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Introduction

* Graphene is a single layer of carbon atoms placed
In a hexagonal configuration

* |t is the thinnest material ever known, it is strong,
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Introduction

* Several structures can be seen as resulting from
graphene: graphite, carbon nanotubes, fullerenes
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Introduction

Theoretical interest: is a two-dimensional system

Low energy electrons in graphene behave as
massles Dirac fermions

Relativistic guantum mechanics can be imitated,
with velocities 300 times lower than ¢

Electron confinement can be produced through
magnetic fields which are orthogonal to the layer

Supersymmetric guantum mechanics is the natural
tool to deal with the electron motion in graphene
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Dirac-Weyl equation and SUSY QM

The Dirac-Weyl equation describes low energy
electrons in graphene. If magnetic fields
orthogonal to the layer is applied, such equation is

HY(z,y) = vpo - [p+ L] U(z,y) = E¥(z,y)

vp ~ 8 x 10°m/s is the Fermi velocity
o = (04, 0,) are Paull matrices

p = —ih(9,,9,)! is the 2-dim momentum operator
—e IS the electron charge

A Is the vector potential

B = V x A Is the applied magnetic field
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Dirac-Weyl equation and SUSY QM

For magnetic fields changing just along one
direction the vector potential in the Landau gauge
becomes A = A(z)é,, B = B(x)é,, B(zx) = A'(x)

Taking into account the translation invariance of H
along y direction it is proposed

vt (z) ]
1w~ (z)
k Is the wavenumber in y direction

= (x) is the electron amplitude on two adjacent
sites in the unit cell of graphene

\Ij(xvy) — eiky [

Dirac electron in aranhene with maaneticfields arisina from first-order intertwinina —

n. 7



Dirac-Weyl equation and SUSY QM

Thus

(:l:da:_l_ A+k) ¢$( )_ th?’Di( )
y decoupling this system it is obtained
H**(x) = E¢ ()
HE =~ +VE VE= (S 1k) = 59

E= L

5 2
th

SUSY QM!
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Shape invariant case
.,

he following relations are fulfilled:

H* = LIL:
H*LT = LTHT
d
eA,(x
WQ(CC) = Cyh( )-I-k?
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Shape invariant case
I ——_

The eigenfunctions of H* are interconnected as

+ ) = LM;H(QZ)
_ Ly (z)

@D,,:H(x) — \/5

wo— (33) -~ e—fWo(a:)dx

he corresponding eigenvalues are:
Er=&6_,, & =0
ote that

Livg@) =0 = Wylz)=-2
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Shape invariant case

The applied magnetic field becomes

By(z) = L) = (@) _ _chd f1n[yy ()]}

e e dx?

The eigenfunctions and eigenvalues of the Dirac
lectron in graphene under By(z) become:

Eo = hup \/80_ =0, FEpi1=hvp 877,_4—1
. +
\Ifozeiky[. 0 ]’ \Ijn_i_lzezky[.wn(x) ]

Ly ()
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Shape invariant case
-

* For some special forms of By(x) the potentials
V*(x) become shape invariant

* They are exactly solvable potentials leading to
magnetic fields which have been already explored
[Kuru, Negro, Nieto, J. Phys. Cond. Matt. 21
(2009) 455305]

* Nothing radically new can be said from this point of
view

» However ...
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General case

There Is a method to generate new magnetic fields for
which the electron motion in graphene is exactly
solvable

1. First let us displace up A~ as follows:
H() H —¢ = de—I—V()—El, e <& =0

2. From H, we construct a new Hamiltonian H;
through the requirement

H1L+ = L Hy
H{ = de -+ V1(:C 61)
Ly = F4& + Wi(z,€)
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General case

It turns out that

W2(z,e1) + Wi(z,e1) = V()
Vl(x, 61) — ‘7()(513) — QW{(CE, 61)

hrough the change Wi (z, e1) = «” /u” it is obtained

_ugo)” + ‘N/o(a:)ugo) =0 SE for H

he generated magnetic field becomes

e

x,€1 ch d? ugo) x
Bi(z,e1) = Cdeld(x’ ) — —By(x) + hdd— {ln { ( )]}
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General case

3. The associated eigenvalues and eigenfunctions:

el =0,
1 5(0 1
575,—21 — 57g )v wv(z—l)—l

hus:

EO = th gél) — 0, En+1 == th 5(1)

\If() = eiky

gV — En — €1, Yy, ()

(()1) (Qf) ~ 6—fW1(x,el)dx — 1

(1) = A=Livg(a), n=01,...

~

EY

o | v @
b )
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General case: iteration

* We have followed [Midya, Fernandez, J. Phys. A:
Math. Theor. 47 (2014) 285302], where it was

taken Hy=H" —e Withe; = -5 < & =0
* It remained unexplored the domain ¢ € [-&;",0)

» Working the Riccati equation it was missed the
possibility of iterating the procedure
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General case: iteration

1. Let us displace now H;:

[:]1 EHl—EQ, € < €1 — gél) — —ep >0

2. From H; a new Hamiltonian H, is nhow constructed,
HoLi = L Hy
Hy = —% + VQ(I‘, 62)
Ly = FiL + Wa(z, )
Thus

W3 (x,ea) + Wi(x, e9) = Vi(x, 1)
Vo(z,eg) = Vl(m, €1) — 2Wo(z, €2)
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General case: iteration

By making Wa(z, e2) = ul" /ulV):
—ug)” + Vi(z, el)ugl) =0

\") is obtained by acting L; onto a solution of A~

(1) 74,00 W ui”]
uy o Lyjuy = — U

—ug))ﬂ + V_(:c)ugo) = (€1 + 62)ug))

he new potential:

Va(z,e2) = V™ (z) — 25 nWil”  ul] — (61 + e2)
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General case: iteration

The second-order magnetic field:

By(x,60) = 2M2r2) — _p (3 ) + DL nwWil” wi]))

e dx e dx?

3. The associated eigenvalues and eigenfunctions:

B0 ) e,y
g(2> = 0, w((f) (:13) ~ e—sz(x,Q)dx _ 1

ne
Us

A O R C S T 3 N CO S G & £ 91C

n—|—2 1
VL
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0
iy ()

\Ifo = eiky

General case: iteration

EO = hUF 552) — 0,

he procedure can be continued at will!
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General case: iteration

(9+ I I 5(1)
: £ .
— e 1 | E— c(2)
| —— l
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shape invariant first intertwining  second intertwining
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Landau levels in graphene:

shape Invariant potentials
o —_

* For a uniform magnetic field B = By, By > 0 It must
be taken A = ¢,Byx

* The superpotential Wy(x) = %Ji + k, w = 2621730

* The two shape invariant potentials
VE(z) = 4(az+2k) + &
 The eigenfunctions and eigenvalues of H*:

&, =0, 8;+1—5+:w(n+1) n=20,1,2,...
U =8 = No e 50V H, [/F (2 + 2]

1

Ny =1/ 51 (52)?, H, are the Hermite polynomials

2nnl \ 27
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Landau levels in graphene:
general case

» The general solution of the SE for Vp =V~ (z) — &
with zero energy reads (a = —e¢;/2w):

ug()) = e i@ty (1F1 a, 5, % (v + 252
+2 F[liL[Jrf] \/%(x + 2 Fa+ 3,35, %9(x + Qw—k)Q])

51y [+

Bi(z,e1) = =By + 2730% [(x + 25)
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Landau levels in graphene:
general case
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Landau levels in graphene:
general case

By(x)
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Landau levels in graphene:

general case

Pn(x)
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Landau levels in graphene:

general case
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Landau levels in graphene:
second-order case

* For the second step Vi (x) IS moved up by —es:

2
~ 2
Vl(%ﬁl) = [wf (fl? - %u—k) — % — €1 — 2%W1($>€1) — €2

* Then it is built the second-order potential and
magnetic field:

Va(z, en) = Vo — 27 d an[ug ),ugo)] — €9
Ba(r,e2) = ~Bi(w, ) + L g {n[Wuy” ]}
ug()) arises from u§0> with the change ¢; — €1 + e

* In particular, for e; = —w/5, €0 = —3w, w =1, v; =0,

3
Vo = 5

Dirac electron in aranhene with maaneticfields arisina from first-order intertwinina — p. 28



Landau levels in graphene:
second-order case
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Landau levels in graphene:

second-order case
I ——

B(x)

;

B>(x, €) :

2

1

N\ By(x) :
AR A

6 ~ 2 ~/ 2 4
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Landau levels in graphene:
second-order case

Pn(X)
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Landau levels in graphene:
second-order case

Jn(x)
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Conclusions

We have generalized the shape invariant method
addressed by Kuru, Negro and Nieto to study the
electron motion in graphene in external magnetic
fields orthogonal to the layer

The ideas introduced by Midya and Fernandez to
generate new magnetic fields for which the system
IS exactly solvable were taken into account

The iterations of the method, to generate

higher-order exactly solvable magnetic fields, have
been implemented

This Is an interesting topic in which the ideas of
SUSY QM will be applied in the near future
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