INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

Chromium Breathing Pyrochlores An exhibition of a variety of pyrochlore Hamiltonians

Pratyay Ghosh Indian Institute of Technology Madras, Chennai, India

February 25, 2019

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

Collaborations

- ► Yasir Iqbal
- Tobias Müller
- Ronny Thomale
- Johannes Reuther
- Michel J. P. Gingras
- Harald O. Jeschke

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

Collaborations

- ► Yasir Iqbal
- Tobias Müller
- Ronny Thomale
- Johannes Reuther
- Michel J. P. Gingras
- Harald O. Jeschke

Acknowledgements

- Zenji Hiroi, Gøran Nilsen, Yoshihiko Okamoto, Owen Benton and Jason Gardner
- ICTS, Bengaluru, The 2nd Asia Pacific Workshop on Quantum Magnetism.
- ► SuperMUC

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

TABLE OF CONTENTS

INTRODUCTION PYROCHLORE: Classical Heisenberg model PYROCHLORE: Quantum Heisenberg model BREATHING PYROCHLORES

Methodology PFFRG

RESULTS Model Hamiltonian Oxides Sulfides Selenide

CONCLUSIONS

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

INTRODUCTION

Spin systems, Frustration, Exotic quantum disorders, quantum-entangled spin liquid ground states, blah, blah, blah

INTRODUCTION

Spin systems, Frustration, Exotic quantum disorders, quantum-entangled spin liquid ground states, blah, blah, blah

INTRODUCTION	Methodology	Results	CONCLUSIONS
●000	000	0000000	

	Conclusions
•000 000 0000000	

 extensive classical ground-state degeneracy

•000 0000000 000000	INTRODUCTION	Methodology	Results	CONCLUSIONS
	●000	000	0000000	

- extensive classical ground-state degeneracy
- no magnetic long-range order down to T = 0

INTRODUCTION	Methodology	Results	CONCLUSIONS
●000	000	0000000	

- extensive classical ground-state degeneracy
- no magnetic long-range order down to T = 0
- ► cooperative paramagnet ⇔ "spin-ice"

INTRODUCTION	Methodology	Results	CONCLUSIONS
●000	000	0000000	

- extensive classical ground-state degeneracy
- no magnetic long-range order down to T = 0
- cooperative paramagnet \Leftrightarrow "spin-ice" ("ice rule": $\sum_{i=1}^{4} \vec{S}_i = 0$)

INTRODUCTION	Methodology	Results	CONCLUSIONS
●000	000	0000000	

- extensive classical ground-state degeneracy
- no magnetic long-range order down to T = 0
- cooperative paramagnet \Leftrightarrow "spin-ice" ("ice rule": $\sum_{i=1}^{4} \vec{S}_i = 0$)
- nonzero entropy

•000 0000000 000000	INTRODUCTION	Methodology	Results	CONCLUSIONS
	●000	000	0000000	

- extensive classical ground-state degeneracy
- no magnetic long-range order down to T = 0
- ► cooperative paramagnet ⇔ "spin-ice"
 - ("ice rule": $\sum_{i=1}^{4} \vec{S}_i = 0$)
- nonzero entropy

INTRODUCTION METHODOL	JGY KESULIS	CONCLUSIONS
000 000	000000	0

PYROCHLORE: QUANTUM HEISENBERG MODEL *J*₁-only model

Phys. Rev. X 9, 011005 (2019)

INTRODUCTION	Methodology	Results	CONCLUSIONS
000	000	0000000	

PYROCHLORE: QUANTUM HEISENBERG MODEL *J*₁-only model

INTRODUCTION	Methodology	Results	CONCLUSIONS
00●0	000	0000000	

PYROCHLORE: QUANTUM PHASE DIAGRAM

 J_1 - J_2 model

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

PYROCHLORE: QUANTUM PHASE DIAGRAM

J_1 - J_2 model

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

PYROCHLORE: QUANTUM PHASE DIAGRAM

J_1 - J_2 model

We study the Cr^{3+} systems which are S = 3/2

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

	LUSIONS
000● 000 0000000 <u>0000000</u>	

► Pyrochlore (AB₂X₄)

	INTRODUCTION	Methodology	Results	CONCLUSIONS
000● 000 0000000 <u>00000000</u>	000●	000	0000000	

• Pyrochlore (AB₂X₄) \Rightarrow Breathing Pyrochlore (AA'B₄O₈)

INTRODUCTION	Methodology	Results	CONCLUSIONS
000●	000	0000000	

- Pyrochlore (AB₂X₄) \Rightarrow Breathing Pyrochlore (AA'B₄O₈)
- ► Size mismatch between A and A'
 - $Fd\bar{3}m \rightarrow F\bar{4}3m$ (Symmetry reduction)

INTRODUCTION METHO	DOLOGY RESULTS	5 Conclusions
0000 000	00000	000

- Pyrochlore (AB₂X₄) \Rightarrow Breathing Pyrochlore (AA'B₄O₈)
- ► Size mismatch between A and A'
 - $Fd\bar{3}m \rightarrow F\bar{4}3m$ (Symmetry reduction)
- ► Spin-3/2 Cr³⁺ spinels

INTRODUCTION N	METHODOLOGY	Results	CONCLUSIONS
0000 0	000	0000000	

- ► Pyrochlore (AB₂X₄) \Rightarrow Breathing Pyrochlore (AA'B₄O₈)
- Size mismatch between A and A'
 - $Fd\bar{3}m \rightarrow F\bar{4}3m$ (Symmetry reduction)
- ► Spin-3/2 Cr³⁺ spinels
 - ► Oxides:^{1,2}
 - ► LiInCr₄O₈
 - ► LiGaCr₄O₈

INTRODUCTION N	METHODOLOGY	Results	CONCLUSIONS
0000 0	000	0000000	

- ► Pyrochlore $(AB_2X_4) \Rightarrow$ Breathing Pyrochlore $(AA'B_4O_8)$
- Size mismatch between A and A'
 - $Fd\bar{3}m \rightarrow F\bar{4}3m$ (Symmetry reduction)
- ► Spin-3/2 Cr³⁺ spinels
 - ► Oxides:^{1,2}
 - ► LiInCr₄O₈
 - ► LiGaCr₄O₈
 - ► Sulphides^{3,4}
 - ► LiInCr₄S₈
 - ► LiGaCr₄S₈
 - ► CuInCr₄S₈

INTRODUCTION N	METHODOLOGY	Results	CONCLUSIONS
0000 0	000	0000000	

- ► Pyrochlore $(AB_2X_4) \Rightarrow$ Breathing Pyrochlore $(AA'B_4O_8)$
- Size mismatch between A and A'
 - $Fd\bar{3}m \rightarrow F\bar{4}3m$ (Symmetry reduction)
- ► Spin-3/2 Cr³⁺ spinels
 - ► Oxides:^{1,2}
 - ► LiInCr₄O₈
 - ► LiGaCr₄O₈
 - ► Sulphides^{3,4}
 - ► LiInCr₄S₈
 - ► LiGaCr₄S₈
 - ► CuInCr₄S₈
 - ▶ Selenide⁵
 - ► CuInCr₄Se₈

INTRODUCTION METHO	DOLOGY RESUL	TS CONCLUSIONS
000• 000	0000	0000

- ► Pyrochlore $(AB_2X_4) \Rightarrow$ Breathing Pyrochlore $(AA'B_4O_8)$
- Size mismatch between A and A'
 - $Fd\bar{3}m \rightarrow F\bar{4}3m$ (Symmetry reduction)
- ► Spin-3/2 Cr³⁺ spinels
 - ► Oxides:^{1,2}
 - ► LiInCr₄O₈
 - ► LiGaCr₄O₈
 - ► Sulphides^{3,4}
 - ► LiInCr₄S₈
 - ► LiGaCr₄S₈
 - $CuInCr_4S_8$
 - ▶ Selenide⁵
 - ► CuInCr₄Se₈

INTRODUCTION	METHODOLOGY	Results	CONCLUSIONS
0000	000	0000000	

TABLE OF CONTENTS

INTRODUCTION PYROCHLORE: Classical Heisenberg model PYROCHLORE: Quantum Heisenberg model BREATHING PYROCHLORES

Methodology PFFRG

RESULTS Model Hamiltonian Oxides Sulfides Selenide

CONCLUSIONS

INTRODUCTION	METHODOLOGY	Results	CONCLUSIONS
0000	000	0000000	
			1

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

► Energy mapping method ⇒ model Hamiltonian

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

- ► Energy mapping method ⇒ model Hamiltonian
- ► Iterative minimization method ⇒ classical ground state

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

- ► Energy mapping method ⇒ model Hamiltonian
- ► Iterative minimization method ⇒ classical ground state
- Pseudofermion functional renormalization group method
 quantum ground state

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	•00	0000000	

Phys. Rev. B 83, 024402 (2011) Phys. Rev. B 96, 045144 (2017)

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	•00	0000000	

Phys. Rev. B 83, 024402 (2011) Phys. Rev. B 96, 045144 (2017)

Fermionic Hamiltonian:

 $H = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j$

INTRODUCTION	METHODOLOGY	Results	Conclusions
0000	•00	0000000	

Phys. Rev. B 83, 024402 (2011) Phys. Rev. B 96, 045144 (2017)

Fermionic Hamiltonian:

 $H = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j \rightarrow \frac{1}{4} \sum_{ij} J_{ij} \sum_{\mu} (f_i^{\dagger} \sigma^{\mu} f_i) (f_j^{\dagger} \sigma^{\mu} f_j)$

INTRODUCTION	METHODOLOGY	Results	CONCLUSIONS
0000	•00	0000000	

Phys. Rev. B 83, 024402 (2011) Phys. Rev. B 96, 045144 (2017)

Fermionic Hamiltonian:

 $H = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j \rightarrow \frac{1}{4} \sum_{ij} J_{ij} \sum_{\mu} (f_i^{\dagger} \sigma^{\mu} f_i) (f_j^{\dagger} \sigma^{\mu} f_j)$

Diagrammatics in the fermion:
INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	•00	0000000	

Phys. Rev. B 83, 024402 (2011) Phys. Rev. B 96, 045144 (2017)

Fermionic Hamiltonian:

 $H = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j \rightarrow \frac{1}{4} \sum_{ij} J_{ij} \sum_{\mu} (f_i^{\dagger} \sigma^{\mu} f_i) (f_j^{\dagger} \sigma^{\mu} f_j)$

Diagrammatics in the fermion:

propagator:
$$G_0(i\omega) = \frac{1}{i\omega} = -$$

interaction vertex: $\Gamma_0 = -$

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

Functional Renormalization Group (FRG)

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

Functional Renormalization Group (FRG)

Infrared frequency cutoff

$$G_0(i\omega) = \frac{1}{i\omega} \to G_0^{\Lambda}(i\omega) = \frac{\Theta(|\omega| - \Lambda)}{i\omega}$$

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

Functional Renormalization Group (FRG)

Infrared frequency cutoff

$$G_0(i\omega) = \frac{1}{i\omega} \to G_0^{\Lambda}(i\omega) = \frac{\Theta(|\omega| - \Lambda)}{i\omega}$$

Vertex functions become Λ -dependent

$$\Sigma = \bullet \longrightarrow \Sigma^{\Lambda}$$
$$\Gamma = \longrightarrow \Gamma^{\Lambda}$$

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

Flow equations for self-energy and 2-particle vertex functions:

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

Flow equations for self-energy and 2-particle vertex functions:

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

Flow equations for self-energy and 2-particle vertex functions:

Magnetic response (static susceptibility):

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	000	0000000	

TABLE OF CONTENTS

INTRODUCTION PYROCHLORE: Classical Heisenberg model PYROCHLORE: Quantum Heisenberg model BREATHING PYROCHLORES

Methodology PFFRG

RESULTS Model Hamiltonian Oxides Sulfides Selenide

CONCLUSIONS

INTRODUCTION 0000 METHODOLOGY

RESULTS •0000000 CONCLUSIONS

MODEL HAMILTONIAN

INTRODUCTION 0000 METHODOLOGY

RESULTS

CONCLUSIONS

MODEL HAMILTONIAN

Material	J (K)	J' (K)	J ₂ (K)	J _{3a} (K)	J _{3b} (K)
LiInCr ₄ O ₈	59.8(2)	22.0(2)	0.3(1)	1.9(1)	0.9(1)
CuInCr ₄ S ₈	14.7(1)	-26.0(1)	1.1(1)	6.4(1)	4.5(1)
CuInCr ₄ Se ₈	-25.4(2)	-31.0(1)	0.3(1)	4.8(1)	3.9(1)

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	000	000000	

INS .

Introduction	Methodology	RESULTS	Conclusion
0000	000	0000000	

- J'/J = 0.37
 J₂/J = 0.004
 J_{3a}/J = 0.03
- ► $J_{3b}/J = 0.015$

Introduction	Methodology	RESULTS	CONCLUSION
0000	000	0000000	

- J'/J = 0.37
 J₂/J = 0.004
- ► $J_{3a}/J = 0.03$
- $J_{3b}/J = 0.015$

Ordering pitch vector $\mathbf{q} = \frac{2\pi}{a}(2, 1, 0) \Rightarrow$

Introduction	Methodology	RESULTS	Conclusion
0000	000	0000000	

INTRODUCTION 0000	Methodology 000	Results ••••	CONCLUSIONS

For strong AFM NN interactions, J_2 in an ideal pyrochlore lattice is equivalent to a J_{3a} with opposite sign⁷.

⁶ Phys.	Rev.	B.	81,	224413	(2010)
⁷ Phys.	Rev.	Β,	78,	144418	(2008)

INTRODUCTION	Methodology	Results	CONCLUSION
0000	000	0000000	

For strong AFM NN interactions, J_2 in an ideal pyrochlore lattice is equivalent to a J_{3a} with opposite sign⁷. $J_{3a}/J \rightarrow (J_{3a} - J_2)/J = 0.026$

⁶ Phys.	Rev.	B.	81,	224413	(2010)
⁷ Phys.	Rev.	Β,	78,	144418	(2008)

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	000	0000000	

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	000	0000000	

Experimental data from J. Phys. Soc. Jpn. 84, 043707 (2015)

• Temperature dependent Hamiltonian

Experimental data from J. Phys. Soc. Jpn. 84, 043707 (2015)

- Temperature dependent Hamiltonian
- absorption cross section in barns of In: 193.8
- absorption cross section in barns of Ga: 2.75

Experimental data from J. Phys. Soc. Jpn. 84, 043707 (2015)

- Temperature dependent Hamiltonian
- absorption cross section in barns of In: 193.8
- absorption cross section in barns of Ga: 2.75
- ► Experiments on LiGaCr₄O₈

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	000	0000000	

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	000	0000000	
			ř.

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	
			1

SULFIDES $CuInCr_4S_8$

► J'/J = -1.49► $J_2/J = 0.07$ ► $J_{3a}/J = 0.39$

►
$$J_{3b}/J = 0.27$$

Introduction	Methodology	RESULTS	Conclusio
0000	000	0000000	

SULFIDES CuInCr₄S₈

J'/J = −1.49
 J₂/J = 0.07
 J_{3a}/J = 0.39

►
$$J_{3b}/J = 0.27$$

• Ordering pitch vector: $\frac{2\pi}{a}(1,0,0)$

Introduction	Methodology	RESULTS	CONCLUSION
0000	000	0000000	

•
$$J'/J = -1.49$$

• $J_2/J = 0.07$
• $J_{3a}/J = 0.39$

►
$$J_{3b}/J = 0.27$$

• Ordering pitch vector: $\frac{2\pi}{a}(1,0,0)$

► Pattern of almost degenerate line ⇐ AFM NN FCC ⇒ "spiral spin liquid"

INTRODUCTION	Methodology	RESULTS	CONCLUSION
0000	000	0000000	

SULFIDES CuInCr₄S₈

• J'/J = -1.49• $J_2/J = 0.07$ • $J_{3a}/J = 0.39$

►
$$J_{3b}/J = 0.27$$

- Ordering pitch vector: $\frac{2\pi}{a}(1,0,0)$
- ► Pattern of almost degenerate line ⇐ AFM NN FCC ⇒ "spiral spin liquid"
- Strong FM $J' \Rightarrow S \approx 6$ FCC

Introduction	Methodology	RESULTS	CONCLUSION
0000	000	0000000	

•
$$J_{3b}/J = 0.27$$

- Ordering pitch vector: $\frac{2\pi}{a}(1,0,0)$
- ▶ Pattern of almost degenerate line ⇐ AFM NN FCC ⇒ "spiral spin liquid"
- Strong FM $J' \Rightarrow S \approx 6$ FCC

•
$$J_1^{fcc} = (J + 4J_2 + 2J_{3a} + 2J_{3b})/16$$

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	000	00000000	

INTRODUCTION 0000	Methodology 000	Results 00000000	CONCLUSIONS

Introduction 0000	Methodology 000	Results ○○○○●○○○	Conclusions
SULFIDES CuInCr ₄ S ₈			
(b) 8π 2 4π 1 50 $0-4\pi-8\pi -4\pi 0[h00]$	4π 8π		

• Intersection of $\mathbf{q} = \frac{2\pi}{a}(1, \delta, 0)$ and $\mathbf{q} = \frac{2\pi}{a}(1, 0, \delta)$

INTRODUCTION 0000	METHODOLOGY 000	Results 00000000	Conclusions
SULFIDES CuInCr ₄ S ₈			
(b) 8π $2^{2} 4\pi$ $1 \stackrel{>}{\boxtimes} 0^{-4}\pi$ $-8\pi - 4\pi \stackrel{0}{-8\pi - 4\pi 0}$ [h00]	<u>4</u> π 8л		

- Intersection of $\mathbf{q} = \frac{2\pi}{a}(1, \delta, 0)$ and $\mathbf{q} = \frac{2\pi}{a}(1, 0, \delta)$
- "Order by disorder" selects $\mathbf{q} = \frac{2\pi}{a}(1,0,0)$

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	000	00000000	

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	000	00000000	

Experimental data from J. Phys. Colloques 32, C1-324 (1971) and Phys. Lett. 60A, 431 (1977).

NTRODUCTION 000	Methodology 000	Results 00000000

Experimental data from J. Phys. Colloques 32, C1-324 (1971) and Phys. Lett. 60A, 431 (1977).

- absorption cross section in barns of In: 193.8(1.5)
- absorption cross section in barns of Ga: 2.75(1.5)

Experimental data from J. Phys. Colloques 32, C1-324 (1971) and Phys. Lett. 60A, 431 (1977).

- absorption cross section in barns of In: 193.8(1.5)
- absorption cross section in barns of Ga: 2.75(1.5)
- ► Experiments on LiGaCr₄S₈
SULFIDES

Experimental data from J. Phys. Colloques 32, C1-324 (1971) and Phys. Lett. 60A, 431 (1977).

- absorption cross section in barns of In: 193.8(1.5)
- absorption cross section in barns of Ga: 2.75(1.5)
- ► Experiments on LiGaCr₄S₈
- Experiments on LiInCr₄S₈ and CuInCr₄S₈

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	000	00000000	

⁹Phys. Rev. B. 81, 224413 (2010)

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	000	00000000	
			ř.

SELENIDE CuInCr₄Se₈

⁹Phys. Rev. B. 81, 224413 (2010)

Introduction	Methodology	RESULTS	Conclu
0000	000	00000000	

SELENIDE CuInCr₄Se₈

- ► |J'|/|J| = 1.18
- ► $J_2/|J| = 0.016$
- $J_{3a}/|J| = 0.2$
- ► $J_{3b}/|J| = 0.16$

⁹Phys. Rev. B. 81, 224413 (2010)

INTRODUCTION	Methodology	RESULTS	CONCL
0000	000	00000000	

- ► |J'|/|J| = 1.18
- ► $J_2/|J| = 0.016$
- $J_{3a}/|J| = 0.2$
- ► $J_{3b}/|J| = 0.16$

• FM J and J'

⁹Phys. Rev. B. 81, 224413 (2010)

INTRODUCTION	Methodology	RESULTS	CONCLUSION
0000	000	00000000	

- ► FM *J* and *J*′
- Ordering pitch vector: $\mathbf{q} = (0.521278, 0, 0)$

⁹Phys. Rev. B. 81, 224413 (2010)

INTRODUCTION 0000	Methodology 000	Results 00000000	CONCLUSION

- ► FM *J* and *J*′
- Ordering pitch vector: $\mathbf{q} = (0.521278, 0, 0)$
- ► Observed for the pyrochlore material ZnCr₂Se₄⁸

⁹Phys. Rev. B. 81, 224413 (2010)

INTRODUCTION	Methodology	Results	CONCLUSION
0000	000	00000000	

- ► FM *J* and *J*′
- Ordering pitch vector: $\mathbf{q} = (0.521278, 0, 0)$
- ► Observed for the pyrochlore material ZnCr₂Se₄⁸
- "spiral spin liquid"?

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	000	0000000	

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	000	0000000	

"Inarticulated" matching with the unpolarized neutron scattering data *MAGNETIC ORDERING IN THE NORMAL SPINEL* $Cu_{0.5}In_{0.5}Cr_2Se_4$ R. Plumier and M. Sougi Solid State Communications, Vol. 69, No. 4, pp.341-345, 1989.

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

TABLE OF CONTENTS

INTRODUCTION PYROCHLORE: Classical Heisenberg model PYROCHLORE: Quantum Heisenberg model BREATHING PYROCHLORES

Methodology PFFRG

RESULTS Model Hamiltonian Oxides Sulfides Selenide

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	0000000	

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	00000000	

► We have studied six Cr³⁺ breathing pyrochlore systems.

- ► We have studied six Cr³⁺ breathing pyrochlore systems.
- The physics of these systems can be grouped in to: Oxides, Sulfides, and Selenide.

- ► We have studied six Cr³⁺ breathing pyrochlore systems.
- The physics of these systems can be grouped in to: Oxides, Sulfides, and Selenide.
- We have presented the systems as a display of different types of model pyrochlore Hamiltonians to explain their completely different ground states.

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	00000000	

- ► We have studied six Cr³⁺ breathing pyrochlore systems.
- The physics of these systems can be grouped in to: Oxides, Sulfides, and Selenide.
- We have presented the systems as a display of different types of model pyrochlore Hamiltonians to explain their completely different ground states.
- ► We also present comparisons with experimental data and also proposing further studies of these systems.

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	000	00000000	

- ► We have studied six Cr³⁺ breathing pyrochlore systems.
- The physics of these systems can be grouped in to: Oxides, Sulfides, and Selenide.
- We have presented the systems as a display of different types of model pyrochlore Hamiltonians to explain their completely different ground states.
- ► We also present comparisons with experimental data and also proposing further studies of these systems.
- The temperature dependence of these systems?

morraganarator.not