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The special network for this presentation

Edges
Z:={i=1,...,5}

Nodes
[ _ M S
3 ={1,2,3} U {4,5}
4 5 (—1  if the edge i starts at node j
| dij =141 if the edge / ends at node j
0 ® 0 else
(D: j=4) (E: j=5)
Flux controls at D and E Incidence matrix and incident edges

IJ'ZZ{I'EIZd,'j#O}
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The Saint Venant system

We consider the Saint Venant system on a network with a cycle:
DA + (A Vi) = 0
0: Vi + 0x5i = 0,
where

Ai(t, x)= wetted cross section

V;(t, x)= average velocity over the cross section
1
Si(t, x) =: 5 Vi1? + ghi(A;) + gYoi

h;(t,x)= water height
Ypi= bottom profile
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Initial, boundary and transmission conditions

We have initial conditions
Ai(0,x) = Ajo(x), Vi(0,x) = Vio(x), x € [0, €],

transmission conditions at the multiple nodes: here A #1, B #2, C # 3;
JM.=1{1,2,3}

Z d,J(A,V,(t, VJ) — CIj(t), ./ S "ZJ'7 (S [07 T]

i€z

Si(t, VJ') = Sk(t, Vj)a i,k €1

and flux boundary conditions at the simple nodes: here D #4, E#5;
J° = {4,5}

(AVi)(t,v) = g5(t), j € TS, iT;, t€ [0, T
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Equilibrium and characteristics

We will always refer to an equilibrium state by (A?, V?) such that

VO] < \/gAh(AD)

and (A;, V;) satisfy all homogeneous transmission and boundary
conditions as well as Cl-compatibility conditions at the nodes. We
consider subcritical states A;, V;) in the neighborhood of A?, V? such
that the eigenvalues of the system matrix are:

A= V- JgAB(A) <0 < AP+ \/gAihi(A)
The corresponding characteristic equations are denoted as
t = f}l(x)a t = f;'2(X)7

where f! is the incoming characteristic at x = 0 and £ the outgoing one.
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Theorem: Existence and uniqueness of semi-global

classical solutions

For any T > 0 and any given initial data (Ajo, Vio),i € Z, qj,j € J with
small norms:

> A0 =AY, Vio = Vo, lag =D diAVP2 o, mynd € T
i€z iel;

lq; — A?ViO”Cl(O,T)aj cJ?

such that Cl-compatibility conditions hold at all nodes. Then the
network IBVP above admits a unique semi-global classical solution
(A;, V;) with small piecewise C1-norm on the domain

R(T) =Uiez{(t,x)[0 <t < T,0 < x </}
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Theorem: Nodal profile exact controllability

Lat T be larger than

‘— max 61 62 maxXx 64 65
To = (\)\ LAY VO] [AL(AY, v20)|>+ (\A 1(A3, VI X5 (A3, V5O)|)

let T > T be given. Moreover, let initial data (Ajo, Vio),i € T, qi,.J €J
be given as in the last theorem. Further more, we prescribe nodal data
(Aia(t), Via(t)), i = 1,2 at the multiple node A (j =1) for T<t < T,
satisfying the transmission conditions at A and having small norm

[(Aia — A%, Vig — VO)||c1. Then there exist boundary controls g4, gs with
small norm ||g; — A%V?||c: such that the corresponding unique
semi-global classical solution (A;, V;) with small piecewise C1-norm on
the domain R(T) = Ujez{(t,x)[0 <t < T, 0 < x < {;} satisfies the
prfile condition at A:

(Ai(t,0), Vi(t,0) = (Ai(t), Vi(t)), T<t< T, i=12.
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Further travel times and outline of the proof

Proof: we define the following times:

14
T1 := max sup ( 2 2 )

S A A viove<e \[AL(AL, V1)I7 [A3(Az, V2))

12 12
T5 := max sup ( - S )
S as A—AY Vi— VO <e IMi(Ag, V)| [AE(As, Vs)|

We set T := T1+ T, Let € > 0 be small enough such that T > T. We
proceed in 5 steps:

(1) Forward solve of the whole system on [0, T], take traces at the nodes
(2) Extend nodal data at node A and perform a rightway solve for edges
#1 and #2, interchanging x and t

(3) Include edge #3 using the nodal values at B,C complete the
Kirchhoff conditions there

(4) Perform reightway solves fro the edges #4. #5 (5) Read off fy, 5.
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Proof: Step 1

We perform a forward solve on the entire system with boundary
conditions at D and E:

(AqVa)(t, la) = fa(t), (AsVs)(t,ls) = f5(t)

. where £ are arbitrary C1(0,(T)) functions with small norm. We denote
the corresponding unique solution of this problem by

(Af(t,x), Vi(t,x)), i=1,....5,(t,x) € R(T))
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Step 1

We can now uniquely determine the nodal values:

A :(AF VEY(t,0) =: (Al (¢), VIi(1),te 0, T],i=1,2
B (A7, V{)(t, 61) = (Alg(t), Vip(1)),
(AF, V)(£,0) =: (Als(t). Vis(t)),t €0, T],i = 3,4
S1(t,01) = S3(t,0) = S4(t,0) =: SB(t), t € [0, T]
C (AL, VH)(t,0) =: (Al (1), VE(1)),t €0, T],i = 2,3
(AL, VI )(t,0) =: (ALc(1), Vi (1)),
So(t,0r) = S5(t, 03) = S5(t,0) =: SE(t),t € [0, T]
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Step 2

We now extend the nodal data at node A: Since T > T there exist
C1(0, T) functions (a;a(t), via(t)), i = 1,2 with small norm such that

(AL(t), VA(t)) 0<t<T

(aia(2), via(t) = {(Z\,-A(t), Va(t) T<t<T

We then change the role of x and t and use the extended data as initial
conditions at x =0 for 1 = 1, 2:

(Ai, Vi)(t,0) = (aia(t), via(t)), 0 <t < T
and take as boundary conditions

t =0:A;V;i(0,x) = Ajo(x) Vio(x), 0 < x <Y,
t =T :AV(T,x) = gi(x), 0<x <Y
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Step 2

We now do a rightway solve for the edges #1, #2 and obtain a unique
C! solution (A;, Vi) = (Ai(t, x), Vi(t,x)),i =1,2 on Ri(T).

In fact, (A;(t,x), Vi(t,x)) and (Af(t,x), VI (t,x)) satify simulaneously
the conditions

Ai(t,0)Vi(t,0) = AVip, 0 < x < T,
(Ai(0,x), Vi(0,x)) = (Aia(t), Via(t)), 0 < £ < ¥,

T — (A1, V1) = (AL Vlf)
t = f(x) on Ry(T3)

1> —/ fo

»

Ri(T2) = {(t,x)I0 <t < f(x),0 < x < 4y}
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Step 2

We can in particular uniquely determine the values (A;(t, x), Vi(t, x))
and S$1(t, x) at the node B (j = 2):

(A1(t, 1), Vi(t, 1) = (Ais(t), Vag(t)), 0<t<T

Si(t,4) = Sg(t), 0<t<T
We notice that we also have

(A1s(t), Vis(t)) = (Alp(t), Vip(1)), 0<t< T,

Sg(t) = SE(1), 0<t< T,
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Step 2

We can follow the same procedure for channel #2 (Ax(t, x), Va(t, x))
and S(t, x) at the node C (j = 3):

(A2(t7‘€2)7 VQ(t7£2)) — (AZC(t)a VZC(t))7 0 S t S 7_-

So(t,41) = Sc(t), 0<t<T
We notice that we also have

(Azc(t), Vac(t)) = (Abe(t), Vac(t)), 0<t< T,

Sc(t) = SE(t), 0<t<T
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Step 3

We are now in the position to handle channel #3:
Indeed, we have two boundary condtions

53(t, 0) = SB(t), 53(t,£3) = Sc(t), 0<t< 7__

with the original initial conditions. There exists a unique solution
(As(t, x), Va(t, x)) with small norm on

Ry(T) = {(t,x)0<t< T,0<x< {3}
Thus, we can evaluate at nodes B and C:

(As(t,0), V5(t,0)) = (Ass(t), Vas(t))
(As(t,43), Va(t, £3)) = (Asc(t), Vac(t)),

for 0 < t < T. We have the same data for (AL, Vi5) and (AL, Vi),
respectively.
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Step 4

Finally, we look at the channels #4 and #5:

(A4(t,0), Va(t,0)) = (Asr(t), Vag(t)), 0<t < T
(Ass(t), Vag(t)) = (Asp(t), Vig(t)), 0 <t < To.

We then solve the rightward IBVP for channel #4 witht initial data
above and boundary conditions

t=0:A, V4(0,X) = Auo V40(X), 0< x< /¥,
t = 7__ ZA4V4(7__,X) = g4(X), 0 < x < 64

where, again, g4(x) is an arbitrary C! function with small norm. We
obtain a uniquel solution (A4, V4) on R4(T). We can prove that the
solution satisfies the original initial data. Indeed, the solutions (A4, V)
and (A%, V) satisfy simultaneously the same rightway problem with the
nitial condition Az V4(0, x) = ga(x)
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Step 4 and 5

£ = FH(x)

/ &

(A4(O7X)7 V4(07X)) — (AZ(va)v V4f(07X)) — (A40(X)7 V40(X))70 Sx <ty

The same procedure applies to channel #5!

Finally, we collect all solutions A;(t, x), Vi(t,x) i =1,...,5 and then
take the traces at

A4V4(t,€4) = ﬂ;(t), As V5(t,1€5) = f5(t)
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Thank you for your attention!
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