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Confluent supersymmetry in quantum mechanics

Our starting point is the one-dimensional stationary Schrödinger
equation. We can write it in the form

Ψ′′ + (E − V0) Ψ = 0.

In order to apply a n-th order confluent SUSY transformation, we
first determine n + 1 functions u0,u1, ...,un, that solve the following
system of equations,

u′′0 + (λ− V0) u0 = 0
u′′j + (λ− V0) uj = −uj−1, j = 1, ...,n,

we assume λ 6= E .
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Confluent supersymmetry in quantum mechanics

Once the system has been solved, we take a solution Ψ of our
initial Schrödinger equation and construct the following functions
Φn, χn and χ⊥n :

Φn =
Wu0,...,un−1,Ψ

Wu0,...,un−1

, χn =
Wu0,...,un

Wu0,...,un−1

, χ⊥n =
Wu0,...,un−2

Wu0,...,un−1

,

where the symbol W stands for the Wronskian of the functions in
its index. Then, Φn, χn and χ⊥n are solutions to the following
Schrödinger equations

Φ′′n + (E − Vn) Φn = 0 χ′′n + (λ− Vn) χn = 0.

The transformed potential Vn is given by the expression

Vn = V0 − 2
d2

dx2 log
(
Wu0,u1,...,un−1

)
.
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Confluent supersymmetry in quantum mechanics
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Left: Fourth-order SUSY partner of the Pöschl-Teller potential
(blue). The Pöschl-Teller potential is plotted as reference (purple).
Right: Eigenfunctions Φ4 and χ⊥4 corresponding to the potential on
the left.

A Contreras-Astorga and A Schulze-Halberg, J. Phys. A: Math. Theor. 50 (2017)
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On integral and differential representations
supersymmetry algorithm

The system of equations,

u′′0 + (λ− V0) u0 = 0
u′′j + (λ− V0) uj = −uj−1, j = 1, ...,n,

can be solved using two techniques: variation of constants
(integration) and using parametric derivatives.
The first of these representations can be constructed by means of
the variations-of-constants formula :

uj = û − u0

x∫  t∫
u0 uj−1 ds

 1
u2

0
dt , j = 1, ...,n − 1,

where û stands for any solution of the first equation.
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On integral and differential representations
supersymmetry algorithm

An alternative representation for the transformation functions
involves parametric derivatives with respect to λ. Assuming that
u0 is a function of the two variables x and λ, we have

uj =

j−1∑
k=0

∂ûk

∂λk +
1
j!
∂u0

∂λj , j = 1, ...,n − 1,

where ûk , k = 0, ...,n − 2, stand for arbitrary solutions of the first
equation of the system, including the trivial zero solution.
Note that the both representations are not equivalent, but related
to each other.
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Second order case

Let us call u0 = ua and the second LI solution ub. Moreover,
vVC = u1 obtained by integration and vDF = u1 = ∂λu0 obtained by
differentiation.
Since both vVC and vDF are particular solutions of the
nonhomogeneous equation, their difference must be a solution to
the homogeneous equation. Equivalently, there are two
parameters d1 and d2, such that the equation

d1 ua + d2 ub = vDF − vVC ,

is fulfilled. Differentiation with respect x yields

d1 (ua)x + d2 (ub)x = (vDF )x − (vVC)x .

Thus, d1 and d1 are given by:

d1 = WvDF−vVC ,ub (x0, λ), d2 = Wua,vDF−vVC (x0, λ).
8 / 28



Jordan chains of second order

Furthermore, the following interesting result was obtained∫ x

x0

u2(t , λ)dt = Wu,uλ
(x0, λ)−Wu,uλ

(x , λ).

This last equation shows how to integrate the square of a function
that is solution of a Schrödinger equation using a Wronskian and
vice versa.
This identity is useful when we are interested, for example, in
finding normalization constants, probabilities in an interval or
integrals of special functions.

A Contreras-Astorga and A Schulze-Halberg, J. Phys. A: Math. Theor. 48 (2015)
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The radial oscillator system

Figure: On the left, the radial oscillator potential (purple curve) and its
second order SUSY partner Ṽ (blue curve). On the right its first three
eigenfunctions.
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Time-dependent systems

Consider a one dimension time independent Schrödinger equation
in the spatial variable y as

ψ′′(y) +
(

E − Ṽ0

)
ψ(y) = 0

where Ṽ0 = Ṽ0(y) and a solution ψ are known. Now let us take
arbitrary functions A = A(t) and B = B(t) and let the variable y be
defined in terms t and x as:

y(x , t) = x exp
[
4
∫

A(t)dt
]

+ 2
∫

B(t) exp
[
4
∫

A(t)dt
]

dt
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then the function

φ(x , t) = ψ exp
{
−i
[
Ax2 + Bx + E

∫
exp

[
8
∫

Adt
]

dt

+

∫ [
2iA + B2

]
dt
]}

,

is solution of the equation

i
∂

∂t
φ(x , t) +

∂2

∂x2φ(x , t)− V0(x , t)φ(x , t) = 0.

The last equation is a time dependent Schrödinger equation
where the potential is given by

V0(x , t) = Ṽ0 exp
[
8
∫

Adt
]

+

[
d
dt

A− 4A2
]

x2

+

[
d
dt

B − 4AB
]

x .
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Figure: A confluent SUSY partner of the infinite square-well potential
with a moving barrier, at t = 1/4, t = 1/2, t = 3/4, t = 1.

A Contreras-Astorga and V Hussin, Integrability, Supersymmetry and Coherent States (2019)



Photonic systems with 2D landscapes of complex
refractive index

Consider a monochromatic light beam traveling in a medium with
refractive index n = n(X ,Y ,Z ). The Maxwell equation are

∇× ~E = iωµ0
~H, ∇× ~H = −iωε~E .

Let us write the electric field ~E as ~E = exp(ikn0Z )
(
~ψT + âZψZ

)
where k = 2π/λ is the wave number, n0 is a reference value of the
index of refraction. Introducing scaled variables x = X/x0,
y = Y/x0, z = Z/2`, where x0 size of the beam in the transverse
and ` is the diffraction length. Then Maxwell eqs simplify to:

i∂z ~ψ
(0)
T +∇2

⊥
~ψ

(0)
T + 2n0k2x2

0 δn~ψ
(0)
T = 0.

Note, each component of ~ψT satisfies a Schrödinger equation.14 / 28



Figure: Localized defect in a homogenous crystal. Plots of the real (top
left) and imaginary (top center) parts of V2, where V2 is a PT -symmetric
potential. Moreover, the absolute value squared of three solutions are
plotted: |φ0|2 (top right), |φ1|2 (bottom left) and |φ2|2 (bottom right).
A Contreras-Astorga and V Jakubský, Phys Rev A (2019)
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Bound states in the continuum

Given a potential V0, expression
of the confluent SUSY partner
and the missing state are:

V2 = V0 −
[
ln
(
ω0 +

∫ x

x0

u2
0ds
)]′′

ψε=
u0

ω0 +
∫ x

x0
u2

0ds
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Freezable quantum states

Recipe
1. Create a time independent potential with a BIC using the

confluent SUSY. Note, for more than one BIC you can use a
higher-order SUSY.

2. Add dynamics with the change of variable: y = x/t . The result
is a time dependent system, when t → −∞, V (x , t)→ 0.

3. When t ∈ (−∞, t0), use V (x , t) and a vector potential A = 0.
4. At t ∈ (t0,∞) you can freeze the evolving state (BIC?), just fix

V = V (x , t0) and A = −∂xθex , where θ is the position
dependent phase of the BIC φ(x , t0).

5. The Freezable State will now be an eigenstate of
H = (−∂x + iAx )2 + V (x , t0),
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Example

Let us take the free particle in
the interval x ∈ (0,∞).

We can generate a confluent
SUSY parter with a
transformation function
u0 = sin(kx).

The SUSY partner will have a
BIC with eigenvalue ε = k2.
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Example

We can add dynamics with the
change y = x/(4t + 1).

The wave function now depends
on x and t : ψε(y)→ φ(x , t),
same happens to the potential.

The dynamic equation is
i∂tφ+ ∂2

xφ− Vφ = 0.

t = −2
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Example

We can add dynamics with the
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The wave function now depends
on x and t : ψε(y)→ φ(x , t),
same happens to the potential.

The dynamic equation is
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xφ− Vφ = 0.
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Example

We decide to freeze the state φ
at t ≥ 0.

The potential now is fixed,
V = V (x ,0). Also we add vector
potential A = −∂xθex , where θ is
the position dependent phase of
the BIC φ(x , t0).

The Freezable State will now be
an eigenstate of
H = (−∂x + iAx )2 + V (x , t0).

t ≥ 0
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Conclusions

In this work, we constructed time dependent potentials via
supersymmetric quantum mechanics. The generated potentials

have a quantum state with the property that after a certain time t0,
when the potential does not longer change, the evolving state
becomes a bound state in the continuum, its probability
distribution freezes.
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