann-Kelvin problem reads: find Φ ∈ C 2(Ω+) such that







∆Φ = 0 , in Ω+ ,

∂2
11Φ+ ν ∂2Φ = 0 , for x2 = 0,

∂nΦ = −U∞n · e1 , on Γ ,

sup
Ω+

|∇Φ| < ∞ and |∇Φ| → 0 as x1 → −∞ ,

where ν = g/U2
∞

and Ω+ = R2
−
\ Ω−.

NB: Froude invariance U2
∞
/length.
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Numerical resolution of the shape optimization problem

The Neumann-Kelvin problem
The Green’s function and well-posedness
The wave resistance

A central idea : the Green’s function

The Green’s function G (x , y) = Gy1,y2(x1, x2) of the problem solves







∆Gy1,y2 = δy1,y2 , in R
2
−
,

∂2
11Gy1,y2 + ν∂2Gy1,y2 = 0 , for x2 = 0,

sup
(x1,x2)∈R2

−

∣
∣
∣
∣
∇

[

Gy1,y2(x1, x2)−
1

2π
log(ν|z − Z |)

]∣
∣
∣
∣
< ∞,

lim
x1→−∞

|∇Gy1,y2 | = 0,

where z = x1 + ix2 and Z = y1 + iy2.
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Numerical resolution of the shape optimization problem

The Neumann-Kelvin problem
The Green’s function and well-posedness
The wave resistance

The Green’s function for this problem is explicit:

Gy1,y2(x1, x2) =
1

2π
log(ν|z − Z |) +

1

2π
log(ν|z − Z̄ |)

−eν(x2+y2) sin(ν(x1 − y1))

+
1

π

∫
∞

0

cos(k(x1 − y1))

k − ν
ek(x2+y2)dk

Note that ∆Gy = 0 in R2
−
\ {y}.
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Numerical resolution of the shape optimization problem

The Neumann-Kelvin problem
The Green’s function and well-posedness
The wave resistance

A central idea to solve the Neumann-Kelvin problem: use the
(explicit) Green function G (x , y) of the problem and seek

Φ(x) =

∫

Γ
G (x , y)α(y)dsy ,

where α is a (unknown) function on Γ (“single-layer boundary
potential”).
For such Φ, we clearly have

∆Φ = 0 in Ω+,

∂2
11Φ+ ν ∂2Φ = 0 for x2 = 0,

sup
Ω+

|∇Φ| < ∞ and |∇Φ| → 0 as x1 → −∞
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Numerical resolution of the shape optimization problem

The Neumann-Kelvin problem
The Green’s function and well-posedness
The wave resistance

Then Φ solves the NK problem if

∂nΦ = −U∞n · e1 on Γ,

that is

1

2
α(x)−

∫

Γ
∂n(x)G (x , y)α(y) dsy = U∞ n(x) · e1 , ∀x ∈ Γ . (3)
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Numerical resolution of the shape optimization problem

The Neumann-Kelvin problem
The Green’s function and well-posedness
The wave resistance

Theorem (Kuznetsov, Maz’ya and Vainberg’02)

The Neumann-Kelvin problem is uniquely solvable for all ν > 0
with a possible exception for a finite number of values.

Main ideas :

(3) is a Fredholm equation which depends analytically on ν

uniquely solvable for ν = 0 and ν = +∞ (Kochin’37)

principle of isolated zeros

NB: if Ω− is a disc, then the NK problem is uniquely solvable for
all ν > 0.
Not true in general (Motygin and McIver 2010, McIver 1996).
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The wave-resistance

The wave resistance is the horizontal force exerted by the water
on the obstacle in this model, i.e. the drag, which reads

Rw = −

∫

Γ
P n1 ds ,

where n1 = n · e1.
Using Bernoulli’s formula, we have

Rw = ρ

∫

Γ

|V |2

2
n1 ds ,

where the velocity V is obtained through V = ∇Φ+ U∞e1 in Ω+.
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Numerical resolution of the shape optimization problem

The Neumann-Kelvin problem
The Green’s function and well-posedness
The wave resistance

Summing up, we have

Rw = ρ

∫

Γ

[
|∇Φ|2

2
+ U∞∂1Φ

]

n1 ds .

It can be shown that

Rw =
ρ ν

4

∣
∣
∣
∣

∫

Γ
α(x) E(x)dsx

∣
∣
∣
∣

2

,

where α solves the integral equation (3) and

E(x) = eν(ix1+x2).
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Interpretation (1)

if Φ solves the Neumann-Kelvin problem, then

Φ(x1, x2) = c +Θ(x1, x2) + H(x1)(A sin(νx1) + B cos(νx1))e
νx2 ,

as r = (x21 + x22 )
1/2 → +∞, where Θ(x1, x2) = O(|r |−1),

|∇Θ(x1, x2)| = O(|r |−2), c is an arbitrary constant, H is the
Heaviside function and A, B are constants which depend only on ν
and the values of Φ, ∂nΦ on ∂D.
With this notation, we have

Rw =
ρν

4
(A2 + B2).
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Numerical resolution of the shape optimization problem

The Neumann-Kelvin problem
The Green’s function and well-posedness
The wave resistance

Interpretation (2)

The asymptotic behaviour of Φ can be deduced from the Green’s
function

Gy1,y2(x1, x2) =
1

2π
log(ν|z − Z |) +

1

2π
log(ν|z − Z̄ |)

−eν(x2+y2) sin(ν(x1 − y1))

+
1

π

∫
∞

0

cos(k(x1 − y1))

k − ν
ek(x2+y2)dk

and Green’s formula

Φ =

∫

Ω+

Φ∆G − G∆Φdx =

∫

Γ
Φ∂nG − G∂nΦds.
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Numerical resolution of the shape optimization problem

Optimal shape problem: is it possible to obtain “the” obstacle
which minimizes the wave resistance for a given area and for a
fixed center of gravity ?

NB: if there is no free surface, this problem is ill-posed:
d’Alembert’s paradox asserts that for any obstacle, the drag and
the lift are zero (in 2d and 3d).
Recall that the flow is inviscid, irrotational and incompressible
(Euler’s equations in the irrotational case)
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Numerical resolution of the shape optimization problem

The classical Rankine oval (no free surface)

The Rankine potential is the superposition of a source of strength
m at (−a, 0), a sink of strength m at (a, 0), and a uniform stream
U∞ in the horizontal direction :

Φ̃(x , y) =
m

2π
ln(|z + a|)−

m

2π
ln(|z − a|) + U∞x ,

where z = x + iy .
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Numerical resolution of the shape optimization problem

Similarly, we define for the Neumann-Kelvin (NK) problem the
potential of a source/sink couple:
For a > 0, d > 0 (depth) and m > 0 (strength) we introduce the
potential given by

Φa,d ,m(x , y) = mG(−a,−d)(x , y)−mG(a,−d)(x , y) + U∞x ,

where G is the Green function for the NK-problem.
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The asymptotic behaviour of Φa,d ,m reads

Φa,d ,m(x , y) = U∞x + ra,d ,m(x , y)

−2mH(x)eν(y−d)[sin(ν(x + a))− sin(ν(x − a))],

where ra,d ,m(x , y) = O(|z |−1) and |∇ra,d ,m(x , y)| = O(|z |−2).
Since

sin(ν(x + a))− sin(ν(x − a)) = 2 sin(νa) cos(νx),

the amplitude of the waves downstream is proportional to sin(νa).
If a = pπ/ν with p integer, then the potential is waveless.
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Numerical resolution of the shape optimization problem

Theorem (Dambrine, Noviani, P. (in revision))

For every integer p and for every depth d > 0, if b = m/(2πU∞) is
small enough then the waveless potential Φa,d ,m defines a bounded

and simply connected domain D = Rp,d ,b with analytic boundary

for which the NK problem is solved. Moreover, this “Rankine

body” Rp,d ,b contains the singularities and is symmetric about the

y axis.

Rk : if the potential is the unique solution of the NK-problem, this
Rankine body has zero wave resistance (but it may not be unique
and correspond to a resonance value)
Rk2 : use of the exponential integral for the numerical
computations
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Numerical resolution of the shape optimization problem

Sketch of proof

main idea : study of the phase portrait of the ode
(ẋ1(t), ẋ2(t)) = ∇Φ(x1(t), x2(t))
We have

Φa,d ,m(x1, x2) = U∞x1 +
m

2π
log(ν|z − z−|) +

m

2π
log(ν|z − z̄−|)

−
m

2π
log(ν|z − z+|)−

m

2π
log(ν|z − z̄+)

−
2m

π

∫

R+

sin(kx1)e
k(−d+x2) sin(kpπ/ν)

k − ν
dk .
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Sketch of proof

use of the complex velocity potential
ω(z) = Φ(x1, x2) + iΨ(x1, x2) where Ψ is the stream function

uniqueness of a critical point

the critical point is a non-degenerate saddle point

Consider a trajectory (x̂1, x̂2) arriving at z+b , and assume that it
does not cross the x2 axis. Then:
1. it stays in a compact set of the quadrant
2. since we have a gradient flow, x̂1, x̂2 originate from a critical
point in the quadrant, which is necessarily distinct : a
contradiction.
The Rankine body thus defined contains the singularity (otherwise,
by the maximum principle applied to Ψ, it would contain a new
critical point).
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Numerical resolution of the shape optimization problem

A 2d Navier-Stokes simulation
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Numerical resolution of the shape optimization problem

Numerical approach to the shape optimization problem
Numerical results

We want now to obtain numerically “the” obstacle which
minimizes the wave resistance for a given area (and for a fixed
center of gravity)
Numerical approach :

Computation of the shape derivative for the integral problem

1

2
α(x)−

∫

Γ
∂n(x)G (x , y)α(y) dsy = U∞ n(x) · e1 , ∀x ∈ Γ .

Discretization on a regular grid

Level-set method
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A few words on shape derivative

The fundamental idea1,2,3 is to use a local parametrization of ω
with small deformations induced by a displacement field θ.

T

T -1

Γ  T(Γ)

1J. Hadamard, ”Mémoire sur le problème d’analyse relatif à l’équilibre des

plaques élastiques encastrées” Bull. Soc. Math. France (1907).



A few words on shape derivative

The fundamental idea1,2,3 is to use a local parametrization of ω
with small deformations induced by a displacement field θ.

T

T -1

Γ  T(Γ)

Expanding Rw ((Id + θ)(ω)) to the first order with respect to θ
yields

Rw ((Id + θ)(ω)) = Rw (ω) + R ′

w (ω)
︸ ︷︷ ︸

”shape derivative”

(θ) + o(||θ||W 1,∞) .

1J. Hadamard, ”Mémoire sur le problème d’analyse relatif à l’équilibre des

plaques élastiques encastrées” Bull. Soc. Math. France (1907).



A few words on shape derivative

The fundamental idea1,2,3 is to use a local parametrization of ω
with small deformations induced by a displacement field θ.

T

T -1

Γ  T(Γ)

Expanding Rw ((Id + θ)(ω)) to the first order with respect to θ
yields

Rw ((Id + θ)(ω)) = Rw (ω) + R ′

w (ω)
︸ ︷︷ ︸

”shape derivative”

(θ) + o(||θ||W 1,∞) .

Moreover, it is possible to build a “shape gradient” if R ′

w (ω)(θ)
has the form :

R ′

w (ω)(θ) =

∫

∂ω
θ · n (. . .)

︸︷︷︸

”shape gradient”

ds

1J. Hadamard, ”Mémoire sur le problème d’analyse relatif à l’équilibre des

plaques élastiques encastrées” Bull. Soc. Math. France (1907).



Shape derivative of the wave-making resistance

A lengthy calcuation yields the shape gradient

∇ΓRw (Γ) =

[

α(x)

∫

Γ
α(y)ℜ

(
∂nE(x)E(y)

)
dsy+∂τq(x) ∂τS(α)(x)

+ α(x) ∂τ S̃(∂τq)(x) + U ∂τq(x) τ(x) · e1

]

.

• S and S̃ are operators with kernels G and 2G (x , y)− G (x , y).
• α solves the state equation

1

2
α(x)−

∫

Γ
∂n(x)G (x , y)α(y)s.y = U∞ n1(x) , ∀x ∈ Γ

• q solves the adjoint equation

1

2
q(y)−

∫

Γ
∂n(x)G (x , y) q(x) dsx = 2

∫

Γ
ℜ
(
E(x)E(y)

)
α(x) dsx , ∀y ∈ Γ



The level-set method

We choose to represent Γ via its signed distance function:

d(x) =







−min
y∈Γ

|x − y | if x ∈ Ω−

min
y∈Γ

|x − y | if x ∈ Ω+

0 if x ∈ Γ

Features:

construction solving the eikonal equation4:

|∇d | = 1 , d |Γ = 0

normal vector: n = ∇d

closest point mapping: ΠΓ = Id − d∇d

normal displacements for one iteration: dn+1 = dn + δt θ ◦ ΠΓ

4Osher, S., R.Fedkiw, ”Level Set Methods and Ddynamics Implicit Surfaces.
Springer”, (2002)





Integration on curves/surfaces

How about integration on Γ?

C. Kublik et. al. proposed5 a method of integration that benefits
from the knowledge of the closest-point mapping.

Using the co-area formula, they established:

∫

Γ
f s. =

∫

Rn

f ◦ ΠΓ(x) J(x) δ(d(x)) x. , (4)

where J = 1− d∆d , and δ is a function satisfying
∫ ε
−ε δ(s) s. = 1,

supported in [−ε, ε].

When solving boundary integral equations with (4), we recover
boundary potentials that are already constant along normals!

They later exploited this fact to solve the Mullins-Sekerka problem6

5C. Kublik, N.M. Tanushev, R. Tsai (2013)
6C. Chen, C. Kublik, R. Tsai, 2015



Integration on curves/surfaces
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Validation on the method on Neumann-Kelvin (1)

We use Havelock’s exact solution for the immersed circular
cylinder, we scale ǫ with the mesh (with a weight given by |∇d |1,
as in7).

1.2

1.5

102

10 -4

10 -3

10 -2

 Fr=0.5
 Fr=1
 Fr=1.5

7B. Engquist, A.K. Tornberg, R. Tsai, ”Discretization of Dirac delta
functions in level set methods” Journal of Computational Physics 207 (1),
28-51



Validation on the method on Neumann-Kelvin (2)

We impose a deformation Ts = Id + sθ0 on the shape depending
on a parameter s, and we compare Rw (Ts(Γ0)) (black dotted line)
with its first order expansion at several points (coloured lines).
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Comparison of the wake of the initial and optimal

obstacles
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Comparison of the wake of the initial and optimal

obstacles
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