

PGC2018-097585-B-C21

Una manera de hacer Europa

The large scale structure of the universe

Illustris simulation

Carlos Hernández-Monteagudo Centro de Estudios de Física del Cosmos de Aragón

Benasque, September 2019

OUTLINE

- The information initally encoded in the clustering of light
- The imprint of gravity/growth of structure in the clustering of galaxies
- Other cosmological probes of the LSS: gravitational lensing and abundance of the most massive, collapsed objects in the universe (galaxy clusters)
- The epoch of Reionization and other open questions in cosmology/astro-particle physics

Cosmological time \rightarrow

How were the *dark ages?* How did the first stars form?

When and how did Reionization take place? How long did it last? Who caused this? Galaxies, QSOs? How were Pop III stars?

How were the *dark ages?* How did the first stars form?

When and how did Reionization take place? How long did it last? Who caused this? Galaxies, QSOs? How were Pop III stars?

The inflaton stretches quantum fluctuations to macroscopic scales ...

... which are projected, after reheating, as curvature fluctuations ...

 $\phi_{\mathbf{k}}$

 $\phi_{\bf k} \to \zeta_{\bf k}$

... which source the anisotropies in the (visible) energy and matter distribution in the universe ...

 $\zeta_{\bf k} \rightarrow \psi_{\bf k}, \, \delta_{c, \bf k}, \, \delta_{b, \bf k}, \, \delta_{\gamma, \bf k}$

The impact of the transfer function can be seen in the matter power spectrum:

[BLACKBOARD: derive scale invariant spectral index (Harrizon-Zeldovich)]

[BLACKBOARD: connect correlation function and power spectrum]

[BLACKBOARD: introduce impact of peculiar velocities on observed power spectrum]

Impact of neutrinos and relativistic species on the LSS

Whenever we do **not** have **accurate** *redshift* measurements, we project on the sky \rightarrow **angular** number densities \rightarrow **angular** correlation function and power spectra

[BLACKBOARD: derive angular quantities from 3D power spectrum]

A few words about gravitational lensing

Wikipedia

Other cosmological probes

Voids: empty or almost empty regions, their shapes, sizes and abundances could a priori constrain cosmological parameters (DE parameters, total matter density, etc)

Illustris simulation

It depends heavily on numerical simulations

Other cosmological probes

X-rays

Optical

sub-mm

Chandra Obs. / CFHT - von der Linden / Marrone

Galaxy clusters:

the most massive, self gravitating entities in our universe, can be accessed in different wavelengths, and their abundance is a sensitive cosmological probe – the trick is to weight those giants!!

Their study also depends heavily on numerical simulations 16

Future of LSS studies

DARK ENERGY SURVEY

NATIONAL MANAGEMENT AND A CONTRACT AND A

One slide on self-publicity: The Javalambre PAU survey ...

Astrophysical Observatory of Javalambre (OAJ)

A cheap way to get a *low-resolution spectrum* in *every* pixel of the sky – worse redshift qualities, but **way better statistics**!

Changing gears ...

Cosmological time

 \rightarrow

Courtesy NASA/JPL-Caltech

Neutral hydrogen is visible through the 21 cm hyperfine transition that couples the electron's and the proton's spins...

F = 0Spin-Flip

This 21 cm transition will be seen with the CMB as a background, and thus its observability will depend on

 $T_{spin H21CM} > /=/ < T_{CMB}$

For that,one has to account for the interaction of HI with electrons, protons, UV photons from the first stars and the CMB ...

- Experiments thus target the redshifted 21 cm line (thus looking at the ~1e2 MHz radio regime)
- These experiments typically sweep the *redshift range* [0.5 50]
- The main limitation to overcome is the presence of contaminants at these radiofrequencies, which lie **several orders of magnitude** above the targetted signal
- The anisotropy reionization signal at HI 21 cm has not been yet isolated

El estudio de la época de reionización

LOFAR consists on 20,000 antennas in a region of ~1,500 km diameter centred in Holland, it has been operating since 2012, in a frequency range from 10 MHz up to 240 MHz – as of a year ago, they were limited by the Earth's ionosphere ...

MWA is placed in an isolated region of Australia, and mounts 128 antenna clusters, extending 3 km apart, and operating from 80 up to 300 MHz. Its construction finished in 2012.

SKA will extend in South-Africa and Australia, with an effective collective area of **one squared km**. Its construction has been divided in 3 phases, ranging from 2018 up to 2023, with phase 1 ending in 2023.

The EDGES experiment has provided measurements of average antenna temperature of the HI 21 cm absorption feature at $z\sim17$, whose amplitude is significantly **higher** (\sim x 3 – 4) than expected, raising some controversy in the community ...

Frequency [MHz]

28