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Abstract

We revisit the representation theory of the quantum double of the universal cover of
the Lorentz group in 2+ 1 dimensions, motivated by its role as a deformed Poincaré
symmetry and symmetry algebra in (2+ 1)-dimensional quantum gravity. We express
the unitary irreducible representations in terms of covariant, infinite-component fields
on curved momentum space satisfying algebraic spin and mass cc ints. Adapting
and applying the method of group Fourier transforms, we obtain covariant fields on
(2+ 1)-dimensional Minkowski space which necessarily depend on an additional inter-
nal and circular dimension. The momentum space constraints turn into differenti
exponentiated differential operators. and the group Fourier transform induces a star
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Magnetic Skyrmions - Experiment

Lorentz TEM images of FepsCoqsSi

Helical structure Skyrmion lattice
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Magnetic Skyrmions - Experiment

Imaging Néel-type skyrmions
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Magnetic Skyrmions - Theory

The energy of the lattice model is

E[S|=> -JS; §j+Dj-S;x ;- ZB Si+ Z(k Si)?

L Heisenberg DMI %/—/
h/—’
Zeeman magnetic anisotropy

The continuum limit is
1
E[n] = /RZ E(Vn)z + ZDaj(ajn X n)a + C(1 — n%) +,u2(1 — n3) dX1 74\ dX27
a,j

where the spiralization tensor D encodes the Dzyaloshinskii-Moriya
(DM) spin-orbit interaction.



A very brief history

» Topological twists in the magnetisation field of real planar magnetic
materials (Bogdanov and Jablonskii 1989)

» Past 10 years: technological interest as potential information carriers
in low-energy magnetic racetrack memory devices.



Pure Heisenberg model revisited

Basic field is the unit magnetisation vector
n:R% - S? C su(2),
with energy

E[n] = % /R (@10 + (2an))ax A .

For this to be finite, require existence of limit lim ... N(X) = N, so that
n extends to map
n:R?U{oo} — S,

with integer degree

deg[n] = 417/'7 [01n,02n] dxy A dxo.



The Bogomol'nyi argument

Write energy as
E[n] = %/ ((01n £ [n, don))? 4 n-[04n, d2n]) dxq A dxa,
R2

to deduce lower bound
E[n] > 4r|deg|n]|

with equality iff the Bogomol’'nyi equations holds:
61n = F[n, d2n.
They imply the variational equations

[n, (95 + 02)n] = 0.



Invariant formulation

Consider Riemann surface ¥ with local complex coordinates
Z=X1+iXo, 0,= %(31 — 182)

The Hodge * operation on 1-forms is a complex structure:
*xdz = —idz, *dz =idz,

The energy only depends on complex structure:
E[n = 1/(dn,/\*dn)
2 >

= %/z((dnqt*[n, anl), A x (dnF *[n, dn]))i%/z(n, [dn, dn]),

and the Bogomol’nyi equations are

*xdn = =£[n, dn.



Stereographic projection

ns




In terms of stereographic coordinate w € CU {o0}:

E[W]:2/ aw A xdw
b3

(1+[wp)?
_2/ (dw £+ i dw) A x(dw £ i * dw) 2/ dw A dw
s (1+ |wf?)? x (1+[wf)?

Bogomol’'nyi equations are
aw = +ix dw.

This is equivalent to
ozw=0 or 9,w=0.



Belavin-Polyakov instantons
General solution with w,, = 0 for degree n > 0 is holomorphic map of
degree n, so a rational map of the form

. ao+a1z+...a,,,1z”—1
by +biz4 ... bp_gzn1 4 20




Baby Skyrmions

Can construct a toy-model for 3d Skyrmions by breaking scale invariance:

E[n] = % /]R;Z((& n)? + (92n)2 + K[01n, Bn]? + 121 — n3))dxs A dxa.

v

Energy still bounded by 47 x |degree|, but bound not attained by
solutions

Solutions exponentially localised
Baby skyrmions exert orientation-dependent forces on each other.
Need numerical methods for detailed study.

v

v

v



Magnetic skyrmions at critical coupling

Critical combination of Zeeman energy and easy plane potential:

1 1

(1= =(1—m) - 5(1- )

leads to energy
2
Es[n] = / %(Vn)2 +rN-V7x N+ %(1 — n3)? dxy A dxo, where
R2

where V™% x n= Rs(—a)e; x 9;n so that spirality tensor is rotation and
DMI terms is

Kk COS a(n182n3 — Nodi1nz + n3(81 no — 82n1))
+ ksin Oz(—l’71 01Ng — NoOaN3 + n3(61 ny + 82n2).

Variational equation is

2k(n-V~*)n = (An+ k*(1 — n3)es) x n.



A gauged sigma model

Consider principal SU(2) bundle over X with connection A and associated
adjoint vector bundle with section n valued in unit sphere. With

Dn = dn+[A,n] Fa=dA+ANA,

consider the energy functional
E[A n] = / %(Dn, A Dn) — (F,n).
X
Use %(n, [Dn, Dn)) = %(n, [dn,dn]) + (F,n) — d(A,n) to write

E[A n] = %L((Dn—*[n, Dn]), A % (Dn — %[n, Dn]))



Variational equations

For variations which vanish at boundary, varying E[A, n] with respect to n
gives
[DxDn+ F,n=0. (1)

Varying with respect to A gives

‘ Dn = x[n, Dn. ‘

Note: The last equation is also the Bogmol’'nyi equation of the model, and
implies the equation (1)!



A modified energy functional

Consider

E[A, n] = E[A, n] + / (A, n),
ox

so that

E[A n] = % /):((Dn — «[n, D)), A+ (Dn — +[n, D))

y
+f/ n-[dn, dn.
2 Js
Now fix A and impose Bogomol'nyi equation in the boundary region. Then

(DA +Dn+ F),(Sn)+/ (c, dn).

ox

SEIA ] = — /

b

So variational problem for E[A, n] with respect to n is well-defined even for
variations én = [e, n] which vanish slowly as we approach 9%



Unitary versus holomorphic structures and a useful formula

» Any unitary connection on a C?-bundle over a Riemann surface ¥,
has curvature of the form

Frzdz AN dz

i.e. of type (1,1).

» By Atiyah, Hitchin, Singer 1978 this means that the connection A
defines a holomorphic structure and that one can choose a
holomorphic gauge where A; =0, i.e. D, = 0,.

» In a unitary gauge, the connection can locally be written in the form
A=90:97'dz+ (g7 ")'0,9'dz, g:UcX— SL(2,C)

See also Karabali and Nair, 1996.



Solving gauged c—models

In terms of stereographic coordinates on S? and complex coordinates z
on X, the Bogomol'nyi equation is

Dw = ixDw < (0z + Az)w = 0.

If Az = gd>g~", can solve this explicitly by going to the holomorphic
gauge in terms of

a b\
g:(C d).U—>SL(2,<C),

via

W c+df
a+ bf’




Magnetic skyrmions from Gauged o—models
Consider ~ = C and the ‘helical connection’
1 ) )
As = —én(e""dz t+e'dzty)

in terms of basis t. = t + ifz, t3 of su(2). Then Fs = x%tdxq A dxo.
Recall ]
E[A, n] = / 2(Dn, A% D) — (F, ).
X

and

,{2

5 (1 — n3)2 axy A dxo.

1
Eg[n] = /]R2 §(Vn)2 +rN-V7 x N+

After some calculation,

| E[As,n] = Es[n]. |

where we replaced n — n.



Modified energy

The modified energy
E[A n] = / X (Dn, A% Dn) — (F, ) +/ (A,n)
> 2 oxr

reproduces the energy functional proposed in L Déring, C Melcher,
Calculus of Variations 2017:

2

~ 1
Eg[n] = /}R2 §(Vn)2 +r(N—e3)- V ¥xn+ %(1 — n3)? dxy A dxe.

In other words

E[As,n] = Eg[n).




Harmonic magnetic skyrmions

To solve the Bogomol’'nyi equation we note
_ 1 —ikeloz
(As)z=90:97", 9= (O 2’? )

The general solution of the gauged sigma model in this case is

) v(z,z) = —émeiai + f(2),

with f : C — CP' holomorphic.
Reconstruct magnetisation field via

27 v -1

mn+inp = ———, ng= 1.
e = e 3T VETT



Hedgehogs and line defects

From v = — fxe’*Z obtain hedgehog field

sind(r) cos(¢ + )

n= | sing(r)sin(¢ +7) |, z=re",
( cos(r) )

with

™

y=5-a  fn= 2tan~! (2> :

Kr

(also L Déring, C Melcher, Calculus of Variations 2017)
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Figure: Top from left to right: Bloch skyrmion v = — Z.
Bottom from left to right: a shifted Bloch skyrmion v = —

anti-skyrmion configuration v = —%2 + 3iz.

z and Néel skyrmion v = }
.z + 1(3—2i) and the



From v = — Jxe'*(z + z) find defect line along x = 0

1 2kX sin
—2KX COS «v
K2x2 — 1

n=———
K2Xx2 +1




P — R

Figure: Stretching and squeezing for the configuration v = 75'2 + az witha=10.3
(top left), a = 0.4 (top right), a = 0.5 (bottom left) and a = 0.7 (bottom right).
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Figure: Magnetisation and energy density for N = 2 solution v = £z + 1z°. This
is an example of a configuration involving a skyrmion and three anti-skyrmions.



Figure: Magnetisation and energy density for the skyrmion bag defined by

_ _ i3 z+2i
V= 22+ z-2i"




Figure: The numerically computed ground state: an infinite skyrmion lattice. From
Lin, Saxena and Batista, Phys Rev B 91 (2015) 224407)



Spin polarized
ferromagnetic state
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Figure: The numerically computed phase diagram. From Lin, Saxena and Batista,
Phys Rev B 91 (2015) 224407)
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Conclusion and Questions

Magnetic skyrmions at critical coupling are holomorphic section of
CP'-bundle with connection determined by the DMI term.

SUSY version?
Lattice version?
What is the time evolution?



