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General solutions of the classical equations of motion for a relativistic particle with torsion are constructed in the massive, 
massless and tachyonic sectors. It is shown that the quantization of the model leads to the Majorana equation in 2 + 1 dimensions. 
In the massive sector, the quantum physical states can have a fractional spin, and there are also massless and tachyonic states in 
the quantum spectrum of the system. The difference of the quantization of the model in three-dimensional euclidean space is 
traced. 

In ref. [1] it was claimed that in the ( 2 + 1 ) -  
dimensional CpI-model with Chern-Simons term, for 
a definite value o f  the constant in this term in the 
action [2,3 ], the charged scalar particle turns into a 
fermion, i.e., the Bose-Fermi  transmutation takes 
place. In ref. [ 1 ], within the path-integral approach 
the effective action for the charged particle was eval- 
uated, which contained the length o f  the particle path 
and a term proportional to the torsion o f  its world 
trajectory. It was that effective action that led, upon 
quantization in the three-dimensional euclidean 
space, to a fermion propagator for the particle. Later 
on it was established [4 ] that in 2 + 1 dimensions the 
gauge theories with Chern-Simons  term, in the case 
o f  an arbitrary value o f  the constant in this term, ex- 
hibit fractional spin and statistics for the charged ex- 
citations. On the other hand, the model of  a particle 
with torsion was investigated in the Minkowski space 
[5-10  ]. It was shown that at the classical level the 
squared mass o f  the system is restricted from above, 
and that besides the massive solutions of  the equa- 
tions o f  motion, the model must  also have massless 
and tachyonic solutions [ 5 ]. A relativistic model of  
the anyon [ 11 ], describing the states o f  the particle 
with torsion with the maximum value o f  the mass, 
was constructed in ref. [6].  In ref. [7] ,  the SL (2, ~ ) -  
algebra was demonstrated to appear upon quantiza- 
tion o f  the particle with torsion. But in our  opinion, 
in that paper no consistent quantization o f  the model 

was carried out; the only thing done was just listing 
all the finite-valued representations o f  the SL ( 2, R )- 
group. At the same time, ref. [ 7 ] displayed the exis- 
tence of  massive, massless and tachyonic solutions at 
both the classical and quantum levels. The quantum 
mass spectrum in the massive sector was obtained in 
ref. [ 8 ], but the conclusion reached ran that, unlike 
the euclidean case, in the Minkowski space the par- 
ticle with torsion can be o f  integer spin only so there 
is no transmutation of  the statistics there. Also, the 
quantum spectrum in the massive sector was ob- 
tained in ref. [ 9 ], and it was pointed out that the spin 
of  the particle can take nonquantized values. How- 
ever, it was claimed that in the quantum case there 
are no tachyonic solutions in the model. Therefore, it 
seems necessary to go on investigating the model o f  
the relativistic particle with torsion. 

In the present paper, we shall obtain the classical 
equations o f  motion of  the model, proceeding from 
the lagrangian with higher derivatives, and construct 
then their general solutions in all the three sectors o f  
the squared mass. Here it is necessary to emphasize 
that in all the three cases the particle moves at a ve- 
locity less than the velocity o f  light. We shall show 
that the quantization o f  the model leads to the 
Majorana equation [ 12 ] in 2 +  I dimensions, and to 
the discrete class D + of  the representations o f  the 
universal covering group of  SL (2, ~)  [ 13 ]. As a re- 
sult, in the massive sector the particle can have any 
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Magnetic Skyrmions - Theory

The energy of the lattice model is

E [S] =
∑
i,j

−JS i · S j︸ ︷︷ ︸
Heisenberg

+ Dij · S i × S j︸ ︷︷ ︸
DMI

−
∑

i

B · S i︸ ︷︷ ︸
Zeeman

+
∑

j

(k · S i )
2

︸ ︷︷ ︸
magnetic anisotropy

The continuum limit is

E [n] =

∫
R2

1
2

(∇n)2 +
∑
a,j

Daj (∂jn× n)a + c(1− n2
3) + µ2(1− n3) dx1 ∧ dx2,

where the spiralization tensor D encodes the Dzyaloshinskii-Moriya
(DM) spin-orbit interaction.



A very brief history

I Topological twists in the magnetisation field of real planar magnetic
materials (Bogdanov and Jablonskii 1989)

I Past 10 years: technological interest as potential information carriers
in low-energy magnetic racetrack memory devices.



Pure Heisenberg model revisited

Basic field is the unit magnetisation vector

n : R2 → S2 ⊂ su(2),

with energy

E [n] =
1
2

∫
R2

((∂1n)2 + (∂2n)2)dx1 ∧ dx2.

For this to be finite, require existence of limit lim|x|→∞ n(x) = n∞, so that
n extends to map

ñ : R2 ∪ {∞} → S2,

with integer degree

deg[n] =
1

4π

∫
n · [∂1n, ∂2n] dx1 ∧ dx2.



The Bogomol’nyi argument

Write energy as

E [n] =
1
2

∫
R2

(
(∂1n ± [n, ∂2n])2 ± n · [∂1n, ∂2n]

)
dx1 ∧ dx2,

to deduce lower bound
E [n] ≥ 4π|deg[n]|

with equality iff the Bogomol’nyi equations holds:

∂1n = ∓[n, ∂2n].

They imply the variational equations

[n, (∂2
1 + ∂2

2)n] = 0.



Invariant formulation

Consider Riemann surface Σ with local complex coordinates
z = x1 + ix2, ∂z = 1

2 (∂1 − i∂2).

The Hodge ? operation on 1-forms is a complex structure:

?dz = −idz, ?dz̄ = id z̄,

The energy only depends on complex structure:

E [n] =
1
2

∫
Σ

(dn,∧ ? dn)

=
1
4

∫
Σ

((dn ∓ ?[n,dn]),∧ ? (dn ∓ ?[n,dn]))± 1
2

∫
Σ

(n, [dn,dn]),

and the Bogomol’nyi equations are

?dn = ±[n,dn].



Stereographic projection

n1 + in2

w

n3

1

S

n



In terms of stereographic coordinate w ∈ C ∪ {∞}:

E [w ] = 2
∫

Σ

dw ∧ ?dw̄
(1 + |w |2)2

= 2
∫

Σ

(dw ± i ? dw) ∧ ?(dw ± i ? dw)

(1 + |w |2)2 ∓ 2
∫

Σ

dw ∧ dw̄
(1 + |w |2)2

Bogomol’nyi equations are

dw = ±i ? dw .

This is equivalent to
∂z̄w = 0 or ∂zw = 0.



Belavin-Polyakov instantons
General solution with w∞ = 0 for degree n > 0 is holomorphic map of
degree n, so a rational map of the form

w =
a0 + a1z + . . . an−1zn−1

b0 + b1z + . . . bn−1zn−1 + zn .



Baby Skyrmions

Can construct a toy-model for 3d Skyrmions by breaking scale invariance:

E [n] =
1
2

∫
R2

((∂1n)2 + (∂2n)2 + κ[∂1n, ∂2n]2 + µ2(1− n3))dx1 ∧ dx2.

I Energy still bounded by 4π× |degree|, but bound not attained by
solutions

I Solutions exponentially localised
I Baby skyrmions exert orientation-dependent forces on each other.
I Need numerical methods for detailed study.



Magnetic skyrmions at critical coupling

Critical combination of Zeeman energy and easy plane potential:

1
2

(1− n3)2 = (1− n3)− 1
2

(1− n2
3)

leads to energy

ES[n] =

∫
R2

1
2

(∇n)2 + κn · ∇−α × n +
κ2

2
(1− n3)2 dx1 ∧ dx2,where

where ∇−α × n = R3(−α)ei × ∂in so that spirality tensor is rotation and
DMI terms is

κ cosα(n1∂2n3 − n2∂1n3 + n3(∂1n2 − ∂2n1))

+ κ sinα(−n1∂1n3 − n2∂2n3 + n3(∂1n1 + ∂2n2).

Variational equation is

2κ(n · ∇−α)n =
(
∆n + κ2(1− n3)e3

)
× n.



A gauged sigma model

Consider principal SU(2) bundle over Σ with connection A and associated
adjoint vector bundle with section n valued in unit sphere. With

Dn = dn + [A,n] FA = dA + A ∧ A,

consider the energy functional

E [A,n] =

∫
Σ

1
2

(Dn,∧ ? Dn)− (F ,n).

Use
1
2

(n, [Dn,Dn]) =
1
2

(n, [dn,dn]) + (F ,n)− d(A,n) to write

E [A,n] =
1
4

∫
Σ

((Dn − ?[n,Dn]),∧ ? (Dn − ?[n,Dn]))

+
1
2

∫
Σ

(n, [dn,dn])−
∫
∂Σ

(A,n).



Variational equations

For variations which vanish at boundary, varying E [A,n] with respect to n
gives

[D ? D n + F ,n] = 0. (1)

Varying with respect to A gives

Dn = ?[n,Dn].

Note: The last equation is also the Bogmol’nyi equation of the model, and
implies the equation (1)!



A modified energy functional

Consider
Ẽ [A,n] = E [A,n] +

∫
∂Σ

(A,n),

so that

Ẽ [A,n] =
1
4

∫
Σ

((Dn − ?[n,Dn]),∧ ? (Dn − ?[n,Dn]))

+
1
2

∫
Σ

n · [dn,dn].

Now fix A and impose Bogomol’nyi equation in the boundary region. Then

δẼ [A,n] = −
∫

Σ

((D ∧ ?Dn + F ), δn) +

∫
∂Σ

(ε,dn).

So variational problem for Ẽ [A,n] with respect to n is well-defined even for
variations δn = [ε,n] which vanish slowly as we approach ∂Σ.



Unitary versus holomorphic structures and a useful formula

I Any unitary connection on a C2-bundle over a Riemann surface Σ,
has curvature of the form

Fzz̄dz ∧ dz̄

i.e. of type (1,1).
I By Atiyah, Hitchin, Singer 1978 this means that the connection A

defines a holomorphic structure and that one can choose a
holomorphic gauge where Az̄ = 0, i.e. Dz = ∂z .

I In a unitary gauge, the connection can locally be written in the form

A = g∂̄z̄g−1dz̄ + (g−1)†∂zg†dz, g : U ⊂ Σ→ SL(2,C)

See also Karabali and Nair, 1996.



Solving gauged σ−models

In terms of stereographic coordinates on S2 and complex coordinates z
on Σ, the Bogomol’nyi equation is

Dw = i ? Dw ⇔ (∂z̄ + Az̄)w = 0.

If Az̄ = g∂z̄g−1, can solve this explicitly by going to the holomorphic
gauge in terms of

g =

(
a b
c d

)
: U → SL(2,C),

via

w =
c + df
a + bf

.



Magnetic skyrmions from Gauged σ−models

Consider Σ = C and the ‘helical connection’

AS = −1
2
κ(eiαdz t− + e−iαdz̄ t+)

in terms of basis t± = t1 ± it2, t3 of su(2). Then FS = κ2t3dx1 ∧ dx2.

Recall
E [A,n] =

∫
Σ

1
2

(Dn,∧ ? Dn)− (F ,n),

and

ES[n] =

∫
R2

1
2

(∇n)2 + κn · ∇−α × n +
κ2

2
(1− n3)2 dx1 ∧ dx2.

After some calculation,

E [AS,n] = ES[n].

where we replaced n→ n.



Modified energy

The modified energy

Ẽ [A,n] =

∫
Σ

1
2

(Dn,∧ ? Dn)− (F ,n) +

∫
∂Σ

(A,n)

reproduces the energy functional proposed in L Döring, C Melcher,
Calculus of Variations 2017:

ẼS[n] =

∫
R2

1
2

(∇n)2 + κ(n − e3) · ∇−α × n +
κ2

2
(1− n3)2 dx1 ∧ dx2.

In other words

Ẽ [AS,n] = ẼS[n].



Harmonic magnetic skyrmions

To solve the Bogomol’nyi equation we note

(AS)z̄ = g∂z̄g−1, g =

(
1 − i

2κeiαz̄
0 1

)
.

The general solution of the gauged sigma model in this case is

w =
1
v
, v(z, z̄) = − i

2
κeiαz̄ + f (z),

with f : C→ CP1 holomorphic.

Reconstruct magnetisation field via

n1 + in2 =
2v̄

|v |2 + 1
, n3 =

|v |2 − 1
|v |2 + 1

.



Hedgehogs and line defects

From v = − i
2κeiαz̄ obtain hedgehog field

n =

sin θ(r) cos(φ+ γ)
sin θ(r) sin(φ+ γ)

cos θ(r)

 , z = reiφ,

with

γ =
π

2
− α, f (r) = 2 tan−1

(
2
κr

)
.

(also L Döring, C Melcher, Calculus of Variations 2017)



Figure: Top from left to right: Bloch skyrmion v = − i
2 z̄ and Néel skyrmion v = 1

2 z̄.
Bottom from left to right: a shifted Bloch skyrmion v = − i

2 z̄ + 1
2 (3 − 2i) and the

anti-skyrmion configuration v = − i
2 z̄ + 3iz.



From v = − i
2κeiα(z̄ + z) find defect line along x = 0

n =
1

κ2x2 + 1

 2κx sinα
−2κx cosα
κ2x2 − 1

 .



Figure: Stretching and squeezing for the configuration v = − i
2 z̄ + az with a = 0.3

(top left), a = 0.4 (top right), a = 0.5 (bottom left) and a = 0.7 (bottom right).



Figure: Magnetisation and energy density for N = 2 solution v = i
2 z̄ + 1

2 z2. This
is an example of a configuration involving a skyrmion and three anti-skyrmions.



Figure: Magnetisation and energy density for the skyrmion bag defined by
v = − i

2 z̄ + z+2i
z−2i .



SKYRMION FRACTIONALIZATION AND MERONS IN . . . PHYSICAL REVIEW B 91, 224407 (2015)

FIG. 2. (Color online) Evolution of the spin texture as a function of increasing easy-plane anisotropy. The left column is the spin texture.
The color denotes the spin component along the z direction, while the arrows represent the in-plane spin component. The middle column
illustrates the topological charge density q(r). From top to bottom, A = 0.075D2/Jex, A = 0.825D2/Jex, and A = 1.275D2/Jex. There is a
transition from a triangular to a square lattice with increasing A. The upper insets in (a), (d), and (g) are the Fourier transform of nz after
subtracting the uniform component, while the lower insets are enlarged views. (c), (f) The corresponding wrapping of spin textures on the
surface of a sphere. (i) illustrates why the chirality of the meron at the center is opposite to the surrounding merons. Here Bz = 0.7D2/Jex and
Lx × Ly = 60 × 60 (Jexa/D)2. The results are qualitatively the same for other magnetic fields; see Fig. 7.

224407-3

Figure: The numerically computed ground state: an infinite skyrmion lattice. From
Lin, Saxena and Batista, Phys Rev B 91 (2015) 224407)



Figure: The numerically computed phase diagram. From Lin, Saxena and Batista,
Phys Rev B 91 (2015) 224407)



Conclusion and Questions

I Magnetic skyrmions at critical coupling are holomorphic section of
CP1-bundle with connection determined by the DMI term.

I SUSY version?
I Lattice version?
I What is the time evolution?


