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Confluent supersymmetry in quantum mechanics

Our starting point is the one-dimensional stationary Schrédinger
equation. We can write it in the form

V' (E- Vo)W = 0.

In order to apply a n-th order confluent SUSY transformation, we
first determine n+ 1 functions ug, uy, ..., Up, that solve the following
system of equations,

g +(A=Vo)up = 0
'+ (A=Vo)u = —Ug j=T.00,

we assume \ # E.
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Confluent supersymmetry in quantum mechanics

Once the system has been solved, we take a solution ¥ of our
initial Schrédinger equation and construct the following functions
®p, xn and X,J; :

&, — Wuo,...7un,1,\ll . Wuo,...,u,7 1 WU07~-~7Un72
n — W ) Xn = W ) Xn - W ’
Up,---;Un—1 Up,---Un—1 Up,---,Un—1

where the symbol W stands for the Wronskian of the functions in
its index. Then, ®,, xn, and x; are solutions to the following
Schrédinger equations

The transformed potential V,, is given by the expression
d2

log (Wuo,u1, U 1)-
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Confluent supersymmetry in quantum mechanics
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Left: Fourth—ordexr SUSY partner of the Péschl-Teller potential
(blue). The Pdschl-Teller potential is plotted as reference (purple).
Right: Eigenfunctions ¢4 and Xi corresponding to the potential on
the left.

A Contreras-Astorga and A Schulze-Halberg, J. Phys. A: Math. Theor. 50 (2017)
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On integral and differential representations
supersymmetry algorithm

The system of equations,
Ug + ()\ — Vo) uy = 0
uj’-’ +AN-WV)uy = —-u_1, j=1,...n,

can be solved using two techniques: variation of constants
(integration) and using parametric derivatives.

The first of these representations can be constructed by means of
the variations-of-constants formula :

X t
N 1 .
u = uuo/(/uouj1 ds)th, j=1,...,n—1,
0

w6h/<298re 1 stands for any solution of the first equation.
S



On integral and differential representations
supersymmetry algorithm

An alternative representation for the transformation functions
involves parametric derivatives with respect to A. Assuming that
Up is a function of the two variables x and \, we have

j—1

C oue tow
Uj = ;OW—F/_IW’ j—1,...,n—1,

where g, k =0, ...,n — 2, stand for arbitrary solutions of the first
equation of the system, including the trivial zero solution.

Note that the both representations are not equivalent, but related
to each other.
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Second order case

Let us call ug = u; and the second LI solution up. Moreover,

Vyc = Uy obtained by integration and vpr = uy = 9, Up obtained by
differentiation.

Since both vy and vpg are particular solutions of the
nonhomogeneous equation, their difference must be a solution to
the homogeneous equation. Equivalently, there are two
parameters d; and db, such that the equation

diUa+ b Up = Vpr— Vye,
is fulfilled. Differentiation with respect x yields
di (Ua)x + 02 (Up)x = (VDF)x — (Vve)x-
Thus, dy and d; are given by:
di = Wiprvieu(X0:A), G2 = Wi vpe—vie(Xo, A)-
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Jordan chains of second order

Furthermore, the following interesting result was obtained

5%
/ (1, )t = Wi, (X0, ) — Wayu, (X, A).
X

0

This last equation shows how to integrate the square of a function
that is solution of a Schrédinger equation using a Wronskian and
vice versa.

This identity is useful when we are interested, for example, in
finding normalization constants, probabilities in an interval or
integrals of special functions.

A %o/nérseras-Astorga and A Schulze-Halberg, J. Phys. A: Math. Theor. 48 (2015)



The radial oscillator system
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Figure: On the left, the radialgscillator potential (purple curve) and its
second order SUSY partner V (blue curve). On the right its first three

eigenfunctions.
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Time-dependent systems

Consider a one dimension time independent Schrédinger equation
in the spatial variable y as

W'(y) + (E = Vo) vw(y) = 0

where VO = Vo(y) and a solution ¢ are known. Now let us take
arbitrary functions A = A(t) and B = B(t) and let the variable y be
defined in terms t and x as:

y(x, 1) = xexp [4 / A(t)dt] +2 / B(t) exp [4 / A(t)dt] dit
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then the function

P(x, 1) = exp {—i [sz +Bx+E / exp [8 / Adt] dt

+/ [2/A+ 52} dt] }

is solution of the equation

d 52
i) + 8X2¢(x, £) — Vo(x, )é(x, t) = 0

The last equation is a time dependent Schrédinger equation
where the potential is given by

Vo(x,t) = Voexp [8 / Adt] L‘th 4A2]
d
[ 4B 4AB]
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Figure: A confluent SUSY partner of the infinite square-well potential
with a moving barrier, att =1/4,t=1/2,t=3/4,t = 1.

A Contreras-Astorga and V Hussin, Integrability, Supersymmetry and Coherent States (2019)



Photonic systems with 2D landscapes of complex
refractive index

Consider a monochromatic light beam traveling in a medium with
refractive index n = n(X. Y. Z). The Maxwell equation are

V x E = iwpoH, V x H= —iweE.

Let us write the electric field £ as E = exp(ikngZ) QJT + éz¢z)
where k = 27/ ) is the wave number, ng is a reference value of'the

index of refraction. Introducing scaled variables x = X/ xo,
y =Y/xo, z=2Z/2¢, where Xy size of the beam in the transverse
and ¢ is the diffraction length. Then Maxwell egs simplify to:

10,0 + V33 4 2mok®xgondY) = o.

Notg, each component of U satisfies a Schrodinger equation.
s



- 10
0

-10_— .
L B 05
o = ol

Re(V2) g4 Im(V3)

o » -05

10 10

10

Figure: Localized defect in a homogenous crystal. Plots of the real (top
left) and imaginary (top center) parts of V,, where V, is a PT-symmetric
potential. Moreover, the absolute value squared of three solutions are
plotted: |¢q|? (top right), |#1]2 (bottom left) and |#2|? (bottom right).

A ?g?tzrgras-Astorga and V Jakubsky, Phys Rev A (2019)




Bound states in the continuum

Given a potential Vj, expression ve
of the confluent SUSY partner
and the missing state are:

Yy
Vo=V — [In (wo+/xx ugds)]” /

0

y 0
pe= ———————
w()—l-f;(() UgdS
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Bound states in the continuum

Given a potential Vp, expression ve |
of the confluent SUSY partner
and the missing state are:

Yy
Vo=V — [In (wo+/xx ugds)]” /

0

y 0
pe= ———————
w()—l-f;(() UgdS
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Bound states in the continuum

Given a potential Vj, expression ve
of the confluent SUSY partner
and the missing state are:

S,
Vo= Vo — [In (wo+/XXU§dS)]H
/A

0

y 0
he= ——————5—
w()—l-f;(() UgdS
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Bound states in the continuum

Given a potential Vj, expression
of the confluent SUSY partner
and the missing state are:

X "
Vo= Vy— [In (wo +/ ugds)]
Xo

y 0
pe= ———————
w()—l-f;(() UgdS
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Freezable quantum states

Recipe

1. Create a time independent potential with a BIC using the
confluent SUSY. Note, for more than one BIC you can use a
higher-order SUSY.

2. Add dynamics with the change of variable: y = x/t. The result
is a time dependent system, when t — —oc0, V(x,t) — 0.

3. When t € (-0, ), use V(x,t) and a vector potential A = 0.

4. Att € (fy, o0) you can freeze the evolving state (BIC?), just fix
V = V(x, ) and A = —d0ex, where 6 is the position
dependent phase of the BIC ¢(x, ty).

5. The Freezable State will now be an eigenstate of
H = (—0x + iAx)? + V(x, ty),
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Example
\%
15¢
Let us take the free particle in 10f
the interval x € (0, o). 05)
_057 5 15 0 Y
We can generate a confluent Lo
SUSY parter with a _1'52
transformation function o_% !
Up = sin(kx). 0.25
0.20
0.15
The SUSY partner will have a 0.10
BIC with eigenvalue e = k2. 0%
0 5 10 15 20
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Example

We can add dynamics with the
change y = x/(4t+1).

The wave function now depends
on x and t: ¥.(y) — ¢(x, 1),
same happens to the potential.

The dynamic equation is
01 + 026 — Ve = 0.

t=-2
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Example
\%
15¢
We can add dynamics with the 1ol
change y = x/(4t+1). 05t
_ost 5 10 15 20 X
The wave function now depends -10f
on x and t: ¥.(y) — ¢(x, 1), e
same happens to the potential. ol
0.25
0.20
The dynamic equation is 0.15
i0p + 0% — Vo = 0. 0.10
0.05
t=-15 ‘ ¢
0 5 10 15 20
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Example
\%
. . 1'5 f
We can add dynamics with the 1ol
change y = x/(4t+1). 05t
_ost 5 10 15 20 X
The wave function now depends -10f
on x and t: ¥.(y) — ¢(x, 1), e
same happens to the potential. ol
0.25
0.20
The dynamic equation is 0.15
i0p + 0% — Vo = 0. 0.10
0.05
t: _1 ! ! Ly
0 5 10 15 20
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Example
\%
. . 1'5 3
We can add dynamics with the 1ol
change y = x/(4t+1). 05t
_ost 5 10 15 20 X
The wave function now depends -10f
on x and t: ¥.(y) — ¢(x, 1), e
same happens to the potential. !
0.25
0.20
The dynamic equation is 0.15
i0p + 0% — Vo = 0. 0.10
0.05
t=-05 AA‘ g
0 5 10 15 20
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Example

We can add dynamics with the
change y = x/(4t+1).

The wave function now depends
on x and t: ¥.(y) — o(x, t),
same happens to the potential.

The dynamic equation is
01+ 92¢ — Vo = 0.

t=0
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Example

\%
We decide to freeze the state ¢ L5¢
att > 0. 10¢
05}

The potential now is fixed, _057 5 15 0
V = V(x,0). Also we add vector | ¢
potential A = —0x0ey, where fis  _, 5t

the position dependent phase of 611 2
the BIC (x, ). o
0.25
The Freezable State will now be 2?2
an eigenstate of 010
H = (=0x + iA)? + V(X, bo). 006
t>0 0 5 0 15 200
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Conclusions

In this work, we constructed time dependent potentials via
supersymmetric quantum mechanics. The generated potentials

have a quantum state with the property that after a certain time f,
when the potential does not longer change, the evolving state
becomes a bound state in the continuum, its probability
distribution freezes.
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