Exact nodal profile controllability for the Saint Venant system on networks with cycles

Günter Leugering
Joint work with
Tatsien Li and Kaili Zhuang (Fudan)
To appear at: JMPA 2019
(online since October 2018)

Benasque VIII

The special network for this presentation

Flux controls at D and E

Edges

$$\mathcal{I} := \{i = 1, \dots, 5\}$$

Nodes

$$\mathcal{J} := \{j = 1, \dots, 5\} = \mathcal{J}^M \cup \mathcal{J}^S$$

= $\{1, 2, 3\} \cup \{4, 5\}$

$$d_{ij} := egin{cases} -1 & ext{if the edge } i ext{ starts at node } j \ 1 & ext{if the edge } i ext{ ends at node } j \ 0 & ext{else} \end{cases}$$

Incidence matrix and incident edges

$$\mathcal{I}_j := \{i \in \mathcal{I} : d_{ij} \neq 0\}$$

The Saint Venant system

We consider the Saint Venant system on a network with a cycle:

$$\partial_t A_i + \partial_x (A_i V_i) = 0$$

$$\partial_t V_i + \partial_x S_i = 0,$$

where

 $A_i(t,x)$ $\hat{=}$ wetted cross section

 $V_i(t,x) =$ average velocity over the cross section

$$S_i(t,x) =: \frac{1}{2}V_i1^2 + gh_i(A_i) + gY_{bi}$$

 $h_i(t,x)$ $\hat{}$ water height

 Y_{bi} ê bottom profile

Initial, boundary and transmission conditions

We have initial conditions

$$A_i(0,x) = A_{i0}(x), \ V_i(0,x) = V_{i0}(x), \ x \in [0,\ell_i],$$

transmission conditions at the multiple nodes: here A #1, B #2, C #3; $\mathcal{J}^M:=\{1,2,3\}$

$$\sum_{i\in\mathcal{I}_j}d_{ij}(A_iV_i(t,v_j)=q_j(t),\ j\in\mathcal{I}_j,\ t\in[0,T]$$

$$S_i(t, v_j) = S_k(t, v_j), i, k \in \mathcal{I}_j$$

and flux boundary conditions at the simple nodes: here D #4, E#5; $\mathcal{J}^{\mathcal{S}} := \{4,5\}$

$$(A_iV_i)(t,v_j)=q_j(t),\ j\in\mathcal{J}^S,\ i\mathcal{I}_j,\ t\in[0,T].$$

Equilibrium and characteristics

We will always refer to an equilibrium state by (A_i^0, V_i^0) such that

$$|V_i^0| < \sqrt{gA_i^0h_i'(A_i^0)}$$

and (A_i, V_i) satisfy all homogeneous transmission and boundary conditions as well as C^1 -compatibility conditions at the nodes. We consider subcritical states A_i, V_i in the neighborhood of A_i^0, V_i^0 such that the eigenvalues of the system matrix are:

$$\lambda_i^1 = V_i - \sqrt{gA_ih_i'(A_i)} < 0 < \lambda_i^2 + \sqrt{gA_ih_i'(A_i)}$$

The corresponding characteristic equations are denoted as

$$t = f_i^1(x), \ t = f_i^2(x),$$

where f_i^1 is the incoming characteristic at x = 0 and f_i^2 the outgoing one.

Theorem: Existence and uniqueness of semi-global classical solutions

For any T > 0 and any given initial data $(A_{i0}, V_{i0}), i \in \mathcal{I}, q_j, j \in \mathcal{J}$ with small norms:

$$\sum_{i \in \mathcal{I}} \|A_{i0} - A_i^0, V_{i0} - V_i^0\|_{C^1(0,\ell_i)}, \ \|q_j - \sum_{i \in \mathcal{I}_j} d_{ij} A_i^0 V_i^0\|_{C^1(0,T)}, j \in \mathcal{J}^M$$

$$||q_j - A_i^0 V_i^0||_{C^1(0,T)}, j \in \mathcal{J}^S$$

such that C^1 -compatibility conditions hold at all nodes. Then the network IBVP above admits a unique semi-global classical solution (A_i, V_i) with small piecewise C1-norm on the domain $R(T) = \bigcup_{i \in \mathcal{I}} \{(t, x) | 0 \le t \le T, \ 0 \le x \le \ell_i \}$

Theorem: Nodal profile exact controllability

Lat T be larger than

$$T_0 := \max\left(\frac{\ell_1}{|\lambda_1^1(A_1^0, V_1^0)|}, \frac{\ell_2}{|\lambda_2^1(A_2^0, V_2^0)|}\right) + \max\left(\frac{\ell_4}{|\lambda_4^1(A_4^0, V_4^0)|}, \frac{\ell_5}{|\lambda_5^1(A_5^0, V_5^0)|}\right)$$

let $\bar{T} > T$ be given. Moreover, let initial data $(A_{i0}, V_{i0}), i \in \mathcal{I}, q_j, j \in \mathcal{J}$ be given as in the last theorem. Further more, we prescribe nodal data $(\tilde{A}_{iA}(t), \tilde{V}_{iA}(t)), i = 1, 2$ at the multiple node A(j = 1) for $T \leq t \leq \bar{T}$, satisfying the transmission conditions at A and having small norm $\|(\tilde{A}_{iA} - A_i^0, \tilde{V}_{iA} - V_i^0)\|_{C^1}$. Then there exist boundary controls q_4, q_5 with small norm $\|q_i - A_i^0 V_i^0\|_{C^1}$ such that the corresponding unique semi-global classical solution (A_i, V_i) with small piecewise C1-norm on the domain $R(T) = \bigcup_{i \in \mathcal{I}} \{(t, x) | 0 \leq t \leq \bar{T}, 0 \leq x \leq \ell_i\}$ satisfies the prfile condition at A:

$$(A_i(t,0), V_i(t,0) = (\tilde{A}_i(t), \tilde{V}_i(t)), \ T \leq t \leq \bar{T}, \ i = 1, 2.$$

Further travel times and outline of the proof

Proof: we define the following times:

$$T_1 := \max \sup_{\sum_{i=1,2} \|A_i - A_i^0, V_i - V_i^0\| \le \epsilon} \left(rac{\ell_1}{|\lambda_1^1(A_1, V_1)|}, rac{\ell_2}{|\lambda_2^1(A_2, V_2)|}
ight)$$

$$T_2 := \max \sup_{\sum_{i=4,5} \|A_i - A_i^0, V_i - V_i^0\| \le \epsilon} \left(\frac{\ell_4}{|\lambda_4^1(A_4, V_4)|}, \frac{\ell_5}{|\lambda_5^1(A_5, V_5)|} \right)$$

We set $\hat{T} := T_1 + T_2$ Let $\epsilon > 0$ be small enough such that $T > \hat{T}$. We proceed in 5 steps:

- (1) Forward solve of the whole system on $[0, \hat{T}]$, take traces at the nodes
- (2) Extend nodal data at node A and perform a rightway solve for edges
- #1 and #2, interchanging x and t
- (3) Include edge #3 using the nodal values at B,C complete the Kirchhoff conditions there
- (4) Perform reightway solves fro the edges #4. #5 (5) Read off f_4 , f_5 .

Proof: Step 1

We perform a forward solve on the entire system with boundary conditions at D and E:

$$(A_4V_4)(t,\ell_4)=f_4(t),\ (A_5V_5)(t,\ell_5)=f_5(t)$$

, where f_i are arbitrary $C^1(0, \hat{T})$ functions with small norm. We denote the corresponding unique solution of this problem by

$$(A_i^f(t,x), V_i^f(t,x)), i = 1, ..., 5, (t,x) \in R(\hat{T})$$

We can now uniquely determine the nodal values:

$$A: (A_{i}^{f}, V_{i}^{f})(t, 0) =: (A_{iA}^{f}(t), V_{iA}^{f}(t)), t \in [0, \hat{T}], i = 1, 2$$

$$B: (A_{1}^{f}, V_{1}^{f})(t, \ell_{1}) =: (A_{1B}^{f}(t), V_{1B}^{f}(t)),$$

$$(A_{i}^{f}, V_{i}^{f})(t, 0) =: (A_{iB}^{f}(t), V_{iB}^{f}(t)), t \in [0, \hat{T}], i = 3, 4$$

$$S_{1}(t, \ell_{1}) = S_{3}(t, 0) = S_{4}(t, 0) =: S_{B}^{f}(t), t \in [0, \hat{T}]$$

$$C: (A_{i}^{f}, V_{i}^{f})(t, \ell_{i}) =: (A_{iC}^{f}(t), V_{iC}^{f}(t)), t \in [0, \hat{T}], i = 2, 3$$

$$(A_{5}^{f}, V_{5}^{f})(t, 0) =: (A_{5C}^{f}(t), V_{5C}^{f}(t)),$$

$$S_{2}(t, \ell_{2}) = S_{3}(t, \ell_{3}) = S_{5}(t, 0) =: S_{C}^{f}(t), t \in [0, \hat{T}]$$

We now extend the nodal data at node A: Since $T > \hat{T}$ there exist $C^1(0, \bar{T})$ functions $(a_{iA}(t), v_{iA}(t)), i = 1, 2$ with small norm such that

$$(a_{iA}(t), v_{iA}(t)) = egin{cases} (A_{iA}^f(t), V_{iA}^f(t)) & 0 \leq t \leq \hat{\mathcal{T}} \ (ilde{A}_{iA}(t), ilde{V}_{iA}(t)) & T \leq t \leq \bar{\mathcal{T}} \end{cases}$$

We then change the role of x and t and use the extended data as initial conditions at x = 0 for i = 1, 2:

$$(A_i, V_i)(t, 0) = (a_{iA}(t), v_{iA}(t)), \ 0 \le t \le \bar{T}$$

and take as boundary conditions

$$t = 0 : A_i V_i(0, x) = A_{i0}(x) V_{i0}(x),$$
 $0 \le x \le \ell_i$
 $t = \overline{T} : A_i V_i(\overline{T}, x) = g_i(x),$ $0 \le x \le \ell_i$

We now do a rightway solve for the edges #1, #2 and obtain a unique C^1 solution $(A_i, V_i) = (A_i(t, x), V_i(t, x)), i = 1, 2$ on $R_i(\overline{T})$. In fact, $(A_i(t, x), V_i(t, x))$ and $(A_i^f(t, x), V_i^f(t, x))$ satisfy simulaneously the conditions

$$A_i(t,0)V_i(t,0) = A_{i0}V_{i0}, \ 0 \le x \le \hat{T},$$

 $(A_i(0,x), V_i(0,x)) = (A_{iA}^f(t), V_{iA}^f(t)), \ 0 \le t \le \ell_i$

 $(A_1, V_1) = (A_1^f, V_1^f)$ on $R_1(T_2)$

We can in particular uniquely determine the values $(A_1(t,x), V_1(t,x))$ and $S_1(t,x)$ at the node B (j=2):

$$egin{align} (A_1(t,\ell_1),V_1(t,\ell_1)&=(A_{1B}(t),V_{1B}(t)), &0 \leq t \leq ar{\mathcal{T}} \ S_1(t,\ell_1)&=S_B(t), &0 \leq t \leq ar{\mathcal{T}} \ \end{pmatrix}$$

We notice that we also have

$$(A_{1B}(t), V_{1B}(t)) = (A_{1B}^f(t), V_{1B}^f(t)), \qquad 0 \le t \le T_2$$
 $S_B(t) = S_B^f(t), \qquad 0 \le t \le T_2$

We can follow the same procedure for channel #2 $(A_2(t,x), V_2(t,x))$ and $S_2(t,x)$ at the node C (j=3):

$$egin{align} (A_2(t,\ell_2),V_2(t,\ell_2)) &= (A_{2C}(t),V_{2C}(t)), & 0 \leq t \leq ar{T} \ S_2(t,\ell_1) &= S_C(t), & 0 \leq t \leq ar{T} \ \end{pmatrix}$$

We notice that we also have

$$(A_{2C}(t), V_{2C}(t)) = (A_{2C}^f(t), V_{2C}^f(t)), \qquad 0 \le t \le T_2$$

 $S_C(t) = S_C^f(t), \qquad 0 \le t \le T_2$

We are now in the position to handle channel #3: Indeed, we have two boundary conditions

$$S_3(t,0) = S_B(t), \ S_3(t,\ell_3) = S_C(t), \ 0 \le t \le \bar{T}$$

with the original initial conditions. There exists a unique solution $(A_3(t,x), V_3(t,x))$ with small norm on

$$R_3(\hat{T}) := \{(t, x) | 0 \le t \le \bar{T}, 0 \le x \le \ell_3 \}$$

Thus, we can evaluate at nodes B and C:

$$(A_3(t,0), V_3(t,0)) = (A_{3B}(t), V_{3B}(t))$$

 $(A_3(t,\ell_3), V_3(t,\ell_3)) = (A_{3C}(t), V_{3C}(t)),$

for $0 \le t \le \overline{T}$. We have the same data for (A_{3B}^f, V_{3B}^f) and (A_{3C}^f, V_{3C}^f) , respectively.

Finally, we look at the channels #4 and #5:

$$(A_4(t,0), V_4(t,0)) = (A_{4B}(t), V_{4B}(t)), \ 0 \le t \le \overline{T}$$

 $(A_{4B}(t), V_{4B}(t)) = (A_{4B}^f(t), V_{4B}^f(t)), \ 0 \le t \le T_2.$

We then solve the rightward IBVP for channel #4 witht initial data above and boundary conditions

$$t = 0 : A_4 V_4(0, x) = A_{40} V_{40}(x), \ 0 \le x \le \ell_4$$

 $t = \overline{T} : A_4 V_4(\overline{T}, x) = g_4(x), \ 0 \le x \le \ell_4$

where, again, $g_4(x)$ is an arbitrary C^1 function with small norm. We obtain a uniquel solution (A_4, V_4) on $R_4(\bar{T})$. We can prove that the solution satisfies the original initial data. Indeed, the solutions (A_4, V_4) and (A_f^f, V_4^f) satisfy simultaneously the same rightway problem with the nitial condition $A_4V_4(0,x)=g_4(x)$

Step 4 and 5

$$(A_4(0,x), V_4(0,x)) = (A_4^f(0,x), V_4^f(0,x)) = (A_{40}(x), V_{40}(x)), 0 \le x \le \ell_4$$

The same procedure applies to channel #5!

Finally, we collect all solutions $A_i(t,x)$, $V_i(t,x)$ $i=1,\ldots,5$ and then take the traces at

$$A_4V_4(t,\ell_4) =: f_4(t), A_5V_5(t,\ell_5) =: f_5(t)$$

Thank you for your attention!