Bulk-edge correspondence in topological materials – Dirac fermions beyond chiral states (Part 2)

Mark Oliver Goerbig

Comprendre le monde, construire l'avenir

Sergueï Tchoumakov, Xin Lu (PhD thesis)

Collaborators: M. Civelli (LPS), D. Carpentier & V. Jouffrey (ENS-Lyon) ;

Experiments: Plaçais group (ENS-Paris) ; Molenkamp group (Würzburg)

<u>Reminder:</u> simplified 2D model of a smooth interface (*topological heterojunction*)

$$H = \begin{pmatrix} \Delta \frac{x}{\ell} & \hbar v (q_x - iq_y) \\ \hbar v (q_x + iq_y) & -\Delta \frac{x}{\ell} \end{pmatrix}$$

Sign change in an interface of size ℓ

Simplified 2D model of a smooth interface (*topological heterojunction*)

 \rightarrow Hamiltonian of massive Dirac fermions in a magnetic field

$$H = \begin{pmatrix} \hbar v q_y & \sqrt{2}\hbar \frac{v}{\ell_S} \hat{a} \\ \sqrt{2}\hbar \frac{v}{\ell_S} \hat{a}^{\dagger} & -\hbar v q_y \end{pmatrix}$$

surface states ~ Landau levels

$$E_{n=0} = \frac{\hbar v q_y}{E_{\lambda,n\neq 0}} = \lambda \hbar v \sqrt{q_y^2 + 2n/\ell_S^2}$$

Surface (edge) states

number of visible VP states : $N \sim \ell/\xi$

Surface states in 3D materials

≻e.g. PbTe/SnTe and HgTe/CdTe interfaces : gap switches sign

S. Tchoumakov et al., PRB 96, 201302 (2017) Volkov and Pankratov, JETP Lett. 42, 4 (1985)

Special relativity in surface states

S. Tchoumakov, V. Jouffrey et al., PRB 96, 201302 (2017)

 $\Delta_2 + \mu_2$

 E_a

 $\Delta + \mu)(z)$

Outline

- Introduction to Berry curvature and bulk-edge correspondence
- Dirac fermions and "half Chern numbers"
- 2D Model of a smooth interface from chiral to massive *relativistic* interface states
- First experimental evidence
- Weyl semimetals with smooth surfaces
- Possible identification of surface states beyond the chiral ones in (magneto-)optical spectroscopy

Experimental evidence

bulk Δ_1

Electrical resistance and capacitance of HgTe

A. Inhofer et al., PRB 96, 195104 (2017)

Outline

- Introduction to Berry curvature and bulk-edge correspondence
- Dirac fermions and "half Chern numbers"
- 2D Model of a smooth interface from chiral to massive *relativistic* interface states
- First experimental evidence
- Weyl semimetals with smooth surfaces
- Possible identification of surface states beyond the chiral ones in (magneto-)optical spectroscopy

Weyl semimetals – "3D graphene" $H = \begin{pmatrix} \Delta - \frac{\hbar^2 k_z^2}{2m_0} & \hbar v (k_x - ik_y) \\ \hbar v (k_x + ik_y) & -\Delta + \frac{\hbar^2 k_z^2}{2m_0} \end{pmatrix}$ energy Kι Surface BZ 0 k_{z} $|k_x|$ Fermi arc Dirac monopoles k_u (in wave function) Bulk BZ k_z

Weyl semimetals – "3D graphene" $H = \begin{pmatrix} \Delta - \frac{\hbar^2 k_z^2}{2m_0} & \hbar v (k_x - ik_y) \\ \hbar v (k_x + ik_y) & -\Delta + \frac{\hbar^2 k_z^2}{2m_0} \end{pmatrix}$ energy $k_{\rm I}$ Surface BZ Δ_{k_z} 0 k_{z} 2D Berry curvature: $\mathcal{B}_{\lambda,k_z}(k_{\parallel}) = -\frac{\lambda}{2} \frac{\hbar^2 v^2 \Delta_{k_z}}{(\Delta_{k_z}^2 + \hbar^2 v^2 k_{\parallel}^2)^{3/2}}$ $|k_x|$ Fermi arc $|k_u|$ Bulk BZ "half Chern number": k_z $C_{\lambda}(k_z) = -\frac{1}{2}\lambda\operatorname{sgn}(\Delta_{k_z})$

Fermi arc as a collection of 1D edge channels

Fermi arc as a collection of 1D edge channels

Tchoumakov, Civelli & MOG, PRB (2017)

Fermi arc in a smooth interface \rightarrow TI

Effective interface model for Weyl node merging:

Fermi arc in a smooth interface \rightarrow TI

Effective interface model for Weyl node merging:

$$\Delta \to \Delta(x) = \Delta - \Delta' \frac{x}{\ell} \qquad \begin{array}{c} \text{change of "quantization axis" (unitary trafo)} \\ \sigma_z \to -\sigma_y, \qquad \sigma_y \to \sigma_z \end{array}$$
$$H = \begin{pmatrix} \hbar v k_y & \sqrt{2}\hbar \frac{v}{\ell_S} a \\ \sqrt{2}\hbar \frac{v}{\ell_S} a^{\dagger} & \hbar v k_y \end{pmatrix}$$

ladder operators:

$$a = \frac{\ell_S}{\sqrt{2}} \left[k_x + i \frac{x - x_0}{\ell_S^2} \right] \quad \text{and} \quad a^{\dagger} = \frac{\ell_S}{\sqrt{2}} \left[k_x - i \frac{x - x_0}{\ell_S^2} \right]$$

with $[a, a^{\dagger}] = 1$

Tchoumakov, Civelli & MOG, PRB (2017) Grushin et al., PRX (2016)

Fermi arc in a smooth interface \rightarrow TI

Effective interface model for Weyl node merging:

Dispersing Fermi arcs

dispersion of Fermi arcs in k_z

 \rightarrow magnetic field in interface (conspires with confinement)

Tchoumakov, Civelli & MOG, PRB (2017)

Surface states of tilted Weyl nodes

S. Tchoumakov, M. Civelli and M.O. Goerbig, Phys. Rev. B 95, 125306 (2017)

Outline

- Introduction to Berry curvature and bulk-edge correspondence
- Dirac fermions and "half Chern numbers"
- 2D Model of a smooth interface from chiral to massive *relativistic* interface states
- First experimental evidence
- Weyl semimetals with smooth surfaces
- Possible identification of surface states beyond the chiral ones in (magneto-)optical spectroscopy

Magneto-optics in the study of relativistic materials (\rightarrow graphene)

Grenoble high-field group: Sadowski et al., PRL 97, 266405 (2007)

Magneto-optics in the study of relativistic materials

light polarisation i,j

 \rightarrow shape of absorption lines

Magneto-optics in the study of relativistic materials

Optical conductivity (in a magnetic field):

$$\sigma_{ij}(\omega) = i\hbar e^{2} \sum_{\substack{m,n\in\mathbb{N}\\\lambda,\lambda'}} \int_{-\infty}^{+\infty} \frac{d^{d}k}{(2\pi)^{d}} \frac{f_{D}(E_{\lambda,n}) - f_{D}(E_{\lambda',m})}{E_{\lambda',m} - E_{\lambda,n} - \hbar\omega + i\delta} \frac{\langle \psi_{m}^{\lambda'} | \hat{v}_{i} | \psi_{n}^{\lambda} \rangle \langle \psi_{m}^{\lambda'} | \hat{v}_{j} | \psi_{n}^{\lambda} \rangle^{*}}{E_{\lambda',m} - E_{\lambda,n}}$$
thumb rule:
$$(effective \ dimensionality + band \ dispersion)$$

$$\sigma_{i,j}(\omega) \sim \frac{jDOS}{\omega} \times \text{sel. rules}$$

Magneto-optics in the study of relativistic materials

 $\sigma_{i,j}(\omega) \sim \frac{\text{jDOS}}{\omega} \times \text{sel. rules}$

<u>Example</u>: bulk Landau levels (massive Dirac fermion) with $\mathbf{B} = B\mathbf{u}_z$ $\lambda, n \to \lambda', n \pm 1$ for σ_{xx}, σ_{yy} selection rules: $\lambda, n \to \lambda', n$ for σ_{zz} $E_{\lambda,n}(k_z) = \lambda \sqrt{\Delta^2 + \hbar^2 v^2 (2n/l_B^2 + k_z^2)}$ 0.3 $(\sigma_0 \xi^{-1})^{-22}$ joint DOS : $\rho(\omega) \sim \frac{1}{\sqrt{\hbar\omega - \Delta_n}} \theta(\hbar\omega - \Delta_n)$

0.0

0.5

1.0

1.5

 ω/Δ_{s}

2.0

2.5

Magneto-optical signatures of surface states in 3D (no magnetic field) [X. Lu, MOG, arXiv (2019)] \boldsymbol{E} selection rules: $\lambda, n \to \lambda', n \pm 1$ for σ_{zz} (polarisation perpendicular to surface) n=0Bulk topological surface massive surface state 5 states -1→2 zz/(σ0ξ) ozz/00 3 2 0→1 -1→0 $E_{n=0} = nvq$ $E_{\lambda,n\neq 0} = \lambda \hbar v \sqrt{q_{\parallel}^2}$ $\hbar v q_{\parallel}$ $+2n/\ell_S^2$ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 ωlΔ

Magneto-optical signatures of surface states in 3D (no magnetic field) [X. Lu, MOG, arXiv (2019)] \boldsymbol{E} selection rules: $\lambda, n \to \lambda', n \pm 1$ for σ_{zz} (polarisation perpendicular to surface) n=0Bulk topological surface q_y massive surface state 5 states $DOS \sim \omega$ -1→2 zz/(σ0ξ) 0→1 -1→0 $E_{n=0} = E_{\lambda,n\neq 0} = 0$ $\hbar v q_{\parallel}$ $\lambda \hbar v_{\Lambda}$ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 DOS ~ $\omega^0 = \text{const.}$

 $\lambda, n \to \lambda', n \pm 1$ for σ_{zz} (polarisation perpendicular to surface)

→ inplane magnetic field $\mathbf{B}_{\parallel} = B\mathbf{u}_x$ conspires with confinement \rightarrow increase of effective field :

$$q_{\parallel,\theta}^2 = q_x^2 + q_y^2 \frac{\gamma^4}{\ell_S^4}$$

Magneto-optical signatures of surface states in 3D (magnetic field perpendicular to surface)

[X. Lu, MOG, arXiv (2019)]

motion in surface gets quantised by $\mathbf{B} = B_{\perp} \mathbf{u}_z$

Magneto-optical signatures of surface states in 3D (magnetic field perpendicular to surface)

Magneto-optical signatures of surface states in 3D (magnetic field perpendicular to surface)

Conclusions

- Surface states of topological materials with smooth interfaces ~ Landau bands of Dirac fermions (generic ! → TI, WSM, topo. SC,...)
- Topologically protected surface state ~ chiral n=0 Landau band
- Additional massive Landau bands $(n \neq 0)$

→ Volkov-Pankratov states

- Intriguing relativistic effects
- First experimental evidence in HgTe samples
- Clear signature expected in magneto-optical
 Spectroscopy → for TI interfaces [X. Lu & MOG, arXiv (2019)]

→ for WSM interfaces [D.K. Mukherjee & MOG, in prep.]