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F. Calogero (1969) - sl2-invariance,
1
x2 potential.

de Alfaro-Fubini-Furlan (1976) - oscillator term addition
(discrete, grounded from below spectrum, ground state).

Conformal Mechanics in the new Millennium (motivations):

Holography: AdS2 − CFT1

test particle close to RN BH horizon (Britto-Pacumio et al. 1999).

AdS2 holography and SYK models (Maldacena and Stanford 2016).
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(following Miyazaki-Tsutsui ’02 and Féhér-Tsutsui-Fülöp ’05)
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• Interpolating linear/quadratic regimes for energy
degeneracies
• Orthonormal eigenstates from associated Laguerre
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The 3D SCQM model:
Natural Ansatz for N = 2 susy (a = 1, 2):

Qa =
1√
2
γa

(
/∂ − β

r2
NF/r

)
.

β is a real parameter, r =
√

x2
1 + x2

2 + x2
3 the radial coordinate,

while /∂ = ∂ihi and /r = xihi are written in terms of quaternions
(hi ); γa are Clifford matrices s.t. [γa, hi ] = 0; NF is the Fermion
Parity Operator.
N = 2 supersymmetric quantum mechanics:

{Qa,Qb} = 2δabH, [H,Qa] = 0.

The 4× 4 matrix supersymmetric Hamiltonian H is given by

H =

(
(− 1

2∇
2 + 2β

r2

−→
S ·
−→
L + β(β+1)

2r2 )I2 0

0 (− 1
2∇

2 − 2β
r2

−→
S ·
−→
L + β(β−1)

2r2 )I2

)
,

where ∇2 = ∂2
x1

+ ∂2
x2

+ ∂2
x3

is the three-dimensional Laplacian,
−→
S

is the spin- 1
2 and

−→
L is a orbital angular momentum.



The Hamiltonian H is Hermitian. Since the spin is 1
2 , the total

angular momentum
−→
J =

−→
L +

−→
S of the quantum-mechanical

system is half-integer.
The Hamiltonian is non-diagonal; on the other hand, due to

−→
L ·
−→
S =

1

2
(
−→
J

2
−
−→
L

2
−
−→
S

2
) =

1

2
(j(j + 1)− l(l + 1)− 3

4
),

it gets diagonalized in each sector of given total j and orbital l
angular momentum.
In each such sector it corresponds to a constant kinetic term plus a
diagonal potential term proportional to 1

r2 .



sl(2|1) superconformal algebra:
DFF construction: Introduce the conformal partner of H as the
rotationally invariant operator K of scaling dimension [K ] = −1:

K =
1

2
r2I4

Verify whether the repeated (anti)commutators of the operators
Qa and K close the superconformal algebra sl(2|1). Itis so!.
Four extra operators (Qa,D,R) have to be added. D is the
(bosonic) dilatation operator which, together with H,K , close the
sl(2) subalgebra, two fermionic operators Qa and R is the u(1)
R-symmetry bosonic operator of sl(2|1):

[D,H] = −2iH, [D,K ] = 2iK , [H,K ] = iD,

[D,Qa] = −iQa, [D,Qa] = iQa,

[H,Qa] = iQa [K ,Qa] = −iQa,

{Qa,Qb} = 2δabH, {Qa,Qb} = 2δabK , {Qa,Qb} = δabD + εabR,

[R,Qa] = −3iεabQb, [R,Qa] = −3iεabQb,

with the antisymmetric tensor εab normalized so that ε12 = 1.



Deformed oscillator:
By setting

Hosc = H + K ,

we obtain the 4× 4 matrix deformed oscillator Hamiltonian Hosc

whose spectrum is discrete and bounded from below.
By construction, the sl(2|1) dynamical symmetry of the H
Hamiltonian acts as a spectrum-generating superalgebra for the
Hosc Hamiltonian.
The explicit expression is

Hosc = −1

2
∇2 · I4 +

1

2r2
(β2 · I4 + βNF (1 + 4 · I2 ⊗ ~S · ~L)) +

1

2
r2 · I4.



Appearance of two-component spherical harmonics:

j = l + δ
1

2
, for δ = ±1.

In the given j , l sector we get

~L · ~S =
1

2
α, with α = δ(j +

1

2
)− 1.

The energy eigenstates of the system are described with the help of
the two-component Yj ,l ,m (θ, φ) spin spherical harmonics given by

Yj,j− 1
2 δ,m

(θ, φ) =
1√

2j − δ + 1

 δ
√
j + 1

2 (1− δ) + δmY
m− 1

2

j− 1
2 δ

(θ, φ)√
j + 1

2 (1− δ)− δmY
m+ 1

2

j− 1
2 δ

(θ, φ)

 ,

where Y n
l (θ, φ) (for n = −l ,−l + 1, . . . , l) are the ordinary

spherical harmonics.
The spin spherical harmonics Yj ,j− 1

2
δ,m (θ, φ) are the eigenstates

for the compatible observable operators ~J · ~J, ~L · ~L, Jz , with
eigenvalues j(j + 1), (j − 1

2δ)(j − 1
2δ + 1), m, respectively.



Creation (annihilation) operators:

ab = Qb + iQb, a†b = Qb − iQb.

Indeed, we obtain

Hosc =
1

2
{a1, a

†
1} =

1

2
{a2, a

†
2},

together with

[Hosc , ab] = −ab, [Hosc , ab
†] = a†b.

For completeness we also present the commutators

[a1, a
†
1] = [a2, a

†
2] = 3 · I4 + 4 · I2 ⊗ ~S · ~L− 2βNF .

a±b =
/r

r
√

2
γb(I4 · (∂r ∓ r)− 2

r
I2 ⊗ ~S · ~L−

β

r
NF ).

They can be factorized as

a±b =
/r

r
√

2
γba
±, with a± = (I4 · (∂r ∓ r)− 2

r
I2 ⊗ ~S · ~L−

β

r
NF ).



Lowest weight vectors:
A lowest weight state Ψlws is defined to satisfy

a−b Ψlws = 0.

Due to the factorization, in both b = 1, 2 cases, this is tantamount
to satisfy a−Ψlws = 0.
The vectors a+

1 v and a+
2 v , with v belonging to the lowest weight

representation, differ by a phase.
Therefore, the action of a+

1 , a+
2 produces the same ray vector

characterizing a physical state of the Hilbert space.
We search for solutions Ψε

j ,δ,m(r , θ, φ) of the form

Ψε
j ,δ,m(r , θ, φ) = f εj ,δ(r) · eε ⊗ Yj ,j− 1

2
δ,m (θ, φ) , with ε = ±1.

The sign of ε (no summation over this repeated index) refers to
the bosonic (fermionic) states with respective eigenvalues ε = +1
(ε = −1) of the Fermion Parity Operator NF ; we have e+1 =

(
1
0

)
and e−1 =

(
0
1

)
.



Solutions:
Solutions are obtained for

f εj ,δ(r) = rγ(j,δ,ε)e−
1
2
r2
,

where

γ(j ,δ,ε)(β) = α + βε = δ(j +
1

2
) + βε− 1.

The corresponding lowest weight state energy eigenvalue Ej ,δ,ε(β)
from

Hosc(β)Ψε
j ,δ,m(r , θ, φ) = Ej ,δ,ε(β)Ψε

j ,δ,m(r , θ, φ)

is

Ej ,δ,ε(β) = δ(j +
1

2
) + βε+

1

2
.

Since Ej ,δ,ε(β) does not depend on the quantum number m, this
energy eigenvalue is (2j + 1) times degenerate.



Alternative Hilbert spaces
Without loss of generality we can restrict the real parameter β to
belong to the half-line β ≥ 0 since the mapping β ↔ −β is
recovered by a similarity transformation which exchanges bosons
into fermions:

SHosc(β)S−1 = Hosc(−β) with S = σ1 ⊗ I2.

To the following j , δ, ε,m quantum numbers,

j ∈ 1
2 + N0, δ = ±1, ε = ±1, m = −j ,−j + 1, . . . , j ,

is associated an sl(2|1) lowest weight vector and its induced rep.
Two choices to select the Hilbert space naturally appear:

case i: the wave functions can be singular at the origin,
but they need to be normalized,

case ii: the wave functions are assumed to be regular at the
origin.



Case i corresponds in restricting the admissible lowest weight
representations to those satisfying the necessary and sufficient
condition

2γ(j ,δ,ε)(β) + 3 > 0.

The normalizability condition is equivalent to the requirement

Ej ,δ,ε(β) > 0

for the lowest weight energy Ej ,δ,ε(β).
Case ii corresponds in restricting the admissible lowest weight
representations to those satisfying the condition

γ(j ,δ,ε)(β) ≥ 0 for β ≥ 0.

The single-valuedness of the wave functions at the origin implies
that γ(j ,δ,ε)(β) = 0 can only be realized with vanishing (l = 0)
orbital angular momentum. At β = 0 one recovers the vacuum
state of the undeformed oscillator.
For the deformed β > 0 oscillator the strict inequality follows

γ(j ,δ,ε)(β) > 0 for β > 0



Table (up to j = 5
2 ) of the β range of admissible lowest weight

representations under norm (case i) and reg (case ii) conditions:

j δ ε γ E norm reg
1
2 + + β 3

2 + β β ≥ 0 β ≥ 0
1
2 + − −β 3

2 − β 0 ≤ β < 3
2 β = 0

1
2 − + β − 2 −1

2 + β β > 1
2 β > 2

1
2 − − −β − 2 −1

2 − β × ×
3
2 + + β + 1 5

2 + β β ≥ 0 β ≥ 0
3
2 + − −β + 1 5

2 − β 0 ≤ β < 5
2 0 ≤ β < 1

3
2 − + β − 3 −3

2 + β β > 3
2 β > 3

3
2 − − −β − 3 −3

2 − β × ×
5
2 + + β + 2 7

2 + β β ≥ 0 β ≥ 0
5
2 + − −β + 2 7

2 − β 0 ≤ β < 7
2 0 ≤ β < 2

5
2 − + β − 4 −5

2 + β β > 5
2 β > 4

5
2 − − −β − 4 −5

2 − β × ×



For the β > 0 deformed oscillators, the Hilbert spaces Hnorm and
Hreg are direct sums of the lowest weight representations with
j ∈ 1

2 + N0 satisfying (depending on δ, ε)

Hnorm : Hreg :

δ = +1 ε = +1 any j any j

δ = +1 ε = −1 j > β − 1 j > β + 1
2

δ = −1 ε = +1 j < β j < β − 3
2

δ = −1 ε = −1 no j no j



Spectrum (Hilbert space Hnorm)
For β ≥ 1

2 it is convenient to introduce, via the floor function, the
parameter µ, defined as

µ = {β − 1
2} = (β − 1

2 )− bβ − 1
2c, p = bβ − 1

2c,
so that µ ∈ [0, 1[, p ∈ N0 and β = 1

2 + µ+ p.

The results for the spectrum split into six different cases which
have to be separately analyzed:

case I: β = 0 (the undeformed oscillator),

case II: β = 1 + p, with p ∈ N0 (p = 0, 1, 2, . . .),

case III: β = 1
2 + p, with p ∈ N0,

case IV: 0 < β < 1
2 ,

case V: 0 < µ < 1
2 , therefore β = 1

2 + µ+ p, with p ∈ N0,

case VI: 1
2 < µ < 1, therefore β = 1

2 + µ+ p, with p ∈ N0.



The energy eigenvalues corresponding to the above cases are

case I: En = 3
2

+ n, where n ∈ N0 is a non-negative integer.
The vacuum energy is Evac = 3

2
; the ground state is four times

degenerated, with two bosonic and two fermionic eigenstates (hence
“2B + 2F”).
The vacuum lowest weight vectors are specified by the quantum numbers
j = 1

2
, δ = +1, ε = ±1 and (here and in the following) all compatible

values m = −j , . . . , j .
case II: En = 1

2
+ n, with n ∈ N0.

The vacuum energy is Evac = 1
2
; the degeneration of the ground state is

2(p + 1), with p + 1 bosonic and p + 1 fermionic eigenstates, and is
therefore denoted as “(p + 1)B + (p + 1)F”.
The vacuum lowest weight vectors are specified by j = 1

2
+ p, with either

δ = +1, ε = −1 or δ = −1, ε = +1.

case III: En = 1 + n, with n ∈ N0.
The vacuum energy is Evac = 1

2
; the degeneration of the ground state is

4p + 2, with 2p bosonic and 2(p + 1) fermionic eigenstates, and is
therefore denoted as “(2p)B + (2p + 2)F”.
For p = 0 the two vacuum lowest vectors are specified by j = 1

2
, δ = +1,

ε = −1.
For p > 0 the vacuum lowest vectors are specified either by j = 1

2
+ p,

δ = +1, ε = −1 or by j = p − 1
2
, δ = −1, ε = +1.



case IV: two series of energy eigenvalues E±
n = 3

2
± β + n, with n ∈ N0,

are encountered.
The vacuum energy is Evac = 3

2
− β; the ground state is fermionic and

doubly degenerated (“2F”).
The two vacuum lowest weight vectors are specified by j = 1

2
, δ = +1,

ε = −1.

case V: two series of energy eigenvalues E−
n = µ+ n, E+

n = 1− µ+ n,
with n ∈ N0, are encountered.
The vacuum energy is Evac = µ; the ground state is bosonic and
(2p + 2)-times degenerated (hence “(2p + 2)B”).
The vacuum lowest weight vectors are specified by j = 1

2
+ p, δ = −1,

ε = +1.

case VI: two series of energy eigenvalues E−
n = 1− µ+ n, E+

n = µ+ n,
with n ∈ N0, are encountered.
The vacuum energy is Evac = 1− µ; the ground state is fermionic and
(2p + 2)-times degenerated (hence “(2p + 2)F”).
The vacuum lowest weight vectors are specified by j = 1

2
+ p, δ = +1,

ε = −1.



Important remark. The energy spectrum of the V and VI cases
coincides under a

µ ↔ 1− µ, with µ 6= 0, 1
2 ,

duality transformation.
Under this duality transformation the parity (bosonic/fermionic) of
the ground state is exchanged. On the other hand, the
degeneracies of the energy eigenvalues above the ground state are
not respected by the duality transformation.
Example: µ = 1

4 with p = 0 (dually related β = 3
4 and β = 5

4
cases).
The lwv’s appearing in the first five energy levels are

E β = 3
4 β = 5

4
9
4

1
2 + B 5

2 + F
7
4

3
2 + F ×

5
4 × 3

2 + F
3
4

1
2 + F 1

2 − B
1
4

1
2 − B 1

2 + F



Computation of degeneracies:

The degeneracy of each energy level is finite and can be computed
recursively.. Let n(E ) be the total number of distinct, admissible,
lwv’s in the Hilbert space and let d(E ) be the number of
degenerate eigenstates at energy level E . At energy level E + 1 we
have

d(E + 1) = d(E ) + n(E + 1).

The d(E ) term in the r.h.s. gives the number of descendant states

obtained by applying a†1 to the degenerate states at energy E ,
while the n(E + 1) term corresponds to the number of



For the case above:

E dβ= 3
4
(E ) dβ= 5

4
(E )

9
4 4 12
7
4 6 2
5
4 2 6
3
4 2 2
1
4 2 2

One can see that 5
4 is the first energy level where an inequality of

the degeneracies is produced

dβ= 3
4
(

5

4
) 6= dβ= 5

4
(

5

4
).



Vacuum Energy (Hilbert space I):

1 2 3 4 5

0.5

1.0

1.5

The vacuum energy Evac(β) of the model is portrayed in the y
axis, with β up to β ≤ 5 depicted in the x axis. This diagram
refers to the Hilbert space admitting singular, but normalized wave
functions at the origin. Starting from β > 1

2 , the graph is
composed by a triangle wave of half-open line segments plus
isolated points at β = 1

2 + N.



Vacuum Energy (Hilbert space II):

●

●

● ●

●

●

●

●

●

●
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2.5

The vacuum energy Evac(β) of the model is portrayed in the y
axis, with β up to β ≤ 5 depicted in the x axis. This diagram
refers to the Hilbert space satisfying the condition that its wave
functions are regular at the origin. For β > 0, the vacuum energy
is always comprised in the interval 3

2 < Evac(β) ≤ 5
2 .



Degeneracy of the eigenstates:
At β = 0 Hosc corresponds to four copies of the ordinary isotropic
three-dimensional oscillator. Its degeneracy dβ=0(n) is

dβ=0(n) = 4 · d(n), with d(n) =
1

2
(n2 + 3n + 2).

Degeneracies for β = 1
2 + N0 and β = 1 + N0 with Hnorm Hilbert

space:
Case a: β = 1

2 + p (energy levels En = n + 1) with p, n ∈ N0.
The degeneracy dβ= 1

2
+p(En) grows linearly (mimicking a

two-dimensional oscillator) up to n = p; it then grows quadratically
starting from n = p + 1:

dβ= 1
2

+p(En) = 2(n + 1)(2p + 1) for n = 0, 1, 2, . . . , p,

dβ= 1
2

+p(En) = 2 · (q2 + 2(p + 1)q + (p + 1)(2p + 1)) for n = p + q with q = 0, 1, 2, . . . .



Case b: β = 1 + p (energy levels En = n + 1
2 ) with p, n ∈ N0.

As in the previous case, the degeneracy dβ=1+p(En) grows linearly
(mimicking a two-dimensional oscillator) up to n = p; it then
grows quadratically starting from n = p + 1:

dβ=1+p(En) = 4(n + 1)(p + 1) for n = 0, 1, 2, . . . , p,

dβ=1+p(En) = 2 · (q2 + (2p + 1)q + 2(p + 1)2) for n = p + q with q = 0, 1, 2, . . . .



Energy degeneracy at various β:
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Energy degeneracy (y axis) for the Hnorm Hilbert space at the
integer values β = 0, 2, 6, 16. In the x axis are reported the 40
lowest energy eigenvalues. The “•” bullet
denotes the β = 0 undeformed oscillator, while “−”, “∗” and “+”
stand, respectively, for the β = 2, 6, 16, cases. One can note the
“bending” of the β = 16 curve around energy E = 16.



Orthonormal eigenstates

The excited eigenstates (a+
1 )kΨε

j ,δ,m(r , θ, φ), obtained by applying

k times the a+
1 creation operator (1), are orthogonal.

The computation of their normalization factors which make the
wave functions orthonormal involves the computation of
Rodrigues-type formulas for recursive polynomials in the radial
coordinate r . These recursive polynomials can be recovered from
the associated Laguerre’s polynomials.

a+
1 =

1√
2
γ1
/r

r
(I4 · (∂r − r)− 2

r
I2 ⊗ ~S · ~L−

β

r
NF )

Ψε
j ,δ,m(r , θ, φ) = eε ⊗ Yj ,j− 1

2
δ,m (θ, φ) · rβε+δj+

1
2
δ−1e−

1
2
r2
.

The action of /r
r can be read from

~r · ~σ
r
Yj ,j− 1

2
δ,m (θ, φ) = −Yj ,j+ 1

2
δ,m (θ, φ)



Even and odd excited states are

(a+
1 )2kΨεj,δ,m(r , θ, φ) = eε ⊗ Yj,j− 1

2
δ,m (θ, φ) · (−2)kpε,δ,β2k,j (r)rεβ+δj+ 1

2
δ−1e−

1
2
r2
,

(a+
1 )2k+1Ψεj,δ,m(r , θ, φ) = i

√
2e−ε ⊗ Yj,j+ 1

2
δ,m (θ, φ) · (−2)kpε,δ,β2k+1,j (r)rεβ+δj+ 1

2
δ−1e−

1
2
r2
,

where pε,δ,β2k,j (r) and pε,δ,β2k+1,j(r) are r -dependent polynomials
recursively determined by the Rodrigues-type formulas

p
ε,δ,β
2k,j

(r) =
1

22k

(
r−γe

r2

2 0

)(
0 ∂r − r + γ+2

r
∂r − r − γ

r
0

)2k (
rγe

− r2

2

0

)
,

p
ε,δ,β
2k+1,j

(r) =
1

22k+1

(
r−γe

r2

2 0

)(
0 ∂r − r + γ+2

r
∂r − r − γ

r
0

)2k+1 ( 0

rγe
− r2

2

)
,

where

γ ≡ γ(j ,δ,ε)(β) = εβ + δj + 1
2δ − 1.

It follows in particular, from pε,δ,β0,j (r) = 1, that

pε,δ,β2,j (r) = r2 − γ − 3

2
.

and so on.



The associated Laguerre polynomials L
(γ)
k (x) are introduced

through the position

L
(γ)
k (x) =

x−γex

k!
(
d

dx
)kxγ+ke−x .

They satisfy the identities

L
(γ)
k (x) = L

(γ+1)
k (x)− L

(γ+1)
k−1 (x),

xL
(γ+1)
k−1 (x) = (γ + k)L

(γ)
k−1(x)− kL

(γ)
k (x).

Since

L
(γ)
1 (x) = −x + γ − 1,

by setting

x = r2, γ = γ +
1

2
,

we can identify

pε,δ,β2,j (r) = −L(γ+ 1
2

)

1 (r2).



By assuming the Ansatz

pε,δ,β2k,j (r) = CkL
(γ+ 1

2
)

k (r2),

via induction one proves that

Ck = (−1)kk!

The pε,δ,β2k,j (r) even and pε,δ,β2k+1,j(r) odd polynomials are expressed, in
terms of the associated Laguerre polynomials, as

pε,δ,β2k,j (r) = (−1)kk!L
(γ+ 1

2
)

k (r2),

pε,δ,β2k+1,j(r) = (−1)k+1k!rL
(γ+ 3

2
)

k (r2).

The normalizing factors are recovered from the orthogonal
relations for the associated Laguerre polynomials, given by∫ +∞

0
dxxγe−xL

(γ)
n (x)L

(γ)
m (x) =

Γ(n + γ + 1)

n!
δnm.



Final results (orthonormal wave functions):

Ψε
N,2k,j ,δ,m(r , θ, φ) = eε ⊗ Yj ,j− 1

2
δ,m (θ, φ) ·Mγ

2kL
(γ+ 1

2
)

k (r2) · rγe−
r2

2

with

Mγ
2k =

√
(k!) · 2

Γ(k + γ + 3
2 )

and

Ψε
N,2k+1,j,δ,m(r , θ, φ) = e−ε ⊗ Yj,j+ 1

2
δ,m (θ, φ) ·Mγ

2k+1L
(γ+ 3

2
)

k (r 2) · rγ+1e−
r2

2

with

Mγ
2k+1 =

√
(k!) · 2

Γ(k + γ + 5
2 )
.



Dimensional reductions:

The 3D → 2D case

Restrictions:

/∂ = h1∂1 + h2∂2, /r = x1h1 + x2h2, r =
√
x2

1 + x2
2

The
−→
S ·
−→
L operator entering the Hamiltonians is now given by

S3L3 and is diagonal.

The resulting Hamiltonian H2D,osc corresponds to two copies of the
two-dimensional 2× 2 matrix Hamiltonians derived from the
quantization of the sl(2|1) worldline sigma-model with two
propagating bosonic and two propagating fermionic fields:
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The 3D → 1D case

Restrictions:

/∂ = h3∂3, /r = x3h3, r =
√

x2
3 .

The resulting H1D,osc deformed oscillator is (we set x = x3)
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It coincides with the model derived from the quantization of the
world-line sigma model induced by the (1, 4, 3) supermultiplet.
The H1D,osc Hamiltonian possesses the larger D(2, 1;α)
spectrum-generating superalgebra, with α = β − 1

2 .
The sl(2|1) ⊂ D(2, 1;α) generators are sufficient to determine the
ray vectors of the Hilbert space.
From the dimensional reduction viewpoint, the extra generators
entering D(2, 1;α) are associated with an emergent symmetry.



Original spectrum-generating superalgebra:

Superselected 2D oscillator. The bosonic (fermionic) eigenstates
are represented by black (white) dots. The y axis labels the energy
eigenvalues, the x axis labels the so(2) spin components. The solid
edges represent the action of the creation operator from the
osp(1|2) ⊂ sl(2|1) subalgebra.Infinite osp(1|2) lwr’s are required to
produce the spectrum of the theory.



Mirrored spectrum-generating superalgebra:

A mirror dual: the dashed edges represent the action of the
creation operator from the osp(1|2)C ⊂ sl(2|1)C subalgebra,
produced by a new set of “mirrored” operators. As before, infinite
osp(1|2)C lwr’s are required to produce the spectrum. On the other
hand, any energy eigenstate can be obtained from the bosonic
vacuum through a path combining both solid and dashed edges.



Thanks a lot for the attention!
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