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Controllability of PDE’s. Introduction.

We consider the control problem of the heat equation in an open bounded set Ω ⊂ Rn
with a boundary control h: :

∂tu−∆u = 0 Ω× (0, T )
u = h1IΓ0 Γ× (0, T )

u(0) = u0 Ω

Where

The set Γ0 ⊂ Γ is the control zone,

The initial condition u0 is given.

The function h is the control.

We intend to impose that u(T ) would take a prescribed value, choosing an adequate h.
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Controllability of PDE’s. Introduction.

Some controllability properties:

1 Exact Controllability. Any state u(T, ·) ∈ X can be reached by a solution of the
system with some control h ∈ H.

2 Null Controllability. Any initial condition u0 ∈ X can be driven to u(T, ·) = 0.
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Controllability of PDE’s. Introduction.

Our model: heat equation.

1 Exact Controllability. Any state u(T, ·) ∈ X can be reached by a solution of the
system with some control h ∈ H.

Not satisfied in X = L2(Ω), due to regularizating effect .

2 Null Controllability. Any initial condition can be driven to u(T, ·) = 0.
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Duality.

We consider the adjoint equation

(P ∗)


−∂tϕ−∆ϕ = 0 Ω× (0, T )

ϕ = 0 Γ× (0, T )
ϕ(T ) = ϕT Ω

Then we have∫
Ω

u0(x)ϕ(0, x)dx−
∫

Ω

u(T, x)ϕT (x)dx =

∫ T

0

∫
Γ0

h
∂ϕ

∂n
dxdt

∀ϕT ∈ L2(Ω),∀u0 ∈ L2(Ω)
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Duality.

For instance, null controllability is equivalent to

For any u0 ∈ L2(Ω), there exists h ∈ L2(0, T ) such that∫
Ω

u0ϕ(0, x)dx =

∫ T

0

∫
Γ0

h
∂ϕ

∂n
dxdt

∀ϕT ∈ L2(Ω),

The key idea of moments method:

To use ϕ solutions from ϕT = the eigenfunctions of the equation.
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One dimension. moments method.
If Ω = (0, π) and Γ0 = {0}, from the characterization of null controllability:

∫
Ω

u0ϕ(x, 0)dx =

∫ T

0

h(t)
∂ϕ

∂n
(t, 0)dt ∀ϕT ∈ L2(Ω)

taking ϕT = sin(nx) eigenfunction of −∆ with λn = n2 as eigenvalue, we have

ϕ = e−n
2(T−t) sin(nx),

and then

∫
Ω

u0(x)e−n
2T sin(nx)dx =

∫ T

0

h(t)n cos(0)e−n
2(T−t)dt ∀n ∈ N

This is, (change of var: t→ T − t)

e−n
2T

∫
Ω

u0(x) sin(nx)dx︸ ︷︷ ︸
an

= n

∫ T

0

h̃(t)e−n
2tdt ∀n ∈ N
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Moments method for heat equation.

Recall that u0 ∈ L2(Ω) if and only if {an} ∈ `2, since {sin(nx)} is a basis for L2(0, π).

We look for a function h̃ ∈ L2(0, T ) (the control) such that

∫ T

0

h̃(t)e−n
2tdt =

e−n
2T

n
an ∀n ∈ N

This means, we have to express the space L2(0, T ) decomposed by functions

e−λnt, n ∈ N

The functions e−n
2t are a basis for L2(0, T )?
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Hector Fattorini, David Russell.

Figure : Héctor Fattorini

Figure : David L. Russell
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Hector Fattorini, David Russell.

Main ingredients

If
∑

1
λn

<∞ then the family {e−λnt} is minimal en L2(0, T ).

i.e. e−λnt /∈ 〈e−λkt : k 6= n〉.

If |λm − λk| ≥ ρ|m− k| (gap condition) then

dist(e−λnt, 〈e−λkt : k 6= n〉) ≤ Ceελn .

This is the case for λn = n2.
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Moments method.

In Fattorini-Russell (1971), using properties of families of real exponentials in L2(0, T ),
it was proved the existence of a sequence {θn} which is a biorthogonal family to
{e−λnt}.

∫ T

0

θn(t)e−λmtdt = δn,m,

In this way, the control h can be obtained by

h̃(t) =
∑
n

ãnθn(t)
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Fatrorini-Russell.

Theorem (Fattorini-Russell 1971)
One-dimensional heat equation is null-controllable, for any T > 0.

Since then, this method has been applied to several control problems for different
equations in dimension one.
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Fourth order parabolic equation.

We consider the following Kuramoto-Sivashinshky (KS) control system
yt + yxxxx + λyxx = 0, x ∈ (0, 1), t > 0,
y(t, 0) = h(t), y(t, 1) = 0, t > 0,
yx(t, 0) = 0, yx(t, 1) = 0, t > 0,

(1)

where the state is given by y = y(t, x) and the time-dependent functions h1, h2 are
boundary controls. This equation was derived as a model for phase turbulence and
plane flame propagation.
We have some results for linear version of KS equation:

Theorem (Cerpa-Guzmán-M 2017)
Consider h2 = 0 and λ > 0. We show that if

N = {4k2π2} ∪ {(n2 +m2)π2}

then the linear version of system (8) is null-controllable if and only if λ ∈ R+ \N .

PROFF: If wn is the eigenfunction, w′n(0) 6= 0 if and only if λ ∈ R+ \N .
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Boundary control of coupled system

Consider the boundary control of coupled system:
ut − uxx = v
vt − dvxx = 0
u(t, 0) = u(t, L) = 0,
v(t, 0) = h(t), v(t, L) = 0

(2)

( [Ammar; Benabdallah; González-Burgos; de Teresa. Minimal time for the null
controllability ... J. Funct. Anal. 267 (2014)])

In this case, the eigenvalues are

Λd = {dk2,m2}k,m∈N

The controllability of the system depends on d.
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Boundary control of coupled system

Directly, we have:

Theorem

The system is not controlable if
√
d ∈ Q.

PROFF: In that case dk2 = m2 for some k,m ∈ N and then {e−λnt} is not minimal.

For
√
d /∈ Q?

We need:
1 The family {e−λt} to be minimal. (OK iff

√
d /∈ Q).

2 An estimate of the norm ‖θn‖L2 .

The norm depends on how close are the elements of Λ = {λn} one from each other.
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Boundary control of coupled system
It was obtained ([Ammar et al, (2014)]) an explicit formula

c({λk})

called the condensation index, satisfying

‖θn‖L2 ≤ Cεe(c(Λ)+ε)λn

where

c(Λ) = index of condensation of the sequence Λ

Now, recalling that

h̃(t) =
∑
n

e−λnT anθn(t)

we have that, if T ≥ c(Λ), then

‖θn‖L2 ≤ Cεe(c(Λ)+ε−T )λn

A minimal time for controllability for the case T0 = c(Λ) > 0.
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Boundary control of coupled system

Theorem
1 System is null-controllable if T > T0.
2 System is not null-controllable if T < T0.

Theorem

For the case Λd = {dk2,m2}k,m∈N:
1 c(Λ) = 0 for almost all d ∈ (0,∞) (in particular for algebraic numbers

√
d).

2 For each T0 ∈ [0,∞], there exists d > 0 such that c(Λ) = T0.
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Boundary control of coupled system

Remark:

c({λk}) := lim sup
k→∞

ln 1
|E′(λk)|

λk
, (3)

where

E(z) =
∏
k∈N

(
1− z2

λ2
k

)
, z ∈ C. (4)
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Boundary control of coupled system

Our problem: We study the boundary control of coupled system:
ut + uxxxx = v
vt − dvxx = 0
u(t, 0) = uxx(t, 0) = 0,
u(t, L) = uxx(t, L) = 0,
v(t, 0) = h(t), v(t, L) = 0

(5)

In this case, the eigenvalues are

Λd = {dk2,m4}k,m∈N

The controllability of the system depends on d.
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Boundary control of coupled system

A first result:

Theorem (Cerpa, Carreño, M (preprint))

System (5) is not (approximate) controlable if
√
d ∈ Q.

PROFF: In that case dk2 = m4 for some k,m ∈ N and then {e−λnt} is not minimal.

What about null-controllability for
√
d /∈ Q ?

We need:
1 The family {e−λt} to be minimal. (OK iff

√
d /∈ Q).

2 An estimate for the norm ‖θn‖.

The norm depends on how close are the elements of Λ = {λn} one from each other.
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Boundary control of coupled system

We have to compute E(z) =
∏
k∈N

(
1− z2

d2k4

)(
1− z2

k8

)
.

Again, the elements of Λd = {dk2,m4}k,m∈N are close one from each other iif
√
d is

well approximated by rationals.

The irrationality measure (or Liouville-Roth constant) of x is the supremum of
µ ∈ R such that

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

qµ

for an infinite number of integers p, q, with q > 0.

It is known that:
µ = 1 for all rational x.
µ ≥ 2 for all irrational x.
µ = 2 for all irrational algebraic x (Roth, 1955),
µ(φ) = 2, µ(e) = 2,
µ(π) ≤ 7.6063085 (Salikhov 2008).
There exist numbers with µ =∞ (Liouville numbers).

If µ <∞ then OK
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Hence we get:

Theorem (Cerpa, Carreño, M. (preprint))

Given
√
d an irrational number, then

µ(
√
d) <∞ =⇒ c({dk2,m

4 : k,m ∈ N}) = 0.

And then

Theorem (Cerpa, Carreño, M. (preprint))

Suppose
√
d is an irrational number with finite irrationality measure. Then

system (5) is controlable with one boundary control for any T > 0.

Given any T0 ∈ [0,∞], there exists d ∈ R+ such that c(Λ) = T0. Then system (5):
1 Is controlable if T > T0,
2 Is not controllable if T < T0.
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Fourth order parabolic equation.

We consider the following Kuramoto-Sivashinshky (KS) control system
yt + εyxxxx + vyx = 0, x ∈ (0, 1), t > 0,
y(t, 0) = h1(t), y(t, 1) = 0, t > 0,
yx(t, 0) = h2(t), yx(t, 1) = 0, t > 0,

(6)

We are interested in the controllability when

ε→ 0

Known related results:

Carreño-Guzmán (2016). When ε→ 0, the cost of the control remains bounded if

T ≥ 40L/|v|.

Rmk: Hypothesis seems to be not sharp (The natural minimal time: T0 = L/|v|).

Main tools of the previous results: Carleman estimates.
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Second order, limiting case.

The corresponding second-order problem:

∂tu− ε∆u+ v · ∇u = 0 (7)

when ε→ 0.
Known related results:

Guerrero-M-Osses (2007).nD Cost of the approximate (regional) controllability.

Guerrero-Coron (2007). 1D: The cost of null controllability remains bounded if
T ≥ 58L/|v|.
Guerrero-Lebeau (2007). nD: The cost of the control remains bounded under
geometric conditions and T large enough.

Glass (2010)]. 1D: The cost of the control remains bounded if T ≥ 6L/|v|.
Lissy (2015)]. 1D: The cost of the control remains bounded if T > 4, 2L/v for
v > 0 and T > 6, 1L/|v| for v < 0. If T < 2

√
2L
|v| then the cost of the control is not

bounded as ε→ 0.

Darde, Everdoza (2017) 1D: The cost of the control remains bounded if
T > 3, 33L/v for v > 0 and T > 5, 33L/|v| for v < 0.
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Back to our problem.

Recall the Kuramoto-Sivashinshky (KS) equation

yt + εyxxxx + vyx = 0, (8)

Recall that we look a control

h̃(t) =
∑
n

ãnθn(t)

where {θn} is such that 〈
θn, e

−λmt
〉

= δn,m

Difficulty: diagonalization of the differential operator. Instead we deal with

yt + εyxxxx + δyxxx + vyx = 0, (9)
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More precisely:
yt + εyxxxx + δyxxx + vyx = 0, (t, x) ∈ (0, T )× (0, L),

y(t, 0) = 0, y(t, L) = 0, t ∈ (0, T ),
By(t, 0) = h(t), By(t, L) = 0, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L),

(10)

where we have defined δ = −2ε2/3M1/3 and By = 2εyxx + δyx.

and the adjoint system is given by


−ϕt + εϕxxxx − δϕxxx − vϕx = 0, (t, x) ∈ (0, T )× (0, L),

ϕ(t, 0) = 0, ϕ(t, L) = 0, t ∈ (0, T ),
B∗ϕ(t, 0) = 0, B∗ϕ(t, L) = 0, t ∈ (0, T ),

ϕ(T, x) = ϕ0(x), x ∈ (0, L),

(11)
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Theorem
The eigenfunctions are

ek(x) = eAx sin (kx) (12)

with k ∈ N\{0} and corresponding eigenvalues

λk := ε(k2 +B)2 − C. (13)

We follow the work:
Olivier Glass, A complex-analytic approach to the problem of uniform controllability of a
transport equation in the vanishing viscosity limit, Journal of Functional Analysis 258,
2010.
They study the analogous problem for

−εyxx + vyx = 0.

Alberto Mercado (UTFSM ) Controllability of 4th order PDEs Benasque, August 2019 27 / 31



We need θn such that ∫ T

0

θn(t)e−λmtdt = δn,m ∀m,n.

PROOF:

1 If Jn = F(θn), then

Jn(−iλk) = δkn

2 We define Φ having simple zeros exactly at {−iλk : k ∈ N\{0}}.
3 For n ∈ N we define

Jn(z) :=
Φ(z)

Φ′(−iλn)(z + iλn)
.

4 Then, to use the Paley-Wiener Theorem:

θ ∈ L2(−A,A)⇔ |F(θ)(z)| ≤ CeA|z|
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We need θn such that ∫ T

0

θn(t)e−λmtdt = δn,m ∀m,n.

PROOF:

1 If Jn = F(θn), then

Jn(−iλk) = δkn

2 We define Φ having simple zeros exactly at {−iλk : k ∈ N\{0}}.
3 For n ∈ N we define

Jn(z) :=
Φ(z)

Φ′(−iλn)(z + iλn)
f(z).

4 Then, to use the Paley-Wiener Theorem:

θ ∈ L2(−A,A)⇔ |F(θ)(z)| ≤ CeA|z|

5 Beurling-Malliavin multiplier.

Alberto Mercado (UTFSM ) Controllability of 4th order PDEs Benasque, August 2019 29 / 31



Theorem (Lopez-García, M, (preprint))

Given L, T > 0, there exist c, C > 0 s.t. ∀ y0 ∈ L2(0, L), ε ∈ (0, 1), there is
u ∈ L2(0, T ) s.t. the solution y satisfies

y(·, T ) = 0 ∈ L2(0, L), ‖u‖L2(0,T ) ≤ C exp(−c/ε1/3)
∥∥y0
∥∥
L2(0,L)

,

whenever
T > 4, 57L/v, M > 0; T > 6, 19L/|v|, v < 0.

Future/ongoing work:

The consequences on the cost of fast controls.

To deal with the original equation.
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Thanks!

¡Gracias!
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