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SUMMARY

1.- Introduction

2.- 1D non-relativistic V(x) = —ad(x) + bd’(x)
3.-V(x) = Z (Vo 5(x —na)+aVq §'(x — na))
n=—oo

4.- Radial potential: V(r) = —ad(r — ry) + bd'(r — rp)

5.- 3D: application in Nuclear Physics
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1.- INTRODUCTION
1D non-relativistic QM contact potentials are relevant in Theor. Phys.

Easy to deal with them to analyze basic quantum properties: bound
states, resonances or scattering.

Used to model point defects in materials, thin structures, heterostructures
(abrupt effective mass change), and topological insulators.
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1D non-relativistic QM contact potentials are relevant in Theor. Phys.

Easy to deal with them to analyze basic quantum properties: bound
states, resonances or scattering.

Used to model point defects in materials, thin structures, heterostructures
(abrupt effective mass change), and topological insulators.

In nanophysics: to model sharply peaked impurities inside quantum
dots.

In scalar QFT on a line: used to model impurities and external singular
backgrounds.

Contact interactions d(X) or ¢’(x): analyze perturbations of a free
kinetic Schrodinger Hamiltonian, the harmonic oscillator, a constant
electric field, the infinite square well, the conical oscillator, etc.
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I.- INTRODUCTION

1D non-relativistic QM contact potentials are relevant in Theor. Phys.

Easy to deal with them to analyze basic quantum properties: bound
states, resonances or scattering.

Used to model point defects in materials, thin structures, heterostructures
(abrupt effective mass change), and topological insulators.

In nanophysics: to model sharply peaked impurities inside quantum
dots.

In scalar QFT on a line: used to model impurities and external singular
backgrounds.

Contact interactions d(X) or ¢’(x): analyze perturbations of a free
kinetic Schrodinger Hamiltonian, the harmonic oscillator, a constant
electric field, the infinite square well, the conical oscillator, etc.

The relativistic counterparts have not yet attracted much attention. We
are working in this direction.
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The analysis of the 1D quantum Hamiltonian
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2.- V(x)=—ad(x)+ bd'(x)

GENERAL PURPOSE:

The analysis of the 1D quantum Hamiltonian

_P /
H_2m aé(x)+bd'(x), a>0,beR.

If b =0 — known. If a = 0 — incompatible with §(x).

SOME ASPECTS THAT CAN BE STUDIED:
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GENERAL PURPOSE:

The analysis of the 1D quantum Hamiltonian

Overview
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< /
H_2m adé(x)+bd'(x), a>0,beR.

If b = 0 — known. If 2 = 0 — incompatible with (x).
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Matck
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© Existence of bound states

® Transmission and reflexion coefficients

- © Addition of extra terms of physical interest:
(A) Infinite square well
(B) Harmonic oscillator
(c) Constant electric field
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If b = 0, we know:

(1) H is self-adjoint in D, continuous functions ¢)(x) such that

Y'(0F) —'(0—) = —2may(0)/h2.

ma’

(2) There is a unique bound state E = — 7.
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If b = 0, we know:

(1) His self-adjoint in D, continuous functions 1 (x) such that

Y'(0F) —'(0—) = —2ma(0)/h2.

(2) There is a unique bound state £ = —g—;:.

The case b #= 0 was not considered before 2009 in the literature.
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H=£5 —ad(x)+bd(x), a>0,beR
If b = 0, we know:
(1) H is self-adjoint in D, continuous functions ¢ (x) such that

Y'(0F) —'(0—) = —2may(0)/h2.

(2) There is a unique bound state £ = 2h2

The case b # 0 was not considered before 2009 in the literature.

ON THE MEANING OF ¢'(X)

e Different sequences f,(Xx) — 0’(x) produce different T and R

e We choose a regularization independent approach to singular
potentials : P. Kurasov, J. Math. Anal. Appl. 201, 297-323 (1996)
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If b = 0, we know:

(1) H is self-adjoint in D, continuous functions ¢ (x) such that

Y'(0F) —'(0—) = —2may(0)/h2.

(2) There is a unique bound state £ = W

The case b # 0 was not considered before 2009 in the literature.

ON THE MEANING OF ¢'(X)

e Different sequences f,(Xx) — 0’(x) produce different T and R

e We choose a regularization independent approach to singular
potentials : P. Kurasov, J. Math. Anal. Appl. 201, 297-323 (1996)

e It only depends on the matching conditions on 1(x) and ¢’(x)
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e ¥(X) : R — C in (Sobolev) space of continuous functions, except for a

finite jump at the origin (W2(R/{0})) such that:
(i) 1(x) € WZ(R/{0}) = ¢'(x) continuous, except at the origin
(ii) 9" (x) exists almost everywhere
(iil) 1(x) and ¢ (x)”(x) are square integrable:

| 0R + 1 0Py < .

In addition, at x = 0, Kurasov’s matching conditions must be satisfied:

plivisss h? + mb

. 5(0%) #-mb ° v (o)

RA\UI\:II]H“ w/(0+) N _2h23m h2 B mb ,l/)l(oi)
h* — m2b?  h2 4+ mb
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For different values of E, we have to solve

h2 1 ! -
— " — aB(X)H() + b ()Y(X) = EY(x) ...

e We must properly define §(x)u(x), 8’ (X)) (x) as distributions
e The ¢'(x) term forces 1)(X) to be discontinuous at x = 0 (!!)
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For different values of E, we have to solve

2

_2h_m "~ ad(x)p(x) + b (X)p(x) = E(x) ...

e We must properly define §(x)1(x), §’(x)w(x) as distributions
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e We must properly define §(x)1(x), §’(x)w(x) as distributions
e The §’(x) term forces () to be discontinuous at x = 0 (!!)
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THE SCHRODINGER EQUATION

For different values of E, we have to solve
2

"—ad(x)(x)+ bd'(x)w(x) = Ep(x) ...

2m

e We must properly define §(x)1(x), §’(x)w(x) as distributions
e The §’(x) term forces () to be discontinuous at x = 0 (!!)

ACTION OF §(X) AND ¢'(X) ON DISCONTINUOUS FUNCT.

Following Kurasov’s proposal:

$(0+) +¥(0-)

D000 = B 50,
s () = OHTVOT) 5 FODHY0) g
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BOUND SATES

SCHRODINGER EQUATION WITH E < 0

As V(x) = 0 for x # 0, the solution that vanishes as X — %00 is

P(X) = e O(—x)+ e O(x), k=4/—-2mE/Rr?,

where ¢(07) = o # 3 = ¢(0™") and ©(x) is the Heaviside step
function.
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As V(x) = 0 for x # 0, the solution that vanishes as X — %00 is

Overview

Bound sates

B(X) = 0 ¥ O(—x) + fe*O(X), K =1/—2mE/R2,

where ¢(07) = o # 3 = ¢(0™") and ©(x) is the Heaviside step

The problem funCtiOn,
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Matck
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To assure self-adjointness, we impose Kurasov’s matching conditions:

S g1 ma&n
Resonances - 2 (h4 4 b2 m2)2
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BOUND SATES

SCHRODINGER EQUATION WITH E < 0

As V(x) = 0 for x # 0, the solution that vanishes as X — £oo is

(X)) = e O(—x)+ e *O(x), k=1/—-2mE/R?,

where ¢(07) = o # 3 = ¢(0™") and ©(x) is the Heaviside step
function.

To assure self-adjointness, we impose Kurasov’s matching conditions:

1 ma2h®

E= "2 (W 1 B2 mR)2

vmah

Y(x) = s [(h? — mb)e™ ©(—x) + (h? + mb)e™"* ©(x)]
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FIGURE: Energy of the only bound state as a function of mb
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SCHRODINGER EQUATI
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R + mb 5
T\ _ [ #wm 1+R
KT —2amh?®  h? —mb ik(1 — R)
h*—mPb?  h?+mb
_ i  2R2\ K
R(k) = (am+ 2mbk i) T(k) = (1 —mb)ki

am+ (1 +mb?)ki am+ (1 +m2b)ki

satisfying |R(k)|? + | T(k)[2 = 1 (h=1)

If b = +1/m there is no transmission
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JM MUNOzZ AND J] MATEOS, PRD 91 (2015) 025028

Quantum vacuum interaction in a Casimir setup

o4

Casmlrk Vacuum /

plates fluctuations

by mimicking the plates as two contact interactions of the form:

e d?
H= _ﬁWH‘ 5(X+Qq)+b1d' (x+q)+ad(x—q)+b6'(x—q)

Then, it is natural to consider ...
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The Dirac comb is obtained by taking the appropriate limit in KP
model, such that the rectangular barriers become Dirac delta
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3.- §-0' DIRAC COMB

Kronig-Penney model: exactly solvable periodic potential, used in
Solid State Physics, which describes electron motion in a period array of
rectangular barriers.

The Dirac comb is obtained by taking the appropriate limit in KP
model, such that the rectangular barriers become Dirac delta
distributions:

Vokp(X) = Vo Y 8(x — na), Vo > 0.

n=—oo

We consider a modified Dirac comb, adding a ¢’ in every singular point:

Vi) = Y (vo 5(x — na) + aV; &' (x — na)), a V>0,V eR.

nN=—oc

Periodic array of charges and dipoles.
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o First of all, we will solve Schrodinger equation in regions / and /.

e Second, we will impose Kurasov’s matching conditions at x = 0.
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SOLVING THE QUANTUM MECHANICAL PROBLEM

h2 dzw(x)
—— 4+ Vi (x x) = Eu(x
2m dx? + Vi(x) %(x) Y(x),
Vod(x+a) +aV1d'(x +a) 0d(x — a) +aVid'(x - a)
region / region I/
¢l| ()l al
Vod (x) 4+ aV,d'(x)
PROCEDURE:

o First of all, we will solve Schrodinger equation in regions / and /.
e Second, we will impose Kurasov’s matching conditions at x = 0.

¢ Finally, we will take into account Floquet-Bloch theorem.
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¢I(X) = A eikx + B e—ikx7 1/}”()() = Ay eikx + By e—ikx7

Yj(x) = ikA & — kB e R, i (x) = ikAy & — ikBy e,

Bound sates

3 5.6 Dirac being k = 7VzhmE > 0.
comb
:.'“”.. In matrix compact form:
]h:un(l states b /l/}J(X) AJ
X)) = = KM J=1L1
o wJ( ) ( w‘/j(x) X BJ ’ s 1y
where
Resonances 1 1 eikX 0
K_(ik ik ) MX‘( 0 e"kX)'
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IMPOSING THE MATCHING CONDITIONS AT X =0

Using the notation just introduced, Kurasov’s matching conditions are

R2+maV, 0
. h2—maV, .
Yu(0) = ¥i(07)
2mh?V, r2—maVs ,

nt—mPa?VZ  h2+maVs

if Vi # +h?/(ma).

They can be written as ¢;(0") = Ty ;(0~), with

1+ U, 0
T, — 1-U; Un — maVy U — maV
U — 2Up/a 1—U; ) 0 — hz s U1 — h2 .
-2 1+0;

And finally
Ay 1 A
=K 'TyK .
( By ) v B

16/35



On some
applications of
contact potentials

LM Nieto

Summary
1 Introduction

28(x) & 8 (x)
Overview
Bound sates
T and R coeff
Two 5-6 wells
3 5-5/ Dirac
comb
4 Radial 5-5"
The problem
Radial problem
Matching conditions

Bound states

5 Nuclear Phy

S
Mean-field potential
S

. singular eqn.

Matching conditions
atr = R

Physical example

Resonances

THE FLOQUET-BLOCH THEOREM

17/35



Now we must take into account the periodicity of the potential: the
Floquet-Bloch theorem forces

Y(x+a) = eP(x) = ¢(x+a) =" (x),

where @ is the momentum of the crystal.

In matrix form, for x € (—a, 0),

Un(x + a) = €% )(x) = KMMj, ( A ) = e9KM, ( A ) .

By B,

As the matrices My and K are invertible:
—1 iqga Al n
[MaK TyK —e H] B = 0,
I

and hence

det [Ty — KM, 'K~'] = 0.
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Now we must take into account the periodicity of the potential: the
Floquet-Bloch theorem forces

Y(x+a) = e%(x) = ¢'(x+a) = €1 (x),

where @ is the momentum of the crystal.

In matrix form, for x € (—a, 0),

Di(x + a) = €%y (x) = KMM, ( gﬁﬁ ) = %KM, ( g; ) .

As the matrices My and K are invertible:

) ‘A =
MK '"TyK — 1] (B;) =0,

and hence

det [Ty — %KM, 'K~'] = 0.
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THE DISPERSION RELATION:
Defining § = aq, k = ka, we get the dispersion relation (DR)

cos § = f(U;) |cos k + Uy g(Us) Slgk

1—|—U12 1
f(Uh) = T U2 9(bh) = iUz

The DR is an even function of U; o< V4, the coefficient of .
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3 5-6' Dirac
comb

The problem

Radial problem

Match

THE DISPERSION RELATION:
Defining § = aq, k = ka, we get the dispersion relation (DR)

cos q = f(Uy) cosk+Uog(U1)Smk
14 U2 1
f(Uy) = T U2 9(Uy) = iUz

The DR is an even function of U; o< V4, the coefficient of .

o If there is no ¢’-terms, then f(0) = g(0) = 1 and it reduces to the well
know band structure of the standard Dirac comb

sm k

cosg =

o If U; # 0 we also have an interesting band structure. Plots are shown
in the next Figures.
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4 .- HYPERSPHERICAL §-¢’

THE PROBLEM TO BE SOLVED:

A non-relativistic quantum particle in RY with hyper-spherical potential
Vs.o(r) = ad(r— )+ bs'(r—rn), abeR, r>0.

The quantum Hamiltonian operator is

2

—hf ~ ~
H = ﬁAd + Vg_(;/(r),

20/35



On some
applications of
contact potentials

LM Nieto

‘The problem

Radial problem

Resonances

4.- HYPERSPHERICAL 0-¢’

THE PROBLEM TO BE SOLVED:

A non-relativistic quantum particle in RY with hyper-spherical potential

Vs.o(r) = ad(r— )+ bs'(r—rn), abeR, r>0.
The quantum Hamiltonian operator is

2

—h2 ~
H = ﬁAd + Vg_(;/(l’),

If we introduce dimensionless quantities:

2 _ 2a __ bm mc
miczH’ WO ES- W1 S X —r

h =
hc’ 2’ ho

the dimensionless Hamiltonian reads
h=—-Ag+ W (X —Xp) +2w; &'(X — Xp)-

Use hyperspherical coordinates (X, Qq = {61, ...,04_2,d}).
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HYPERSPHERICAL COORDINATES

The d-dimensional Laplace operator Ay is

10 (4,0 Ae
Ad_xd—1a<x (‘)_x>Jr X2

Ags—1 = —L2 is the Laplace-Beltrami operator in S~ .

Lf, is the square of the generalised angular momentum operator.
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HYPERSPHERICAL COORDINATES

The d-dimensional Laplace operator Ay is

1 0 (400 Dg
A"'xd—‘ax(x 8)()Jr X2

Ags—1 = —L2 is the Laplace-Beltrami operator in S~ .
ij is the square of the generalised angular momentum operator.
The eigenvalue equation for h is separable in hyperspherical coordinates

Uae(X,Qq) = Rae(X) Ye(Q4),

Re(x) is the radial wave function.
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HYPERSPHERICAL COORDINATES

The d-dimensional Laplace operator Ay is

A1 0 (Xd1a> | Age

~ x9-1 9x dx X2
Ags—1 = —L2 is the Laplace-Beltrami operator in S~ .
ij is the square of the generalised angular momentum operator.

The eigenvalue equation for h is separable in hyperspherical coordinates
Yae(X, Qg) = Rae(x) Ye(Qa),

Re(x) is the radial wave function.

Y:(Q4) are the hyperspherical harmonics, eigenfunctions of Ags—+ with
eigenvalues

X(d,0) = —0(¢+d —2).
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RADIAL PROBLEM:

The radial wave function is

7d727d711 (l+d-2)
ax? X dax X2

+ Vs.s:(X) | Rxe(X) = AR,

being
Vs.s/(X) = Wod(X — Xo) + 2w 8" (X — Xo).
We introduce the reduced radial function
Ure(x) = X7 Rae(x),
to remove the first derivative, and we get
(Ho + Vis.s:(X)) Une(X) = Aptne(X),
where

a? (d+20-3)(d+20—-1)

Ho= dx? 4x2
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MATCHING CONDITIONS

The domain of the selfadjoint extension Hg + Vj_s/ of the operator Hq
defined on Ry, is given by the square integrable functions such that
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LM Nieto The domain of the selfadjoint extension Hg + Vs.5 of the operator H.g
defined on Ry, is given by the square integrable functions such that

14wy _
fxg) w0 f(xo)

|sm.n“;t:m - 1= _
T and A f'(xg) 11% 1+:VV: (x5 )

The matching conditions for the radial wave function R):

S Ralg)) [a O Rae(%)
atching conditions - _ _ )
B () g oat (X))
where
1+ 2]
o 1-— Wi ’
21 —d)w
7y ( . ) Wi
5 _ 0
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BOUND STATES

The solutions of the radial wave function is

A IZ(HX) + B IC@(HX) if xe€ (O,X()),

R..(x) =
) Ao Ty(kX) + Bs Ke(kX) it x € (x0,00),

where

1 1 . d-2
I(2) = v levv(2), Ki(z)= 7 Ker(2) with v = 5

being I, and K; modified Bessel functions of the first and second kind.
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BOUND STATES
The solutions of the radial wave function is
o ( ) A IZ(HX) + B IC@(HX) if xe€ (O,X()),
we\X) =
Ang(I{X) + B> IC@(I{X) if xe (X(),OO)7

where

1 1 . d-2
I(2) = v levv(2), Ki(z)= 7 Ker(2) with v = 5

being I, and K; modified Bessel functions of the first and second kind.
The matching conditions give the secular equation

F(xX0) = (d —2) (a — a™") + Bxo,

where

_ lve-1(sX0) | aKuie—1(rXo) 1
F(HXO) = —KXp (a I,,+g(l<;X0) + Kl,Jrg(,‘QXo) = (OL -« ) y4
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X 20
1 Introduction 0.5 1 15 2
285(x) & 87 (x) 15
Overview
Bound sates 10
5
0

T and R coeff

Two 5-67 wells
3 5-5/ Dirac
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4 Radial 5-5" 0.5 1.0 15 2.0

‘The problem

K

Radial problem

i oo FIGURE: Each curve represents F(x Xp) for different values of the angular
Bound states momentum, and d = 2. The green horizontal line is the constant on the rhs.
S\l LEFT:o=0.8,8=—3and Xo = 7. RIGHT: o = —0.8, 3 = 3and Xo = 7.

Mean-field potential

Sol. singular eqn.

Matching conditions
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PLOTS:

¢
F(kxg)
F(kxg) o0 0

0 K
0.5 1.0 1.5 20

FIGURE: Each curve represents F(x Xp) for different values of the angular
momentum, and d = 2. The green horizontal line is the constant on the rhs.
LEFT: « = 0.8, 5 = —3and Xo = 7. RIGHT: « = —0.8, 6 =3 and xo = 7.

MORE:

e Scattering states

e Existence of zero modes (states of E = 0)
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nuclear potential with volume, surface, and spin-orbit parts:

H(r) = —Zv& - Un(r) + Uso(r)(L - S) + Us(1)

w is the reduced. Up(r), Uso(r), and Uy(r) comes from Woods-Saxon:

”
Uo(r) = —Vof(r):—V0m7

V. V. elr=R)/a
Usor) = 551N =-25

ah? (1 Jre(er)/a)z’

R) V/ e(rfFf)/a 1— e(rfFf)/a
Us(r) = Val'(r) = —% (- 0%
a (1 4 e(rfl?)/a)
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w is the reduced. Up(r), Uso(r), and Uy(r) comes from Woods-Saxon:

]
Uo(r) = —Vof(r):_V0m7

V. V. elr=R)/a
Usor) = 551N =-25

ah? (1 Jre(er)/a)z’

R) V/ e(rfFf)/a 1— e(rfFf)/a
Us(r) = Val'(r) = —% (- 0%
a (1 4 e(rfl?)/a)

a is the thickness of the nuclear surface.
R is the nuclear radius.
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The problem

Radial problem

Resonances

RADIAL & ANGULAR PARTS:

The eigenfunction ) (r) = U"Z%(r) Yiim(0, ¢):

L2Yijm(0, ) = R2L(E+1)Viim(0, 8), (L-S)Viim(0, ¢) = B2E0jVejm(0, &)
with

& for j=40+1,
—{ 2 / 2 reNu{o}.

ej =
! ——(421) for jzﬂ—%,

Yiim(0, ¢) is a simultaneous eigenfunction of the operators

L2, 82, J2=(L+S)>
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RADIAL & ANGULAR PARTS:

The eigenfunction ) (r) = u"e%(r) Yiim(0, ¢):

L2Yijm(0, ) = R2L(E+1)Viim(0, 8), (L-S)Viim(0, ¢) = B2E0jVejm(0, &)
with

_ g for j:EJr%, DR
667/: _7(6-&-1) for j:g_%a © U{ }

Yiim(0, ¢) is a simultaneous eigenfunction of the operators
L2, S2 J?°=(L+9S)>

The 3D Schrodinger equation reduces to H(r)i(r) = E () is
H(r) nj(r) = Enej Ungi(r)

12 [d?—‘ 0 +1)

HIN=—5u la? ~~ 2

:| = Vo f(f)+ Vsof@,j f/(l’) + Vq f”(l").
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LiMIT @ — 0 IN H(r):

lim Up(r) = ~ Vo lim £(r) = Vo[O(r — R) — 1],

Consequently, we have that

lim Vs fe’j f/(r) =V fl,j (5(/’ - R) :
a—0
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Resonances

LiMIT @ — 0 IN H(r):

lim Up(r) = -V lim f(r) = W [©(r — R) — 1],
a—0 a—0
Consequently, we have that
lim Vso 5@7/' f/(l’) = _Vso fz’j (5(/’ = R) .
a—0

And
lim Ug(r) = lim V4 f'(r) = = V4 é'(r — R).

a—0 a—0

r>0.
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LiMIT @ — 0 IN H(r):

lim Up(r) = -V lim f(r) = W [©(r — R) — 1], r>0.
a—0 a—0
Consequently, we have that
lim Vso 5@7/' f/(l’) = _Vso fz’j (5(/’ = R) .
a—0

And
lim Ug(r) = lim V4 f'(r) = = V4 é'(r — R).

a—0 a—0
We get the following the singular Hamiltonian
Haing(r)=— 32 [ &5 — L5 1 Vo [0(r—R) 1]~ Vaoke ; 6(r—R) — Vo' (r—R).

‘We will use this radial 1D Hamiltonian to describe an atomic nucleus.
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LiMIT @ — 0 IN H(r):

lim Up(r) = -V lim f(r) = W [©(r — R) — 1], r>0.
a—0 a—0
Consequently, we have that
lim Vso f@y/ f/(l’) = _Vso fz’j (5(/’ = R) .
a—0

And
lim Ug(r) = lim V4 f'(r) = = V4 é'(r — R).

a—0 a—0
We get the following the singular Hamiltonian
dr2 r2

Haing (1) =— 15 [ &5 — L5 | +-Vo[6(r— R)— 1]~ Vsoks,; 6(r— R)— Vg’ (r—R).

‘We will use this radial 1D Hamiltonian to describe an atomic nucleus.

Advantage: Hsing(r) u(r) = Epgju(r) can be solved exactly V(Z, f).
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Schrodinger equation for the singular potential

2nV
d,2 Do { 2 - 20 0(r—R)—1]+a 8(r—R)+B 8/ (r—R)— 251 hu(r)=0,

where
_2p

2
fLZ Vso fé,/a ﬂ N Vq

hZ
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Schrodinger equation for the singular potential

2 ) R -
Lo +{2“E 20 l0(r—R)~1]+a 8(r—R)+ Bo/(r—R)—Lg”}u(r):O,

where 2 5
uVsofé,/a /8: FTZVq-

Wave equation inside the nucleus (0 < r < R): in this region the square
integrable solution is

21 (Vo + E)

Ure(r) = Acvrdp s (r), 7= = , relo,R).
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Schrodinger equation for the singular potential

E o 2uV - (e
Ly Dy { 2 B0 o(r—R) 1]+ 8(r—R)+6 ' (r—A) — 241 Lu(n=0,

where 2 5
uVsofé,/a 5: FTZVq-

Wave equation inside the nucleus (0 < r < R): in this region the square
integrable solution is

21 (Vo + E)

Ure(r) = Acvrdp s (r), 7= = , relo,R).

Wave equation outside the nucleus (r > R): in this region the square
integrable solution is

2u|E
bodr) = DVRT Ky (r), wi= YEEL e (Rio).
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MATCHING CONDITIONS AT r = R

To fix a self-adjoint extension of the relevant operator

Uz,e(R+)
up ((R™)

2+p
5 _
4o

i

[}
| o

™

Ut

/
W

(R™)
(R7)
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MATCHING CONDITIONS AT r = R

To fix a self-adjoint extension of the relevant operator

2
up ¢(R") %
/ B 4
up (R™) 7 _aﬁz

From here, the secular equation

Xder3 00— (2+B)2 9 Keyg (0)

0 ure(R™)

% u (R )

Sﬂ(f-‘r 1) Wo

Je+% (X)

where

@—BR Ky, (0)

X = WwVv1l—¢g,

[21R2 V,
Vo = %>07 Wo

_ |E]

E=E — E

Vo

@-p¢ T@-pr "7
0= VO\/E,

=4aR = BpVeote, R V;Loz&’jR )

(0.1).
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PHYSICAL EXAMPLE

For the isotope 2°°Pb, the relevant parameters describing the lowest
experimental energy states are

Vo = 44.4 MeV, Vs, = 16.5 MeV fm, R = 7.525 fm,

a=0.7 fm, and 2% = 0.0480253 MeV~" fm~2.

Then: vo = 10.98, wp =23.83&;.
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PHYSICAL EXAMPLE

For the isotope 2°°Pb, the relevant parameters describing the lowest
experimental energy states are

Vo = 44.4 MeV, Vs, = 16.5 MeV fm, R = 7.525 fm,

a=0.7 fm, and 2% = 0.0480253 MeV~" fm~2.

Then: vo = 10.98, wp =23.83&;.
p=0 B=1
State || Numerical Model | Numerical Model
0sq)2 -41.35 -41.36 -40.97 -40.85
1812 -32.27 -32.31 -31.11 -30.23
251/ -17.53 -17.61 -18.11 -12.92
0ps/2 -38.21 -37.96 -37.48 -37.12
132 -26.29 -25.53 -25.30 -22.97
2p3/2 -9.17 -7.71 -13.30 -2.78
0p1/2 -38.08 -39.16 -37.34 -37.19
1p1/2 -25.91 -28.57 -24.44 -23.32
2p1 /2 -8.47 -12.48 -11.20 -5.74
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RESONANCES:

Resonance state functions (Gamow functions) are not square integrable.
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LNt Resonance state functions (Gamow functions) are not square integrable.

We may write this solution for r > R in terms of the Hinkel functions
of first (1) and second kind (2) as

V2RE
u(r) == vrr (chgf%(m) + DéHéi)%(mrD K= TM E > 0.

The problem

Radial problem

Matc

g conditions

Bound states

Mean-field potential

ilar eqn.

Physical example

Resonances
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Physical example

Resonances

RESONANCES:

Resonance state functions (Gamow functions) are not square integrable.

We may write this solution for r > R in terms of the Hinkel functions
of first (1) and second kind (2) as

u,(r);:\/ﬁ( i (/sr)—i—DéH(z) (nr)), Vz“E ,E>0.

243

Resonances are given by the purely outgoing boundary condition:
only the outgoing wave function survives.
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Radial problem

Resonances

RESONANCES:

Resonance state functions (Gamow functions) are not square integrable.

We may write this solution for r > R in terms of the Hinkel functions
of first (1) and second kind (2) as

V2RE
u(r) == vrr (chgf%(m) + DéHéi)%(mrD K= TM E > 0.

Resonances are given by the purely outgoing boundary condition:

only the outgoing wave function survives.

Asymptotic behavior: Hél)l (xr) is outgoing; Héi)l (xr) is incoming.
2 2
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RESONANCES:

Resonance state functions (Gamow functions) are not square integrable.

We may write this solution for r > R in terms of the Hinkel functions
of first (1) and second kind (2) as

V2HE
u(r) == v/ar (CeHY), (kr) + DeHE, (k1)) , 1= *2E=, E > 0.

Resonances are given by the purely outgoing boundary condition:
only the outgoing wave function survives.

(xr) is incoming.

Asymptotic behavior: Hél)l (xr) is outgoing; Hé +)1
2

This is condition is satisfied if and only if D, = 0. Imposing the
matching condition between the outgoing function and the wave
function inside the potential well (nucleus):

HY, () [B(aR=)d,,  (Rn)~(8=2 R, 3 (R)(3=2) R0, _y ()]

H(B+2)PRRY, 1 (RYHC) o (RR)=(B+2)2 kR, 1 (RNH | (Rr)=0

(1)
3
+3 -3
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TYPES OF SOLUTIONS:

Are classified in three categories:

e (i) Simple solutions on the positive imaginary axis that correspond
to the bound states.
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TYPES OF SOLUTIONS:

Are classified in three categories:

e (i) Simple solutions on the positive imaginary axis that correspond
to the bound states.

e (ii) Simple solutions on the negative part of the imaginary axis, that
show the presence of antibound or virtual states.
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TYPES OF SOLUTIONS:

Are classified in three categories:

e (i) Simple solutions on the positive imaginary axis that correspond
to the bound states.

e (ii) Simple solutions on the negative part of the imaginary axis, that
show the presence of antibound or virtual states.

e (iii) Pairs of solutions on the lower half plane, symmetrically
located with respect to the imaginary axis: resonances.
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4 Radial 6-6
‘The problem
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Physical example
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PLOTS:

In blue Re F(k1, k2) = 0 and in red Im F(ky, ko) = 0, from the key
equation. Bound states and resonances correspond to intersection of red
and blue curves. The parameters are Vo = 5, wp = 10 and 5 = 1.
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