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Outline

 HL-LHC and experimental conditions

 Main modifications to detectors

 Physics expectations
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● Run3: moving to 14 TeV, add  150 fb≿ -1

● HL-LHC: Up to 3000-4000 fb-1

● Challenging conditions:
○ Instantaneous luminosities considered 

≈ 5-7.5 1034 cm-2 s-1

○ Pileup ≈ 200 events / crossing 

Evolution of LHC program
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HL-LHC scenarios considered
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● What is more relevant from the point of view of performance is the “event 
density” per crossing (typically expressed in events / mm)

Nominal, 
μ=140

Ultimate, 
μ=200

HL-LHC pileup



J. Alcaraz, LHC Physics, TAE19 6

● In a nutshell:
○ Next precision step for the understanding the Higgs / EWSB sector
○ Precision measurements of the SM in general, looking for deviations
○ Specific objective: measure/constrain the trilinear Higgs self-coupling
○ Search for New Physics signals, in particular with low predicted rates

<10% 
is the 
goal

Big difference between 
exclusion and discovery reach 

HL-LHC: Physics objectives



J. Alcaraz, LHC Physics, TAE19 7

● Commonalities between the two experiments:
○ New Inner Trackers
○ Upgraded electronics, able to cope with huge radiation dose/rates
○ New trigger systems (more latency, higher rate capabilities)
○ Plan to improve detection in forward regions, add timing capabilities

Summary of ATLAS Upgrades
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+ timing capabilities
(barrel and endcap)

Summary of CMS Upgrades
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ATLAS-TDR-025

● Full silicon tracker (no TRT). Layout optimized since the first Letter of Intent:
○ Barrel: 5 pixel layers, 4 long outer strip layers 
○ Endcap strips: 6 layers, covering up to |<2.5|�
○ Endcap pixel: multiple layers of sensors, including ‘inclined’ sensors in 

barrel (reducing material to be traversed); coverage up to |<4|�

ATLAS new inner tracker (ITk)

https://cds.cern.ch/record/2257755
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● Specifically designed to provide inputs to L1 Trigger
○ Level 1 track-trigger finds tracks with pT≥2 GeV

● Outer tracker (6 layers, 5 disks)
○ Two-layer �T-modules provide inputs to level 1 trigger
○ High granularity, efficient track reconstruction for >140 PU

● Pixel detector (4 layers, 11 disks)
○ Extended coverage with disks to |η|<4
○ Thin planar sensors 100μm or 3D sensors;
○ Small pixels (50x50 or 25x100 μm2)

● Improved material budget and radiation tolerance

CMS new inner tracker

CMS-TDR-014

https://cds.cern.ch/record/2272264
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● Double layers in the outer part of the tracker are the inputs for L1 tracking 

CMS L1 tracker trigger

CMS-TDR-014

https://cds.cern.ch/record/2272264
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● L1Track: able to perform regional tracking at 1 MHz; latency: a few s  �
● FTK++: able to perform full event tracking after L1 at ≈ 100 KHz using 

massive parallelism; latency ~ 100 s �

ATLAS L1 tracker triggers

ATLAS-TDR-021
● FTK is part of the Phase1 ATLAS upgrade: 

○ full system already deployed in Run2

https://cds.cern.ch/record/1552953
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HGC=High Granularity Calorimeter. Largely based on R&D studies for future detectors 
(CALICE). Use silicon sensors to allow detailed 4D (space-time) reconstruction of showers. 
Three parts:

● CE-E: 28 sampling layers with silicon sensors + W/Cu absorber, ≈ 26 X  (rad. lengths)₀
● CE-H: 12+12 layers of silicon/scintillators + stainless steel absorber
● Complicated structure due to expected radiation levels, ≈ 10.7 λ (absortion lengths) in total

No timing 
cuts to 

reject pileup 

Reject 
Δt>90 ps 

hits

H→γγ simulated event, φ vs η map 

CMS endcap calorimeter (HGC)

CMS-TDR-019
CMS-TDR-019

https://cds.cern.ch/record/2293646
https://cds.cern.ch/record/2293646
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● Significant potential to improve pileup identification (next slide)

Specific timing detectors
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● Significant potential to improve pileup 
identification performance

Timing detectors: CMS example
LHCC-P-009

https://cds.cern.ch/record/2296612
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● Despite the harsh conditions, experiments are planning for upgraded 
detectors with optimal performance, at least similar to that of Run2

B-tagging capabilities similar to those 
available in Run2

Small b-tagging degradation with pileup

Dealing with HL-LHC pileup
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● Performance dependent only on pileup density (not amount ot pileup or other beam 
bunch details)

● Despite the harsh conditions, experiments are planning for upgraded detectors with 
optimal performance, at least similar to that of Run2

Missing transverse energy resolution (width 
of response shown; expected mean = 0 here)

Isolation efficiency for muons 

Dealing with HL-LHC pileup
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● Physics objectives of HL-LHC (reminder):
○ Next precision step for the understanding the Higgs / EWSB sector
○ Precision measurements of the SM in general, looking for deviations
○ Specific objective: measure/constrain the trilinear Higgs self-coupling
○ Search for New Physics signals, in particular with low predicted rates

● Many studies were recently updated for the purpose of the ongoing 
European Strategy Group discussions. Steering references:
○ Higgs: https://arxiv.org/abs/1902.00134
○ SM: https://arxiv.org/abs/1902.04070 
○ BSM: https://arxiv.org/abs/1812.07831 

HL-LHC: physics studies

https://arxiv.org/abs/1902.00134
https://arxiv.org/abs/1902.04070
https://arxiv.org/abs/1812.07831


J. Alcaraz, LHC Physics, TAE19 19

arxiv:1902.00134

● Note that systematics and theory uncertainties are large and usually dominate
● H→μμ and H→Zγ are the exceptions: low branching fractions  higher statistical uncertainty⇒
● Precision on the individual production mechanism cross sections: 5%, ≾
● On couplings → HWW,HZZ: <2%, Hμμ: <5%,  other Hff couplings: <4%

Higgs production/couplings

arxiv:1902.00134

https://arxiv.org/abs/1902.00134
https://arxiv.org/abs/1902.00134
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Uncertainties for HL-LHC
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Reminder: H→μμ in Run2
• Another critical test of EWSB within the SM: does the Higgs couple to second generation fermions?
• Next Higgs challenge at LHC: needs huge integrated luminosity to be observed. Currently only limits.
• H→cc inaccessible even at high-luminosity LHC (backgrounds). SM H→μμ at reach in next LHC runs
• Search similar in spirit to H→γγ: narrow peak on top of a huge smooth background (≈SM Drell-Yan μμ)

ATLAS-CONF-2019-028

arxiv:1807.06325

http://cdsweb.cern.ch/record/2682155
http://arxiv.org/abs/1807.06325
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arxiv:1902.00134

● The measurements profits from an improved tracker 
resolution at HL-LHC

● Note that uncertainties in these tables correspond to the 
signal strength | cross section, which is ≈twice the 
uncertainty on the Hμμ coupling

H→μμ at HL-LHC

https://arxiv.org/abs/1902.00134
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Reminder: Higgs width measurement
• Key feature: the Higgs off-shell contribution to “on-shell” ZZ final states is not negligible, even if the 

Higgs is narrow 
• Exploit invariant mass of the 4l system plus additional kinematics information (matrix element)

arxiv:1405.3455

m
ZZ

 > m
2Z 

(Off-shell production)
m

ZZ
 ~ m

H 

(On-shell production)

Higgs signal

 Background
(interfering)

http://arxiv.org/abs/1405.3455
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Higgs width at HL-LHC arxiv:1902.00134

CMS study :ΓH=4.1−1.1
+1.0 MeV ATLAS study :ΓH=4.2−2.1

+1.5 MeV

• Precise measurement expected !!
• Similar techniques to those used in Run2: matrix element and m

4l

• Theoretical modeling of the invariant mass shape to be kept under control !!

https://arxiv.org/abs/1902.00134
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● Main final state to try to explore the nature of the Higgs self-
coupling, which is predicted to be non-zero in the SM

3mH
2/v

Higgs self-coupling
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Reminder: HH production
• The di-Higgs production process receives contributions from two amplitudes that interfere destructively 

in the SM. Two main implications: 
• Small cross section in the SM (≈ 35 fb at √s=14 TeV)  measurable at HL-LHC ?⇒
• BSM may be un-affected by this negative interference: larger cross sections expected in case of new 

physics !!
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HH production at HL-LHC
• All possible bbXX final states exploited in large detail to gain global sensitivity for the SM case: 

• bbγγ, bbττ, bbbb, bbZZ*, bbWW*
• Mostly estimated by extrapolations of current Run2 analyses to L=3000 fb-1 
• Largest sensitivity offered by bbγγ and bbττ searches; use of multivariate methods mandatory

arxiv:1902.00134

bbττbbγγ

https://arxiv.org/abs/1902.00134
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Higgs self-coupling: combination
arxiv:1902.00134

Combined measurement of κ
γ
 (1σ)

https://arxiv.org/abs/1902.00134
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Higgs self-coupling: combination
arxiv:1902.00134

https://arxiv.org/abs/1902.00134
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● Vector boson scattering at high energies is a unique probe of the interaction 
of longitudinally polarized weak bosons

○ Cross section decreasing with √s due to the presence of the SM Higgs boson
○ Cross section diverges with √s in general in theories BSM: compositeness, …
○ Very important test of the EWSB mechanism 

Vector Boson Scattering (VBS)

σV LV L→V LV L
∝ [− s −t +

s2

s−mH
2 +

t2

t−mH
2 ]
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● Good channel from the experimental point of view: W±W±:
● uu and dd in initial state are dominant at HLC (valence PDFs)
● same-sign lepton pairs + missing energy: less SM background 

VBS at HL-LHC

● also: QCD-mediated diagrams do not
have large contributions: 
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● Main experimental handles to select W±W±  from VBS:
● two same-sign leptons + missing transverse energy
● two energetic forward jets on each side of the detector (  high mass m⇒

JJ
)

● largest background is WZ+jets and ZZ+jets (1 or 2 leptons lost) 
● theoretical detail: assignment of QCD-mediated diagrams to “background”

VBS at HL-LHC

● Expected uncertainties on the SM EWK cross section ≈ 3% at HL-LHC

arxiv:1902.04070

https://arxiv.org/abs/1902.04070
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● WZ channel:
● particularly important because deviations from the SM at large √s are potentially 

larger (more interference with SM diagrams)→important channel for compositeness
● clean channel from the experimental point of view, despite a smaller cross section 

compared with WW

VBS at HL-LHC
arxiv:1902.04070

https://arxiv.org/abs/1902.04070
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● WZ channel:
● dominant background is QCD-mediated production of 

WZ:
● multivariate methods used to separate both 

contributions via kinematic differences

VBS at HL-LHC

● Expected uncertainties on the SM EWK cross section ≈ 5% at HL-LHC

arxiv:1902.04070

https://arxiv.org/abs/1902.04070
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● Improvements on the W mass are highly correlated with PDF improvements
○ It would benefit from ep running if available (LHeC)

W mass at HL-HLC arxiv:1902.04070

L=200 pb-1

https://arxiv.org/abs/1902.04070
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● A precise measurement is obtained when the PDFs are simultaneously constrained in 
the analysis (“PDF constrained”)

○ As a reference, the √s=8 TeV analysis from CMS (muons) gave δ ≈ 32×10-5

○ A
FB

 gets diluted at √s=14 TeV compared with √s=8 TeV: lower x  direction of larger rapidity ⇒
is an “anti-quark” more frequently

○ This is compensated by an increased acceptance (|η|<2.8, CMS, larger η  less dilution)⇒

● HL-LHC: better than LEP-SLD average (δ ≈ 16×10-5) with just 500 fb-1

sin2θ
eff

 at HL-HLC arxiv:1902.04070

LEP+SLD average

https://arxiv.org/abs/1902.04070


J. Alcaraz, LHC Physics, TAE19 37

Relevance of top mass measurementsRelevance of top mass measurements

 Together with recent measurements of M
W
 and the Higgs mass, a precise measurement of m  ₜ

helps to severely constrain (or instead discover) deviations from the SM.  

Gfitter project

http://project-gfitter.web.cern.ch/project-gfitter/
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Top mass measurement at the LHCTop mass measurement at the LHC
 Statistics is very high, so measurements will 

be dominated by systematic uncertainties 
(theoretical and experimental)

 Many different methods employed, focusing 
on different systematic sources. Three main 
paths can be highlighted:

 Most precise (today): lepton+jets channel
 Experimentally cleanest: dilepton channel
 Theoretically cleanest: tt or tt+jet cross 

sections

arxiv:1307.1907

LPCC Top Working Group

http://arxiv.org/abs/1307.1907
https://lpcc.web.cern.ch/lhc-top-wg-wg-top-physics-lhc
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Top mass measurement at the LHCTop mass measurement at the LHC
 Lepton+jet measurement:

 Basically, it implies a full kinematic 
reconstruction of the two tops in the 
event, where m  is a free parameter in ₜ
the game

 An additional parameter is the energy 
scale factor for the jets in the event, 
which is partially constrained by the mass 
of the two light jets in the event (from the 
hadronic W)

 Different versions for the final strategy: 
ideograms, templates, ... 

arxiv:1805.01428

arxiv:1209.2319

http://arxiv.org/abs/1805.01428
http://arxiv.org/abs/1209.2319
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Top mass measurement at the LHCTop mass measurement at the LHC
 Dilepton measurement:

 Basically, it gets its sensitivity from the bl 
invariant mass distribution (no need to 
get the kinematics of the neutrinos)

 It just assumes that there are no 
deviations in the Wtb vertex structure (i.e. 
no anomalous couplings):

 Still directly dependent on b-jet energy 
scale uncertainties

arxiv:1606.02179

M bl=√mt
2
−mW

2 cos (
θWl

*

2
) ; (mb→ 0)

https://arxiv.org/abs/1606.02179
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Top mass measurement at the LHCTop mass measurement at the LHC
 tt cross section measurements in general:

 Reduce theoretical uncertainties: m  (pole) is ₜ
well defined in this context

 Interesting interplay with theory uncertainties: 
PDFs, α , … → not so negligible !!ₛ

 New wave: differential cross sections as a 
function of different kinematic variables

 ρ =340 GeV/mass(tₛ t+1jet)    (ATLAS)
 N

jet
, M(tt), y(tt)     (CMS)

arxiv:1603.02303

arxiv:1406.5375

arxiv:1905.02302

arxiv:1904.05237

http://arxiv.org/abs/1603.02303
https://arxiv.org/abs/1406.5375
https://arxiv.org/abs/1905.02302
http://arxiv.org/abs/1904.05237
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● t→W+b→lν + J/Ψ(ll) + X, use mass of J/Ψ+l system:
○ no b-jet scale uncertainties anymore,
○ but fragmentation uncertainties are now an important ingredient

●  Vertex method is similar in spirit → substitute J/Ψ by secondary vertex system

More: J/Ψ+lepton an top mass

arxiv:1603.06536

arxiv:1608.03560

http://arxiv.org/abs/1603.06536
http://arxiv.org/abs/1608.03560
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● Some features:
○ Ultimate expected uncertainty  0.1%≾
○ �(tt): limited by theory and luminosity uncertainties
○ Some methods with large statistical uncertainties in Run1/Run2 become more 

relevant at HL-LHC 

● Also, more understanding of theoretical uncertainties needed

Top mass at HL-HLC arxiv:1902.04070

https://arxiv.org/abs/1902.04070
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Generic searches (Exotica)Generic searches (Exotica)
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arxiv:1906.05609

 Basic strategy: 
 Isolated leptons of extremely high momentum (TeV scale)
 Look for 'peaks/bumps' in the di-lepton invariant mass or in the lepton+missing momentum 

transverse mass
 Key (critical) point: good lepton momentum resolution at ≈ TeV scale and very precise control 

of resolution, momentum biases, trigger, reconstruction efficiencies
 Main background: SM ll and lν with high mass (Z,W off-shell production)
 Limits typically given either on toy models (SM sequential) or theoretically more consistent 

ones (new gauge groups from unification theories)

  New vector boson New vector boson searches at LHCsearches at LHC
 Leptonic decay channels, Z' → ll, and W’→lν are typically the most sensitive ones to 

the presence of new gauge sectors extending the SM (minimal backgrounds):

arxiv:1903.06248

https://arxiv.org/abs/1906.05609
https://arxiv.org/abs/1903.06248
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● Regarding the reach at HL-LHC, one expects to improve current limits by 1-2 TeV:
○ √s is still the same as in Run3, and an increase of a factor 10 in integrated luminosity only 

leads to mild improvements of order 1 TeV  

Searches at HL-LHC

To be compared with the current ATLAS limit of m(Z’
Ψ
) > 4.5 TeV

arxiv:1812.07831

https://arxiv.org/abs/1812.07831
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SUSY searches were mostly SUSY searches were mostly 
“hadronically driven” at “hadronically driven” at 

Run1+Run2Run1+Run2
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SUSY@Run2: hadronic + missing ESUSY@Run2: hadronic + missing E
TT

 Concentrate on final states with just jets and substantial missing H
T
 → same as 

missing E
T
 but calculated using only jets (unclusterized energy is ignored) 

 The detector resolution is so good that the key backgrounds are 
backgrounds that have intrinsic missing energy. In this example:

 nn+jets →control regions (CR) from photon+jets and μ μ +jets⁺ ⁻
 W+jets/top (“lost lepton”) →CR with lepton and non-b/b tagging
 QCD  →normalization fixed with events with missing H

T
 close to jet directions

arxiv:1908.04722

 Many variables used in practice: 
 #jets, #b-tagged jets, H

T
, H

T
miss 

 Many different subregions defined with them

http://arxiv.org/abs/1908.04722
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SUSY results: hadronic + missing ESUSY results: hadronic + missing E
TT

 We do not see any significant excess yet. We therefore set limits in some 
benchmark SUSY scenarios:

arxiv:1908.04722

http://arxiv.org/abs/1908.04722
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Large fraction of TeV-MSSM models excludedLarge fraction of TeV-MSSM models excluded
 Gluinos and light squarks produced directly at LHC excluded up to masses ≈ 2 TeV in Run2 (if 

neutralinos are not too massive)
 A large fraction of “phenomenological” MSSM possible models also excluded below 1 TeV or so 

since Run1

Taken from PDG 2018
arxiv:1508.06608

http://pdg.lbl.gov/2019/reviews/rpp2018-rev-susy-2-experiment.pdf
https://arxiv.org/abs/1508.06608
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How can SUSY hide from observation at LHCHow can SUSY hide from observation at LHC
 By being more “complicated”: beyond MSSM, not SUGRA, R-parity violating (  no missing ⇒

energy), long-lived signatures, only “electroweak” s-particles at low masses/scales, ...

Taken from CMS SUSY public results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
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How can SUSY hide from observation at LHCHow can SUSY hide from observation at LHC
 “Compressed” spectra: masses too close to each other in the decay  low cross sections due to ⇒

lack of phase space, orbidden decay channels, …). Example of the top squark:

Taken from CMS SUSY public results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
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● The increase in luminosity may help in special important situations:
○ Confirmation of tiny excesses (≈ 1-3 σ) present in Run2-Run3 (exclusion vs discovery)

Searches at HL-LHC arxiv:1812.07831

Run2 search

https://arxiv.org/abs/1812.07831
http://cdsweb.cern.ch/record/2676595
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● The increase in luminosity may help in some special situations:
○ New physics in regions with low rates (compressed and stealth SUSY, for instance)

Searches at HL-LHC arxiv:1812.07831

● Example of search for ewkino pair production:
○ EWK-mediated SUSY has lower cross sections than QCD-driven SUSY → HL-LHC helps
○ Target “natural” scenarios: Higgsinos have the lowest masses and mass differences among 

them are small (few GeV, blue region) → small visible energy in the detector (leptons,...) 
○ If mass differences are very close to zero (yellow region), particles are almost stable  ⇒

long-lived charginos decaying into neutralinos (invisible) + very slow pion  “disappearing ⇒
tracks”

https://arxiv.org/abs/1812.07831
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DM results from CMS

Dark matter (DM) searches at LHCDark matter (DM) searches at LHC
 Most sensitive generic search is one initial-state radiation jet + missing energy 

from DM. Mediator may have vector/axial/scalar/pseudoscalar couplings to DM 

Direct coupling 
to quarks must 

exist

X+missing 
energy search; 
couplings to 
quarks and DM  Results of the X+DM searches for a benchmark 

choice of couplings to quarks, DM and leptons

https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsEXO/DM-summary-plots-Jul17.pdf
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arxiv:1711.03301

Dark matter (DM) searches at LHCDark matter (DM) searches at LHC
 Key points of the jet+missing energy analysis:

 Trigger: missing transverse energy and jet momenta as low as possible
 No resonance bump expected, but just an excess in the tail of the missing transverse 

energy  eprecise control of SM backgrounds (dominated by ν⇒ ν + jet) needed:
 Estimated / monitored via specific control samples (μ μ  + jet, for instance)⁺ ⁻

μ μ  + jet control sample⁺ ⁻Missing transverse 
energy distribution

https://arxiv.org/abs/1711.03301
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DM results from CMS

Dark matter (DM) searches at LHCDark matter (DM) searches at LHC
 Most sensitive generic search is one initial-state radiation jet + missing energy 

from DM. Mediator may have vector/axial/scalar/pseudoscalar couplings to DM 

Direct coupling 
to quarks must 

exist

X+missing 
energy search; 
couplings to 
quarks and DM  Pure dijet resonance searches are even more 

powerful when the mediator mass is high enough

https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsEXO/DM-summary-plots-Jul17.pdf
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● Use as example the most sensitive jets+missing channel:
○ Main systematics will be the missing transverse energy uncertainties
○ Need to keep low thresholds at trigger level (p

T
(jet), E

T
miss  250 GeV)≿

Dark matter searches at HL-LHC

arxiv:1812.07831, HL-LHC 

● ≈ 1 TeV larger reach for the dark matter “mediator” mass m
Med

● almost full coverage for all DM masses up to the kinematic limit 2*m
DM

<m
Med

 

DM results from CMS, Run 2

https://arxiv.org/abs/1812.07831
https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsEXO/DM-summary-plots-Jul17.pdf
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Outlook
 The HL-LHC program is on good track:

 The experiments have basically finalized all their Technical Design Reports 
(TDRs) and are already preparing for the big upgrade during LS3 (after Run3: 
2021-2023)

 We expect a performance similar to the current one, despite the harsh pileup 
conditions

 Much better trigger (tracker, throughput, …), new state-of-the-art  electronics, better 
detectors

 First-class physics results expected thanks to the increased 
luminosity (3000 fb-1 or so):

 Study of the EWSB of the SM at the few percent level
 Good prospects for a sensitive measurement of the Higgs self-coupling ( 4σ ) ≿
 Very precise measurement of vector boson scattering at highes energies
 More precise measurement of fundamental SM parameters: mH, mW, mt, sin2θeff 
 Improve the reach for the scale/masses of new particles/interaction predicted by a 

plethora of possible BSM models above the EWK scale by 1-2 TeV
 And much, much more, uncovered in this talk due to lack of time → anomalous 

couplings, EFT constraints, search for axions, dark photons, ... 

 Exciting times ahead
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● The HL-LHC is on good track
Experiments (ATLAS, CMS) have basically finalized all their 

Technical Design Reports (TDR) and performed a long list of 
physics studies and projections

● Tracking at early trigger levels is a new promising opportunity
First feedback from FTK (ATLAS) expected in 2017

● New efforts in timing and forward regions (both at hardware and 
software levels)
4D (space-time) tracking reconstruction
Forward jet tagging still remains a challenge

● Many studies in progress, in particular regarding:
Higgs properties
Di-Higgs production
FCNC in top
Searches

● Interesting times ahead at the LHC !!

Outlook
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Backup
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Timing detectors: ATLAS HGTD

● High Granularity Timing Detector (forward region): identification of the 
collision point for particles/jets using timing (the tracking z position 
uncertainties are large in the forward region)
○ 4 layers of silicon plus optional layers with tungsten absorber
○ Expected resolution is 30-50 ps
○ Possibility to use it in trigger (L0)
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Higgs production/couplings
Updated CMS results for ECFA16 (CMS-DP-2016-064)

Statistically dominated: huge 
increase in sensitivity in 
anomalous coupling sensitivity 
going from 300 to 3000 fb-1

Inclusion of detector 
upgrade and pile-up 

effects for “+”
 scenarios
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H->J/Psi gamma
● Higgs coupling to charm is challenging
● ATLAS study of the H➝J  channel at high LHC /��➝���

luminosities, sensitive to the Higgs-charm coupling via loops

ATL-PHYS-PUB-2015-
043

Direct Indirect

● Current expected limit with 3000 fb-1: 15 times the 
expected SM Br
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Higgs width in Run 2: bounds

arxiv:1901.00174

Higgs signal

• Strong prospects to really measure the Higgs width with much more statistics at HL-LHC
• Note that this is not fully BSM-independent (other particles present in the loop, for instance)

 Background
(interfering)

http://arxiv.org/abs/1901.00174
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HH production at HL-LHC
• All possible bbXX final states exploited in large detail to gain global sensitivity for the SM case: 

• bbγγ, bbττ, bbbb, bbZZ*, bbWW*
• Mostly estimated by extrapolations of current Run2 analyses to L=3000 fb-1 
• Largest sensitivity offered by bbγγ and bbττ searches; usage of multivariate methods mandatory

arxiv:1902.00134

Cross section limits as a function of κ
λ

-log(L/L
SM

) as a function of κ
λ

https://arxiv.org/abs/1902.00134
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DM results from CMS

Dark matter (DM) searches at LHCDark matter (DM) searches at LHC
 Most sensitive generic search is one initial-state radiation jet + missing energy 

from DM. Mediator may have vector/axial/scalar/pseudoscalar couplings to DM 

Direct coupling 
to quarks must 

exist

X+missing 
energy search; 
couplings to 
quarks and DM

 Comparison with Direct Detection (DD) searches

https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsEXO/DM-summary-plots-Jul17.pdf
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HL-LHC: top anomalous couplings

Taken from M. Cristinziani talk at ECFA16

https://indico.cern.ch/event/524795/
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Top: anomalous couplings, FCNC
CMS-DP-2016-064
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Top: anomalous couplings, FCNC
CMS-DP-2016-064
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Top: anomalous couplings, FCNC
CMS-DP-2016-064
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Top: anomalous couplings, FCNC
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Top: anomalous couplings, FCNC
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Top: anomalous couplings, FCNC

Taken from M. Cristinziani talk at ECFA16

https://indico.cern.ch/event/524795/
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