

He₂ molecule inside a prolate spheroidal box

Prof. Dr. Elso Drigo Filho Departamento de Física IBILCE/UNESP

Plan

- Formalism: variational method & supersimmetry.
- Confined Helium atom in a spherical cavity.
 - Variational approach.
 - Trial eigenfunctions.
 - Results for ground state energies.
- Two helium atoms interacting within a prolate spheroidal box (ellipsoid).
 - Trial functions.
 - Variational energies eigenvalues.
- Results: He₂ ground state energies as a function of the distance between atomic nuclei.
- Conclusions.

Variational Method

$$\langle H \rangle = \frac{\int \psi_{\gamma}^{*}(r) \hat{H} \psi_{\gamma}(r) dr}{\int |\psi_{\gamma}(r)|^{2} dr} \geq E$$

$$- \Psi_{\gamma}(r) \rightarrow \text{trial function}$$

- $\gamma \rightarrow variational parameters$
- Variational Principle: If an arbitrary function Ψ is used to compute the energy of a quantum system, the calculated value is always greater than or equal to the energy eigenvalue.

- Supersymmetric Quantum Mechanics (SQM)
- First step => Ground state (E₀)
- Taking the Hamiltonian:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(r)}{dr^2} + V_{eff}(r)\psi(r) = E\psi(r)$$

V_{eff}(r) is the potential (including the barrier of potential in 3D problems).

Factorizing the Hamiltonian:

$$H - E_0 = \left(-\frac{d}{dr} + w(r)\right) \left(\frac{d}{dr} + w(r)\right) \psi(r) = 0$$

- *w*(*r*) is a function called superpotential.
 For simplicity: ħ² = 2m = 1
- Using the Hamiltonian definition, we get:

$$w^{2}(r)-w'(r)=V_{eff}(r)-E$$

Ricatti equation

- If we know the superpotential, we get:
 - the ground state eigenvalue, E.

the ground state eigenfunction:

$$\left(\frac{d}{dr} + w(r)\right)\psi(r) = 0 \quad \rightarrow \quad \psi(r) \propto \exp\left(-\int w(r)dr\right)$$

Exact solution

- If it is not possible to obtain w from the Ricatti equation, it is possible to search an **approximate solution**, w_{ap} , for the superpotential.
- This solution w_{ap} generates a wave function that supplies an appropriate **trial** function for the Variational Method.

The superpotential suggested* for the confined hydrogen atom is:

$$W(r) = -\frac{\mu_1}{r} + \frac{\mu_2}{R-r} + \mu_3$$

Trial function sugested* for hydrogen atom:

$$\Psi(\mu_1,\mu_2,\mu_3,r) \propto r^{\mu_1} (R-r)^{\mu_2} e^{-\mu_3 r}$$

*E. Drigo Filho and R. M. Ricotta, Phys. Lett. A299 (2002) 137

He in a spherical cavity

 Trial function, inspired by the hydrogen atom results:

$$\psi \propto (r_1 r_2)^{\mu_2} e^{-\mu_1 (r_1 + r_2)} (r_c - r_1) (r_c - r_2)$$

• r_c is the the cavity radius, 1 and 2 indicate the electrons, μ_1 and μ_2 are variational parameters.

He in a spherical cavity

- The results are $\leq 2\%$ (except for radius 1.2).
- \circ [1] and [3] are variational.
- [2] => fifth-order perturbation.

rc	Present	Ref. [1]	Ref. [2]	Ref. [3]
0,9	2,5001	2,4670	2,4632	2,4633
1,0	1,03548	1,0183	1,0157	1,0158
1,2	-0,6879	-0,7079	-0,7088	-0,7087
1,5	-1,8756	-1,9061	-1,9069	-1,9067
2,0	-2,5510	-2,5998	-2,6040	-2,6036
4,0	-2,8462	-2,8931	-2,9005	-2,8997
5,0	-2,8531	-2,8978	-2,9034	-2,9028
6,0	-2,8553	-2,8990	-2,9036	-2,9033

[1] Banerjee, A.; Kamal, C.; Chowdhury, A. Phys. Lett. A, v.350, p. 121-125 (2006).

[2] Montgomery Jr., H.E.; Aquino, N.; Flores-Riveros, A. Phys. Lett. A, v.374, p. 2044-2047 (2010).

[3] Flores-Riveros, A.; Aquino, N.; Montgomery Jr., H.E. Phys. Lett. A, v.374, p. 1246 (2010).

Trial function suggested is:

 $\psi_{He_2} = \psi_{H_2^+}(1)\alpha(\omega_1) \psi_{H_2^+}(2)\beta(\omega_2)\overline{\psi_{H_2^+}}(3)\alpha(\omega_3) \overline{\psi_{H_2^+}}(4)\beta(\omega_4) + \dots$

The permutations are obtained from the determinant (Slater):

$$\psi_{He_{2}} = \begin{cases} \psi_{H_{2}^{+}}(1)\alpha(\omega_{1}) & \psi_{H_{2}^{+}}(1)\beta(\omega_{1}) & \overline{\psi_{H_{2}^{+}}}(1)\alpha(\omega_{1}) & \overline{\psi_{H_{2}^{+}}}(1)\beta(\omega_{1}) \\ \psi_{H_{2}^{+}}(2)\alpha(\omega_{2}) & \psi_{H_{2}^{+}}(2)\beta(\omega_{2}) & \overline{\psi_{H_{2}^{+}}}(2)\alpha(\omega_{2}) & \overline{\psi_{H_{2}^{+}}}(2)\beta(\omega_{2}) \\ \psi_{H_{2}^{+}}(3)\alpha(\omega_{3}) & \psi_{H_{2}^{+}}(3)\beta(\omega_{3}) & \overline{\psi_{H_{2}^{+}}}(3)\alpha(\omega_{3}) & \overline{\psi_{H_{2}^{+}}}(3)\beta(\omega_{3}) \\ \psi_{H_{2}^{+}}(4)\alpha(\omega_{4}) & \psi_{H_{2}^{+}}(4)\beta(\omega_{4}) & \overline{\psi_{H_{2}^{+}}}(4)\alpha(\omega_{4}) & \overline{\psi_{H_{2}^{+}}}(4)\beta(\omega_{4}) \end{cases}$$

$$\psi_{H_2^+} = 1s_A + 1s_B \qquad \psi_{H_2^+} = 1s_A - 1s_B$$

$$\psi_{H_2^+} = 1s_A + 1s_B \quad \overline{\psi_{H_2^+}} = 1s_A - 1s_B$$

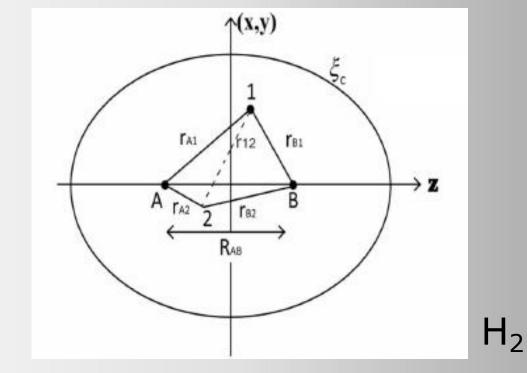
- $\psi_{H_2^+}$ is the ground state eigenfunction for the ionized hydrogen molecule (molecular orbital) and $\overline{\psi}_{H_2^+}$ is antibound molecular orbital.
- 1s_{A,B} are the atomic trial functions for the atoms A and B.

- Geometry: prolate ellipsoidal cavity.
- Atomic nuclei => fixed at the foci of the ellipse.
- Elliptical coordinates:

$$\begin{split} \xi_{i} &= \frac{r_{A(i)} + r_{B(i)}}{R_{AB}}; \ \eta_{i} = \frac{r_{A(i)} - r_{B(i)}}{R_{AB}} \\ &1 < \xi < \xi_{c}; \ -1 < \eta < 1; \ 0 < \phi < 2\pi \end{split}$$

$$\circ \ 1/\xi_{c} \quad is \ the \ eccentricity \ of \ the \ ellipse. \end{split}$$

Geometry:



 Molecular orbitals (prolate spherodal coordinates)*:

$$\psi_{H_2^+} = (\xi_c - \xi) \left[e^{-\mu(\xi + \eta)} + e^{-\mu(\xi - \eta)} \right]$$

$$\overline{\psi_{H_2^+}} = (\xi_c - \xi) \left[e^{-\mu(\xi + \eta)} - e^{-\mu(\xi - \eta)} \right]$$

• μ is the variational parameter.

* DA SILVA, J. F.; SILVA, F. R.; DRIGO FILHO, E. The effect of confinement on the electronic energy and polarizability of a hydrogen molecular ion. **International Journal of Quantum Chemistry**, v. 116, p. 497–503, 2016.

Energy values:

 $\left\langle E_{He_2} \right\rangle = 2 \left\langle \psi_{H_2^+} \middle| H_{H_2^+} \middle| \psi_{H_2^+} \right\rangle + 2 \left\langle \overline{\psi_{H_2^+}} \middle| H_{H_2^+} \middle| \overline{\psi_{H_2^+}} \right\rangle + J_{11} + J_{22} + 4J_{12} - 2K_{12} + \frac{Z^2}{R}$

• $H_{H_2^+}$ is the Hamiltonian for the ionized hydrogen molecule with Z = 2 and

$$J11=\left\langle \psi_{H_{2}^{+}}(1)\psi_{H_{2}^{+}}(2)\left|\frac{1}{r_{12}}\right|\psi_{H_{2}^{+}}(1)\psi_{H_{2}^{+}}(2)\right\rangle \quad J22=\left\langle \overline{\psi_{H_{2}^{+}}}(1)\overline{\psi_{H_{2}^{+}}}(2)\left|\frac{1}{r_{12}}\right|\overline{\psi_{H_{2}^{+}}}(1)\overline{\psi_{H_{2}^{+}}}(2)\right\rangle$$
$$J12=\left\langle \psi_{H_{2}^{+}}(1)\overline{\psi_{H_{2}^{+}}}(2)\left|\frac{1}{r_{12}}\right|\psi_{H_{2}^{+}}(1)\overline{\psi_{H_{2}^{+}}}(2)\right\rangle \quad K12=\left\langle \psi_{H_{2}^{+}}(1)\overline{\psi_{H_{2}^{+}}}(2)\left|\frac{1}{r_{12}}\right|\overline{\psi_{H_{2}^{+}}}(1)\psi_{H_{2}^{+}}(2)\right\rangle$$

In the calculation, it is used*:

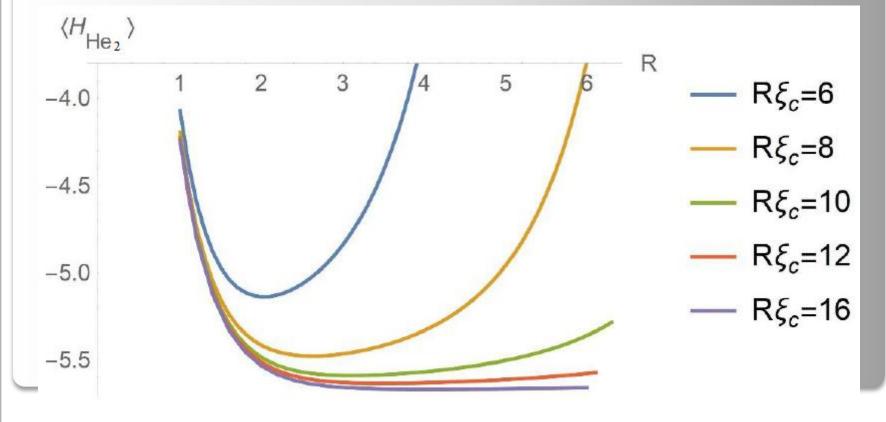
- $\frac{1}{r_{12}} = \frac{2}{R_{AB}} \sum_{k=0}^{\infty} (2k+1) P_k(\xi_{<}) Q_k(\xi_{>}) P_k(\eta_1) P_k(\eta_2)$
- P_k and Q_k are the first and second species Laguerre polynom.
- The energy values are obtained from variational calculation of $<^{H_{H_2^+}}>$.

*SLATER, J. C. Quantum Theory of Molecules and Solids: Electronic structure of molecules. 1 ed. [s.l.] McGraw-Hill, 1963. v. 1

Axis fixed A B RAB В Ă A В

• Energy $\langle E_{He_2} \rangle_{is}$ a function of the distance between nuclei, R. confinement parameter is the major axis of the ellipsoid, $R\xi_c$. • R_{ea} are the nuclei distances for minimum value of energy for each value of major axis.

 $\circ \langle E_{He_2} \rangle \times \mathbf{R}$



- The energy for He₂ is compared to the energy of two He atoms in a cavity of the same geometry.
- The mean energy for the helium atom, $\langle E_{He} \rangle$, is obtained fixing the nucleus on one focus.
- The trial function for the helium atom is:

$$\Psi = (\xi_c - \xi_1)(\xi_c - \xi_2) \left[e^{-\mu(\xi_1 + \eta_1) - \mu(\xi_2 + \eta_2)} \right]$$

Table comparing the molecule with two non-interacting atoms.

$R\xi_c$	R _{eq}	$\langle E_{He_2} \rangle$	$2\langle E_{He} \rangle$	$\langle E_{He_2} \rangle$ -2 $\langle E_{He} \rangle$
6	2.0310	-5.13775	-4.91444	-0.223
8	2.6254	-5.47722	-5.34155	-0.135
10	3.10621	-5.58799	-5.50468	-0.083
12	3.48903	-5.6335	-5.57946	-0.054
16	4.0169	-5.66781	-5.64147	-0.026

Conclusions

- We note that the trial function inspired in the SUSY formalism is suitable to be used in variational calculation for confined systems.
- The results for He atom ground state energies are close to the other present in the literature.
- Results for He₂ molecule suggested it is possible to obtain a chemical bound from the quantum confinement.

Financial support

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Conselho Nacional de Desenvolvimento Científico e Tecnológico

