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1. Quantum observers
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Quantum observers

What is an observer? In general, it could be defined as any
system with the ability to perform measurements.

Special relativity: Observer ∼ inertial reference frame.

Quantum mechanics: Observer ∼ any system with the
ability to perform quantum measurements. In particular, any
system is a quantum system.
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Figure: Observer in special
relativity - Inertial observer
(Apollo 11, 16 July 1969)

Figure: Quantum mechanical
observer - Quantum system
(Schrödinger’s cat)
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Figure: Quantum observer - Inertial observer described by quantum
mechanics
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2. Observers as oriented time-like geodesics
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However, we need something more concrete to work with. We take
the idea of observer from special relativity (SR), so for us

Definition (Classical observer)

Given a predetermined spacetime M (smooth manifold endowed
with a Lorentzian metric and the associated Levi-Civita
connection), a classical observer in M is just an oriented
time-like geodesic.

It is clear that oriented time-like geodesics in M are exactly
worldlines of free particles, so this definition agrees with the one
from SR. We denote the space of oriented time-like geodesics in M
by L(M).
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In particular, in (1+1)D Minkowski (flat) spacetime, time-like
geodesics are just straight lines inside the light cone.
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Figure: Lightcone and time-like geodesics

Any two observers inside the lightcone are causally connected.
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Unfortunately, the space of oriented time-like geodesics L(M) for a
general spacetime M is a very complicated object 1. For example:

L(M) is a topological space, but not necessarily Hausdorff.

Even if L(M) is Hausdorff, the topological manifold could not
admit an smooth atlas (and thus not be a smooth manifold).

However, if M is a simply connected Lorentzian space of
constant curvature, then the space L(M) is a smooth manifold 2.
Moreover, L(M) is a homogeneous space.

In particular, we are interested here in (3+1)D Minkowski
spacetime M3+1, which satisfies this condition. So both M3+1 and
L(M3+1) are homogeneous spaces.

1Beem, 1991.
2Alekseevsky, Guilfoyle, Klingenberg, 2011.
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Let us briefly recall the notion of action of a Lie group on a
manifold and of a homogeneous space.

Definition

An action of a Lie group G on a smooth manifold M is a
homomorphism α : G → Diff(M) such that the map
α(g) : M → M,m→ α(g)m is smooth for all g ∈ G . We say that
an action α is transitive if for all m, n ∈ M, there exists at least
one element g ∈ G such that α(g)m = n. A manifold endowed
with a transitive Lie group action is called a homogeneous space.
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Homogeneous spaces are identified with certain coset spaces in the
following sense:

Theorem

Let α be a transitive action of a Lie group G on a smooth
manifold M. Then for any m ∈ M the map

βm : G/Hm → M

gHm → αg (m)

is a diffeomorphism which commutes with the action of G . (It is
assumed that the group G acts on G/Hm by left translations.)
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3. M3+1 and L(M3+1) as homogeneous spaces
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Let g = Lie(G ) the Lie algebra of the Poincaré Lie group, with
commutators

[Ja, Jb] = εabcJc , [Ja,Pb] = εabcPc , [Ja,Kb] = εabcKc ,

[Ka,P0] = Pa, [Ka,Pb] = δabP0, [Ka,Kb] = −εabcJc ,
[P0,Pa] = 0, [Pa,Pb] = 0, [P0, Ja] = 0.

where Pα are the generators of translations, Ja of rotations and Ka

of boosts.
G acts transitively in both M3+1 and L(M3+1), with the stabilizer
of a point (Lorentz subalgebra l ' so(3, 1)), given by

[Ja, Jb] = εabcJc , [Ja,Kb] = εabcKc , [Ka,Kb] = −εabcJc .

Also, the stabilizer of a worldline h ' so(3)× R is

[P0, Ja] = 0, [Ja, Jb] = εabcJc .
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Minkowski spacetime M3+1

We define local coordinates

(xα, ξa, θa) : U ⊂ G → R10

on the Poincaré group G by the inverse map of

GM = exp x0P0 exp x1P1 exp x2P2 exp x3P3×
× exp ξ1K1 exp ξ2K2 exp ξ3K3 × exp θ1J1 exp θ2J2 exp θ3J3 ,

and so the Lorentz subgroup L is parametrized by

L = exp ξ1K1 exp ξ2K2 exp ξ3K3 exp θ1J1 exp θ2J2 exp θ3J3.

So, Minkowski spacetime is M3+1 = GM/L with coordinates

xα : U ′ ⊂M3+1 = G/L→ R4
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Space of worldlines L(M3+1)

We define local coordinates

(ηa, yα, φa) : U ⊂ G0 → R10

on the Poincaré group G by the inverse map of

GW = exp η1K1 exp y1P1 exp η2K2 exp y2P2 exp η3K3 exp y3P3×
× expφ1J1 expφ2J2 expφ3J3 exp y0P0.

and so the stabilizer of a worldline H is parametrized by

H = expφ1J1 expφ2J2 expφ3J3 exp y0P0.

The space of worldlines is W = L(M3+1) = GW /H with
coordinates

(yα, ηa) : U ′ ⊂ W = G/H → R6
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Change of coordinates between M3+1 and L(M3+1)

The explicit diffeomorphism on the Poincaré Lie group G in both
parametrizations is

xα = f α(yβ, ηa), ξa = ηa, θa = φa,

where

f 0(yα, ηa) = y1 sinh η1+

cosh η1
(
y2 sinh η2 + cosh η2(y0 cosh η3 + y3 sinh η3)

)
,

f 1(yα, ηa) = y1 cosh η1+

sinh η1
(
y2 sinh η2 + cosh η2(y0 cosh η3 + y3 sinh η3)

)
,

f 2(yα, ηa) = y2 cosh η2 + sinh η2(y0 cosh η3 + y3 sinh η3),

f 3(yα, ηa) = y0 sinh η3 + y3 cosh η3 .
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Metric structure in M3+1 and L(M3+1)

Both spaces M3+1 and L(M3+1) are naturally endowed with a
metric structure. However, while the (pseudo) Riemannian metric
(Minkowski metric) in M

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2,

is well-known, the space L(M3+1) presents an invariant
foliation, with a ’main’ metric

ds2(1) = (cosh η2)2(cosh η3)2(dη1)2 + (cosh η3)2(dη2)2 + (dη3)2,

and a ’subsidiary’ in each leaf

ds2(2) = (dy1)2 + (dy2)2 + (dy3)2, η = η0,

so each leaf is isometric to three-dimensional Euclidean space.
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Metric structure in M3+1 and L(M3+1)

The geodesic distance 3 is given by

coshχ = cosh η1 cosh η2 cosh η3.

This metric structure shows how the three-velocity space of
special relativity is hyperbolic.

In the low rapidity regime (i.e. take c →∞) we recover the
well-known expressions of classical mechanics

ds2(1) = (dη1)2 + (dη2)2 + (dη3)2,

χ2 = (η1)2 + (η2)2 + (η3)2.

3Herranz, Santander, 1998.
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3. Noncommutative observers from Poisson
geometry
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Until now, we have only treated the space of classical observers. In
order to introduce quantum observers in noncommutative
spacetimes, we need the following definition.

Definition

A Poisson-Lie group is a Poisson manifold (G , πG ) such that the
Lie group multiplication µ : (G × G , πG ⊕ πG )→ (G , πG ) that is a
Poisson map.

The Poisson-Lie group 4 condition can be restated in terms of the
Poisson bivector on G alone, and it is just

πG (µ(g1, g2)) = (Lg1)∗πG (g2) + (Rg2)∗πG (g1).

4Drinfel’d, 1987.
Chari, Pressley, 1994.
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The tangent counterpart of a Poisson-Lie group is a Lie bialgebra
(g, δ) where the cocommutator δ : g→ g ∧ g satisfies

i) (Co-Jacobi condition)∑
cycl(δ ⊗ id) ◦ δ(X ) = 0 ∀X ∈ g

ii) (1-cocycle conditon)
δ([X ,Y ]) = adX δ(Y )− adY δ(X ), ∀X ,Y ∈ g

Particular cases of 1-cocycles are 1-coboundaries

δ(X ) = adX r ∀X ∈ g

with r ∈ g⊗ g a skew-symmetric solution of the modified
classical Yang-Baxter equation (mCYBE).
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Theorem

Let G be a Lie group and g its Lie algebra. Consider a
skew-symmetric solution of the mCYBE r ∈

∧2 g defining a
coboundary Lie bialgebra (g, δ) by δ(X ) = adX r for all X ∈ g.
Then the unique Poisson-Lie structure on G whose tangent
space is (g, δ) is defined by the Poisson bivector

πG =
∑
i ,j

r ij
(
X L
i ⊗ X L

j − XR
i ⊗ XR

j

)
.

where X L
i and XR

i are left- and right-invariant vector fields on G .
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The Poisson version of a homogeneous space is

Definition

A Poisson homogeneous space is a Poisson manifold (M, πM)
endowed with a transitive Lie group action
α : (G ×M, πG ⊕ πM)→ (M, πM) that is a Poisson map.

This can be expressed in terms of the Poisson bivectors on M and
G , by

πM(α(g ,m)) = (αg )∗πM(m) + (αm)∗πG (g).

Using the diffeomorphism M ' G/Hm for some m ∈ M and an
appropriate parametrization of the Lie group G (as previously
shown) we have that

πM = p∗(πG )

where p : G → G/Hm is the canonical projection.
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Theorem

Let (G/H, π) be a Poisson homogeneous space and g = Lie(G )
and h = Lie(H). A sufficient condition to have a well-defined
Poisson homogeneous space is the coisotropy condition

δ(h) ⊂ h ∧ g.

If moreover H is a Poisson subgroup of G , so

δ(h) ⊂ h ∧ h,

then we say that the Poisson homogeneous space is of Poisson
subgroup type.
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4. Important example: κ-Poincaré
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Consider the skew-symmetric solution of the mCYBE

r =
1

κ
(K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3) ∈ g⊗ g

which defines the quantum universal enveloping algebra 5

(QUEA) U1/κ(g) with deformed commutation relations

[Ja, Jb] = εabcJc , [Ja,Pb] = εabcPc , [Ja,Kb] = εabcKc ,

[Ka,P0] = Pa, [Ka,Pb] = δabP0,

[P0,Pa] = 0, [Pa,Pb] = 0, [P0, Ja] = 0,

[Ka,Pb] = δab

(
κ

2

(
1− e−2P0/κ

)
+

1

2κ
P2

)
− 1

κ
PaPb ,

and coproduct

∆(P0) = P0 ⊗ 1 + 1⊗ P0, ∆(Ja) = Ja ⊗ 1 + 1⊗ Ja,

∆(Pa) = Pa ⊗ 1 + e−P0/κ ⊗ Pa,

∆(Ka) = Ka ⊗ 1 + e−P0/κ ⊗ Ka +
1

κ
εabcPb ⊗ Jc .

5Lukierski, Nowicki, Tolstoi, 1991.
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The Lie bialgebra (g, δ) is just the first order of the previous
QUEA, with cocommutator

δ = ∆0 − σ ◦∆0 : g→ g ∧ g

taking the explicit form

δ(P0) = δ(Ja) = 0, δ(Pa) =
1

κ
Pa ∧ P0,

δ(K1) =
1

κ
(K1 ∧ P0 + J2 ∧ P3 − J3 ∧ P2),

δ(K2) =
1

κ
(K2 ∧ P0 + J3 ∧ P1 − J1 ∧ P3),

δ(K3) =
1

κ
(K3 ∧ P0 + J1 ∧ P2 − J2 ∧ P1),

which completely defines the κ-Poincaré Poisson-Lie group,
which is just the semiclassical counterpart of the κ-Poincaré
quantum group.
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κ-Minkowski spacetime

The coisotropy condition is satisfied for the Lorentz subalgebra

δ(l) ⊂ l ∧ g,

so M3+1 = G/L is a well-defined Poisson homogeneous space,
defined by

{x0, xa} = −1

κ
xa, {xa, xb} = 0.

It can be straightforwardly quantized

[x̂0, x̂a] = −~
κ
x̂a, [x̂a, x̂b] = 0.

This is the famous κ-Minkowski spacetime 6, extensively used in
quantum gravity models, where the quantum parameter κ is
related to the Planck length.

6Lukierski, Nowicki, Tolstoi, 1991.
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κ-space of worldlines

In this case H is a Poisson-Lie subgroup:

δ(h) = 0 ⊂ h ∧ g,

so L(M3+1) = G/H is well-defined and

{y 1, y 2} = 1

κ

(
y 2 sinh η1 − y 1 tanh η2

cosh η3

)
,

{y 1, y 3} = 1

κ

(
y 3 sinh η1 − y 1 tanh η3

)
,

{y 2, y 3} = 1

κ

(
y 3 cosh η1 sinh η2 − y 2 tanh η3

)
,

{y 1, η1} = 1

κ

(
cosh η1 cosh η2 cosh η3 − 1

)
cosh η2 cosh η3

,

{y 2, η2} = 1

κ

(
cosh η1 cosh η2 cosh η3 − 1

)
cosh η3

,

{y 3, η3} = 1

κ

(
cosh η1 cosh η2 cosh η3 − 1

)
,

{y a, ηb} = 0, a 6= b, {ηa, ηb} = 0 .
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κ-space of worldlines

The diffeomorphism

q1 =
cosh η2 cosh η3

cosh η1 cosh η2 cosh η3 − 1
y1, p1 = η1,

q2 =
cosh η3

cosh η1 cosh η2 cosh η3 − 1
y2, p2 = η2,

q3 =
1

cosh η1 cosh η2 cosh η3 − 1
y3, p3 = η3,

shows that the space of worldlines is symplectic (outside
(η1, η2, η3) 6= (0, 0, 0))

{qa, qb} = {pa, pb} = 0, {qa, pb} =
1

κ
δab.

and so, similarly to the spacetime, it can be straightforwardly
quantized

[q̂a, q̂b] = [p̂a, p̂b] = 0, [q̂a, p̂b] =
~
κ
δabI.
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5. Final remarks
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We have showed a completely new idea for introducing
noncommutativity in the space of worldlines.

This can be interpreted as noncommutative quantum
observers arising from quantum group symmetries.

Hopefully, this can produce testable results from a
quantum gravity perspective.

The construction presented is completely general and can be
applied to any quantum deformation.

Details in: Ballesteros, G-S, Herranz, Phys Lett B. 792,
175-181 (2019).

Work is in progress for the case of the κ-(A)dS
noncommutative spacetime (non-vanishing cosmological
constant) recently constructed (see Ballesteros, G-S, Herranz,
Phys Lett B. 796, 93-101 (2019)).
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Physical consequences from a quantum gravity perspective in:
Ballesteros, Gubitosi, G-S, Herranz, Mercati (In preparation),
giving rise to ’fuzzy’ worldlines:
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Figure: Fuzzy worldlines arising from the model.

34 / 35



Thanks for your attention!

Figure: Photo by Aydin Büyüktas.
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