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Introduction
Discrete symmetries in 1-d QM: Discrete transformations which
preserve the 1-d Schrödinger equation shape.

Some quantum systems have:


i) Time reversal symmetry.

ii) Parity symmetry.

iii) Charge Conjugation

Applications: They give us new solutions!→ New systems by
means of Darboux transformation (DT)2.

Motivation!

Study and apply discrete symmetry in the Alfaro, Fubini and
Furlan model with harmonic term3, in the context of D.T.

2. V. B. Matveev and M. A. Salle, (Springer, Berlin, 1991).

3. V. de Alfaro, S. Fubini and G. Furlan, Nuovo Cim. A 34, 569
(1976).



Darboux transformation (D.T)

Construct a new system in base of a well known problem...

H1 = − d2

dx2 + V1 → H[n] = − d2

dx2 + V1 − 2 ln′′(W (ψ1, . . . , ψn))

ψλ → Ψ[n],λ = W (ψ1,...,ψn,ψλ)
W (ψ1,...,ψn) = A[n]ψλ

Eλ → E[n],λ = Eλ, E[n],i = 0 i = 1, . . . , n

Where A[n] = AnAn−1 . . .A1 and Ai = Ai−1ψi
d
dx

1
Ai−1ψi

,
i = 0, 1, 2 . . . , n and A0 = 1.

kerA[n] = span{ψ1, . . . , ψn}

Intertwining relations

A[n]H1 = H[n]A[n] and A†[n]L[n] = H1A†[n].



(0 + 1) Classical conformal mechanics

The (0 + 1) conformal mechanics model

S =

∫
Ldt , L =

1

2

(
q̇2 − g

q2

)
, g ≥ −1/4 .

Noether charges:

Hg =
1

2

(
p2 +

g

q2

)
, p = q̇ ,

D =
qp

2
− Hg t , K =

q2

2
− 2Dt − Hg t

2 ,

The Conformal algebra 4

{D,Hg} = Hg , {D,K} = −K , {K ,Hg} = 2D ,

4. S. Fedoruk, E. Ivanov and O. Lechtenfeld, J. Phys. A 45, 173001
(2012) [arXiv:1112.1947 [hep-th]].



Introducing an scale

By doing the change of variables 5

y =
q√

u + vt + wt2
, dτ =

dt

u + vt + wt2
,

The conformal action becomes in

S([y ]) =

∫
dτ

(
y ′2 − ω2y2 +

g

y2

)
+ B.T .

with ω2 = 1
4 (4wu − v2) > 0.

5. S. J. Brodsky, G. F. de Teramond, H. G. Dosch and J. Erlich, Phys.
Rept. 584 (2015) 1 [arXiv:1407.8131 [hep-ph]].



Noether charges

Hg =
1

2

(
p2 + ω2y2 +

g

y2

)
, p = y ′ ,

D =
1

2

(
yp cos(2ωτ) +

(
2ωy2 −Hgω

−1
)

sin(2ωτ)
)
,

K =
1

2

(
y2 cos(2ωτ)− ypω−1 sin(2ωτ)−Hgω

−2 (cos(2ωτ)− 1)
)
.

They satisfies the Newton Hooke algebra 6,7:

{Hg ,D} = −(Hg − 2ω2K) , {Hg ,K} = −2D ,

{D,K} = −K .

6. A. Galajinsky, Nucl. Phys. B 832, 586 (2010) [arXiv:1002.2290
[hep-th]].

7. K. Andrzejewski, Phys. Lett. B 738, 405 (2014) [arXiv:1409.3926
[hep-th]].



The “regularized” quantum conformal mechanics model

Quantum generators (~ = 1 , x =
√
ωy , ω = 2)

Hν = − d2

dx2
+ x2 +

ν(ν + 1)

x2
, ν ≥ −1/2 ,

C±ν = −
(

d

dx
∓ x

)2

+
ν(ν + 1)

x2
.

These generators satisfies the sl(2,R) algebra

[Hν , C±ν ] = ±4C±ν , [C−ν , C+
ν ] = 8Hν .

Solutions8:


ψν,n(x) =

√
2n!

Γ(n+l+ 3
2

)
xν+1L(ν+1/2)

n (x)e−x
2/2,

ψ̃ν,n(x) = ψν,n
∫ x dζ

(ψν,n(ζ))2 .

with Eν,n = 4n + 2ν + 3 .

8. A. M. Perelomov, Theor. Math. Phys. 6, 263 (1971).



The discrete Klein-4 group in the AFF model

The time dependent Schödinger equation(
− ∂2

∂x2
+ x2 +

ν(ν + 1)

x2

)
φ(x , t; ν) = i

∂

∂t
φ(x , t; ν) ,

preserve its form under the transformations

ρ1 : ν → −ν − 1 , ρ2 : (x , t)→ (ix ,−t) ,

ρ3 = ρ1ρ2 = ρ2ρ1 .

which satisfies
ρ2

1 = ρ2
2 = ρ2

3 = 1 .

→ K4 = {1, ρ1, ρ2, ρ3} is a Klein-4 group.

At the level of stationary Schrödinger equation

ρ2 : (x ,E )→ (ix ,−E ).



Action of the K-4 Group on the eigenstates

* ρ1(ψn,ν) =
√

2n!
Γ(n−ν−1/2)L

(−ν−1/2)
n (x2)e−x

2/2 := ψn,−ν−1,

ρ1(En,l) = 4l − 2ν + 1.

* ρ2(ψn,ν) =
√

2n!
Γ(n+ν+3/2)L

(ν+1/2)
n (−x2)ex

2/2 := ψ−n,ν ,

ρ2(En,ν) = −En,ν

* ρ3(ψn,ν) =
√

2n!
Γ(n−ν−1/2)L

(−ν−1/2)
n (−x2)ex

2/2 := ψ−n,−ν−1,

ρ3(En,−ν−1) = −En,−ν−1.

Careful!: In the case ν = `− 1/2 with ` = 0, 1, . . ., the factor
Γ(n − ν − 1/2)→∞ when n < `− 1/2.



The special case ν = `− 1/2
By means of the identity

(−η)m

m!
L(m−n)
n (η) =

(−η)n

n!
L(n−m)
m (η) ,

on can show the relation

ρ1(ψn,`−1/2,m) = (−1)nψl−1/2,n−` , n ≥ ` ,

ρ1(En, `− 1/2) = En−`,`−1/2 .

Figure: Action of ρ1 on eigenstates. The red states are “annihilated”.



If we ignore the normalization constant, we can construct the
non-physical solutions

ψm,`−1/2 := ρ1

(√
Γ(n + ν + 3/2)

2m!
ψm,`−1/2

)
,

m = 0, 1 . . . , `− 1 .

and we had also the relation

ψ`−1/2,`−1−m ∝ ρ2(ψ̃`−1/2,n) ,

ψ̃`−1/2,n ∝ ρ2(ψ`−1/2,`−1−m) ,



Conformal symmetry as a Darboux chain

For the case ν > −1/2 the kernel of the ladder operators are

ker C±ν = span{ψν,±0, ψ−ν−1,±0} ,

On the other hand, by using D. T.

Scheme System Intertwining operator

(ψν,0, ψ−ν−1,0) Hν + 4 −C−ν
(ψν,−0, ψ−ν−1,−0) Hν − 4 −C+

ν

which implies

C−ν φ = −W (ψν,0ψ−ν−1,0, φ)

W (ψν,0ψ−ν−1,0)
,

C+
ν φ = −W (ψν,−0 , ψ−ν−1,−0, φ)

W (ψν,−0 , ψ−ν−1,−0)
,

where φ is an eingestate of Hν .



The case ν = −1/2 and the Confluent Darboux
transformation (C.D.T)

In this case the kernel of the ladder operators are

ker C±1/2 = span{ψ1/2,±0,Ω−1/2,±0} ,

where
Ω1/2,±0 = (a± − ln(x))ψ−1/2,±0

are Jordan states (a± is a constant) which satisfies

HνΩν,±n = ψν,±n

By using the (C.D.T)9

Scheme System Intertwining operator

(ψ1/2,0,Ω1/2,0) H1/2 + 4 −C−1/2

(ψ1/2,−0,Ω−1/2,−0) H1/2 − 4 −C+
1/2

9 A. Schulze-Halberg, Eur. Phys. J. Plus 128 (2013) 68.



The action of C±ν on the complete set of eigenstate

The picture is summarized in the following diagram

Figure: Action of C±ν on the states. The red/blue market states are
annihilated by red/blue arrows.



Rational extended potentials and selection rules

Selection Rules of states:

i) {αKA
ν } = (ψν,l1 , ψν,l1+1, . . . , ψν,lmψν,lm+1).

ii) {αiso
ν } = (ψν,−s1 , . . . , ψν,−sm).

iii) {γµ} = (ψ−(µ+m)−1,n1
, ψµ+m,n1−m, . . . , ψ−(µ+m)−1,nN , ψµ+m,nN−m).

where −1/2 < µ ≤ 1/2.

Note!

* When µ = 0 we have deformations of the half-harmonic
oscillator.

* When µ = 1/2 we have {γµ} = {αKA
m+1/2} with

li = ni −m − 1.

* When µ = −1/2 we have W (γ−1/2) = 0→ Repeated states!.



By means of D.T we obtain the systems

Scheme System gaps

{αKA
ν } Hν+m + 4m + gν(x) 12 + 8k

{αiso
ν } Hν+m + 2m + fν(x) 0

{γµ} Hµ+m + 4n + hµ+m 8 + 4k

where k is the number of adjacent pairs of states in the scheme,
and fν , gν and hµ+m are rational functions.

Figure: A rationally extended potential obtained by {αKA
ν } = (ψν,2, ψν,3).



The corresponding rational functions has the following proprieties

* gν , fν , and hµ+m does not have zeros in R+.

* gν , fν , and hµ+m are zero in x = 0 and in x =∞.

* fν is a convex function.

* hµ+ν does not vanish when µ = −1/2!.

hµ+ν should by

W ({γµ}) = Cons(µ)W̃µ+m(x) where Cons(µ = −1/2) = 0
W̃µ+m(x) 6= 0.



The transformation which provide us the system

H−1/2+m + 4n + h−1/2+m ,

in reality correspond to the C.D.T with the scheme

{γ} = (ψ−1/2+m,n1
,Ω−1/2+m,n1−m, . . . , ψ−1/2+m,nN Ω−1/2+m,nN−m) ,

and one can show that

lim
µ→−1/2

W ({γµ})
(µ+ 1/2)N

∝W ({γ}) .



Examples

The scheme (ψ−ν−1,2, ψν,2) with −1/2 < ν ≤ 1/2 in blue and
(ψ−1/2,2,Ω−1/2,2) in red

Figure: Potential and ground state in dependence of ν.



Darboux duality

In the non-half-integer ν case1 , for a given scheme

{∆+} = (ψν,k1 , . . . , ψν,kN1
, ψ−ν−1,l1 , . . . , ψ−ν−1,lN2

)

exist a “dual scheme” ∆− (states ρa(ψν,n) with a = 2, 3 only)
which satisfies

W (∆+) ∝ e−(nN+1)x2
W (∆−) , N = max(N1,N2) .

∆− is constructed using diagrams like the following

Figure: “Mirror diagrams”. The numbers n indicate states ψν,n and n̄
indicate states ψ−ν−1,n states.

1In the half integer ν case we include Jordan states.



Spectrum generating operators

By means of D.T we have

Scheme System Intertwining operator

{∆+} H(+) A±(+)

{∆−} H(−) A±(−)

Intertwining operators satisfies

A−(±)Hν = H(±)A
−
(±) , A+

(±)H(±) = HνA+
(±) ,

and the relation

H(+) −H(−) = ∆E (nN + 1) , ∆E = 4 .



One can construct the operators

A−ν = A−(−)C
±
ν A

+
(−) , B−ν = A−(+)C

±
ν A

+
(+) ,

C− = A−(−)A
+
(+) , C+ = A−(+)A

+
(−) ,

which satisfies

[H(±),F±a ] = ±RaF±a , [F−a ,F+
a ] = Pa(H(±)) ,

a F±a Ra

1 A± ∆E

2 B± ∆E

3 C± ∆E (nN + 1)

and Pa(ζ) are polynomial function in ζ.



Non-linear Newton-Hooke algebras

Constructing dynamics integrals of motions by

F±a → e−iH(±)tF±a e iH(±)t = e∓RtF±a .

By take the linear combinations

Da =
(F+

a −F−a )

2iRa
, Ka =

F+
a + F+

a + 2H(±)

R2
a

we obtain

[H(±),Da] = i

(
R2
a

2
−H(±)

)
, [H(±),Ka] = −2iDa ,

[Da,Ka] =
1

iR3
a

(Pa(H(±))− 2RaH(±) + 3R3
aKa) .

The commutators [Da,Db], [Da,Kb] and [Ka,Kb] are in general
different of 0!.



Darboux duality and super conformal algebra

By means of D. T. we have

Scheme System Intertwining Operators

ψν,0 Hν+1 + 2 A−(+) = d
dx + x − ν+1

x

ψν,−0 Hν+m − 2 A−(−) = d
dx − x − ν+1

x

we can construct

He
ν =

(
A(+)A

†
(+) = Hν+1 − 2ν − 1 0

0 A†(+)A(+) = Hν − 2ν − 3

)
,

Hb
ν =

(
A(−)A

†
(−) = Hν+1 + 2ν + 1 0

0 A†(−)A(−) = Hν + 2ν + 3

)
,

En = 4n , En = 4n + 4ν + 6 .



He
ν → Exact supersymmetry.

Hb
ν → Broken Supersymmetry.

They are not independent

Rν =
1

4
(He

ν −Hb
ν) =

σ3

2
− (ν + 1)I .

The rest of the generators of the osp(2, 2) algebra are given by 1

Q1
ν =

(
0 A−(+)

A+
(+) 0

)
, S2

ν =

(
0 A−(−)

A+
(−) 0

)
,

Q2
ν = iσ3Q1

ν , S1
ν = iσ3S1

ν ,

G±ν =

(
C±ν+1 0

0 C±ν

)
.



The Lie superalgebraic relations

[He
ν ,Rν ] = [He

ν ,Qa
ν ] = 0 ,

[He
ν ,G±ν ] = ±4G±ν , [G−ν ,G+

ν ] = 8He
ν − 16Rν ,

[He
ν ,Saν ] = −4iεabSbν , [Rν ,Qa

ν ] = −iεabQb
ν ,

[Rν ,Saν ] = −iεabSbν ,

[G−ν ,Qa
ν ] = 2(Saν + iεabSbν ), [G+

ν ,Qa
ν ] = −2(Saν − iεabSbν ) ,

[G−ν ,Saν ] = 2(Qa
ν − iεabQb

ν) ,

[G+
ν ,Saν ] = −2(Qa

ν + iεabQb
ν) ,

{Qa
ν ,Qb

ν} = 2δabHe
ν , {Saν ,Sbν } = 2δab(He

ν − 4Rν) ,

{Qa
ν ,Sbν } = δab(G+

ν + G−ν ) + iεab(G+
ν − G−ν ) .



The Klein-4 group and superconformal mechanics

Transformation ρ1 First, one can see that f = f −1 defined as

He
ν → He

ν − 4Rν = Hb
ν , Rν → −Rν ,

G±ν → G±ν , Q1
ν → −S1

ν ,

Q2
ν → S2

ν , S1
ν → −Q1

ν , S2
ν → Q2

ν ,

is an automorphism. Then, the application on the generators ρ1

correspond to
ρ1(Oν) = σ1f (Oν−1)σ1 .

Note

* For ν 6= −1/2, the transformed generator satisfies de
superconformal algebra, but the new Hamiltonian is in broken
phase.

* For ν = −1/2 the transformed Hamiltonian is just
σ1(He

−1/2)σ1 which is in unbroken phase.



Transformation ρ2: By directly application we have

ρ2(He
ν) = −Hb

ν , ρ2(G±ν ) = −G∓ν , ρ2(Rν) = Rν ,

ρ2(Q1
ν) = −iS1

ν , ρ2(Q2
ν) = −iS2

ν ,

ρ2(S1
ν ) = −iQ1

ν , ρ2(S2
ν ) = −iQ2

ν ,

Note:

The generators satisfies the conformal algebra, but the
“Hamiltonian” of the system has negatives energies (not physical).



Summary

i) Klein 4 group is related with the conformal symmetry.

ii) The action of ladder operators on eigenstates (conformal
symmetry) can be understood as Darboux transformations.

iii) Half integer values of ν have special proprieties at the level of
eigenstates.

iv) Application: new rationally extended potentials and spectrum
generating ladder operators.



Figure: The mountain and the man...



Thank you very much!
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