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Nanoparticles	are	levitated	at	room	temperature:
phonons	on	average

Reaching	the	quantum	regime	requires	to	bring			
the	particle	to	its	motional	ground	state,	

Despite	initial	proposals	for	cooling	using	a	driven	
cavity,	ground-state	cooling	still	not	achieved
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Recent	experiments	show	that	it	is	possible	to	
cool	with	an	un-driven	cavity

D. Windey, CGB, P. Maurer, L. Novotny, O. Romero-Isart, 
R. Reimann, PRL 2019 (arXiv: 1812.09176)

U. Delic, M. Reisenbauer, D. Grass, N. Kiesel, V. Vuletic, 
M. Aspelmeyer, PRL 2019 (arXiv:1812.09358)

►Minimized	complexity

► Enhanced	controllability

► Cooling	along	the	three	motional	axes

Very	good	results:	from	room	T	to	mK
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● Interaction	Hamiltonian	(electric	dipole	approximation)

CGB, P. Maurer, D. Windey, L. Novotny, R. Reimann, O. Romero-Isart, arXiv: 1902.01282 (2019)
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Center	of	mass	cooling	via	cavity-assisted	coherent	scattering	is	currently	limited	only	
by	trap	displacement	noise.

Center-of-mass	cooling:	conclusions

Our	theoretical	model	allows	to	quantify	this	decoherence	and	compute	the	necessary	
vibrational	isolation	for	reaching	ground-state	cooling	

Ground-state	cooling	is	achievable	by	present	experiments

CGB, P. Maurer, D. Windey, L. Novotny, R. Reimann, O. Romero-Isart, arXiv: 1902.01282 (2019)

D. Windey, CGB, P. Maurer, L. Novotny, O. Romero-Isart, R. Reimann, PRL 2019 (arXiv: 1812.09176)



8/14

Center	of	mass	cooling	via	cavity-assisted	coherent	scattering	is	currently	limited	only	
by	trap	displacement	noise.

Center-of-mass	cooling:	conclusions

Our	theoretical	model	allows	to	quantify	this	decoherence	and	compute	the	necessary	
vibrational	isolation	for	reaching	ground-state	cooling	

Ground-state	cooling	is	achievable	by	present	experiments

CGB, P. Maurer, D. Windey, L. Novotny, R. Reimann, O. Romero-Isart, arXiv: 1902.01282 (2019)

D. Windey, CGB, P. Maurer, L. Novotny, O. Romero-Isart, R. Reimann, PRL 2019 (arXiv: 1812.09176)



8/14

Center	of	mass	cooling	via	cavity-assisted	coherent	scattering	is	currently	limited	only	
by	trap	displacement	noise.

Center-of-mass	cooling:	conclusions

Our	theoretical	model	allows	to	quantify	this	decoherence	and	compute	the	necessary	
vibrational	isolation	for	reaching	ground-state	cooling	

Ground-state	cooling	is	achievable	by	present	experiments

CGB, P. Maurer, D. Windey, L. Novotny, R. Reimann, O. Romero-Isart, arXiv: 1902.01282 (2019)

D. Windey, CGB, P. Maurer, L. Novotny, O. Romero-Isart, R. Reimann, PRL 2019 (arXiv: 1812.09176)



Outline

● Fundamental	questions:	radiative	thermalization



9/14

2.	Radiative	thermalization

Internal	temperature	not	yet	directly	measured	in	
levitodynamics

Relevant	for	decoherence	of	COM	motion

A	levitating	particle	in	vacuum	equilibrates	with	the	
surrounding	EM	field	by	radiative	thermalization.



9/14

2.	Radiative	thermalization

Internal	temperature	not	yet	directly	measured	in	
levitodynamics

Relevant	for	decoherence	of	COM	motion

A	levitating	particle	in	vacuum	equilibrates	with	the	
surrounding	EM	field	by	radiative	thermalization.



9/14

2.	Radiative	thermalization

Internal	temperature	not	yet	directly	measured	in	
levitodynamics

Relevant	for	decoherence	of	COM	motion

A	levitating	particle	in	vacuum	equilibrates	with	the	
surrounding	EM	field	by	radiative	thermalization.



10/14

2.	Radiative	thermalization

● Usual	model:	quasi-equilibrium	fluctuation	electrodynamics	(FED)



10/14

2.	Radiative	thermalization

● Usual	model:	quasi-equilibrium	fluctuation	electrodynamics	(FED)

► Assume	very	fast	internal	thermalization	rate



10/14

2.	Radiative	thermalization

● Usual	model:	quasi-equilibrium	fluctuation	electrodynamics	(FED)

► Assume	very	fast	internal	thermalization	rate

► Define	internal	temperature



10/14

2.	Radiative	thermalization

● Usual	model:	quasi-equilibrium	fluctuation	electrodynamics	(FED)

► Assume	very	fast	internal	thermalization	rate

► Define	internal	temperature

► Use	fluctuation-dissipation	theorem



10/14

2.	Radiative	thermalization

● Usual	model:	quasi-equilibrium	fluctuation	electrodynamics	(FED)

► Assume	very	fast	internal	thermalization	rate

► Define	internal	temperature

► Use	fluctuation-dissipation	theorem



11/14

2.	Radiative	thermalization

Rubio-Lopez*, CGB*  & Romero-Isart, PRB 98, 155405 (2018)

● But	in	UHV	levitated	systems,	internal	relaxation	times	should	be	large:

Confinement
Isolation	from
environment



11/14

2.	Radiative	thermalization

Rubio-Lopez*, CGB*  & Romero-Isart, PRB 98, 155405 (2018)

● Different	timescales:	“resonant”	vs	“off-resonant”	phonons

● But	in	UHV	levitated	systems,	internal	relaxation	times	should	be	large:

Confinement
Isolation	from
environment



11/14

2.	Radiative	thermalization

Rubio-Lopez*, CGB*  & Romero-Isart, PRB 98, 155405 (2018)

● Different	timescales:	“resonant”	vs	“off-resonant”	phonons

● But	in	UHV	levitated	systems,	internal	relaxation	times	should	be	large:

Confinement
Isolation	from
environment

● For	a	levitated	NP	in	high	vacuum,	quasi-equilibrium	approximation	should	not	hold
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We	build	a	model	based	on	harmonic	oscillators

All	parameters	matched	to	experimentally	measurable	quantities:

EM	field

Dipole	
resonance

Off-resonant	
phonons

Resonant	
phonons

Exact	solution	using	the	closed-time	path	integral	
formalism

► Polarizability

► Specific	heat

► Thermalization	timescale
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● State	of	the	system	is	never	thermal:	out-of-equilibrium	thermalization

Our	model

Quasi-equilibrium	
result

● Dynamics	of	the	internal	energy

● Experimentally	testable

Rubio-Lopez*, CGB*  & Romero-Isart, PRB 98, 155405 (2018)
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4.	Outlook:	new	regimes	of	light	and	matter

Brillouin	(photon-phonon-photon)	scattering	for	
measuring	internal	dynamics

Strong	magnon-phonon	interaction	in	levitated	
nanomagnets

And	many	more!
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D.	Windey L.	Novotny R.	Reimann

P.	MaurerCGB Romero-Isart

Marie	Sklodowska
Curie	program

Rubio	López Romero-IsartCGB


